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ASYMPTOTIC ANALYSIS OF TWO ELLIPTIC EQUATIONS 605*
WITH OSCILLATING TERMS (*)

by Alain BRILLARD (%)

Communicated by SANCHEZ-PALENCIA

Abstract — In a bounded, smooth open subset Q of RN, is disposed an e-periodic distribution
U T, of iwdenucal winclusions (fig 1) Then, the asymptotic behaviour of the solution
'

u, of each of the two problems

—Au5+htxUTqu=f in
t

(H,) .
u, € Hy(Q),
—Au,=f n Q\U T,,
ou l

M) a7 Hbeue=0 on uaTﬂ,

u, € Hy(2)

is studied, through epi-convergence methods

In this way, we simultaneously derive the asymptotic analysis of Neumann and Dirichlet
boundary problems in open sets with holes Critical ratios combining the size r, of the inclusions
and the size of the highly oscillating parameters h, and b, are exhibited

Résumé — Sout  un ouvert borné et régulier de R", contenant une répartition e-périodique
U T,, d'inclusions identiques (fig 1) Nous étudions, a l'aide des techriques d’épi-convergence,
i

(*) Recerved 1n February 1986, revised in November 1986
) FST, 4, rue des Fréres-Lumiére, 68093 Mulhouse Cedex, France
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188 A. BRILLARD

le comportement asymptotique, lorsque ¢ tend vers 0, des solutions u, pour chacun des deux
problémes :

—Auz+hngTﬂ, u, = f dans £,
(HE) 1 '

u. € Hy(Q),

—Au, = f dans Q\U T,,

i

N2
(M) an+bsus=0 sur L‘JaTﬂ.,

u. € Hy(),

(ou h, et b, sont des réels positifs).

Nous obtenons ainsi une approche unifiée des problémes de Dirichlet et de Neumann dans
« des ouverts a trous ». Nous montrons [lexistence de rapports critiques liant la taille
r, des inclusions et I'amplitude h, ou b, des coefficients (termes fortement oscillants).

1. INTRODUCTION
A. Two problems in an open set with holes

Let Q be a bounded smooth open subset of RN (N =2) and T be a

smooth open subset of the unit ball B(1) of R". Suppose that Q is covered
i=1I()

by a regular e-mesh | ) Y,; (I(¢) is equivalent to YLI&Q—) ). At the center
i=1 €

x,; of each e-cell Y, a r.-homothetic T; of T (r, <¢e/2) is disposed,

according to figure 1 below :

~ lo|lolo|o]|o :
ololojo|o|af 1
o|o|o|o|o|ofo|o|) )
olo|olo]ofeletot]-7,
_ N | |o|o|o|o]o /
. i

Let us first recall the situation of the « crushed ice problem » [19], which will
appear, indeed, as a particular case of the model problems (H,) and
(M,). Let f be any fixed element of L%(Q) and u, the solution of the
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ELLIPTIC EQUATIONS WITH OSCILLATING TERMS 189

Laplace equation in Q, = Q\U T,,, with Dirichlet boundary conditions on

Q. :

€
—Au,=f in Q,

(D)
u, =0 on a0, =030 U (UaTﬂ).

The problem is to determine the behaviour of the solution u, of
(D,), when the parameter & goes to 0. Clearly, the limit of the sequence
(u.). depends on the size r, of the inclusions.

rE . . .
When limg =0, the following result has been proved via different

E

methods in [2], [9], [18], [19] :

THEOREM 1.1: The sequence (P°u,), of canonical extensions of
u., taking the value 0 on the inclusions, converges in the weak topology of
H}(Q) to the solution ug of :

—Aug+Cpuy=f in Q,
(1) { 0 D %0

ug =10 on 3,

where Cp is the constant given by
. 1 .

2 Cp=1lm | — Min

e | ¥ w=o0onaer, jB(e/Z)\TE
w=10n3B(e/2)

|grad w|?dx}.

Of course, Cp depends on the size r, of the inclusions and, for example, if
N is greater or equal to 3, the change of variables x = r, y in (2) shows the
existence of a critical size r¢ = e/ -2) sych that :

r
1) if lim — = 0, then u, is the solution of :
e Te

- Auo = f m Q )
uy =0 on 3,
(the inclusions are too small to freeze ),

rE * . . . .
2) if lim — belongs to R™ ', then u is the solution of (1), which contains a

€

« strange term » Cp uy [9],

vol 22, n° 2, 1988



190 A. BRILLARD

r
3) if lim —ac = + 00, then u, is equal to 0. The inclusions are too large and
N

Q is frozen.

In [4], [20], a particular case of the third above situation is studied, by
means of asymptotic expansions, that is the case: r, = ke (0 <k <1/2):

THEOREM 1.2: Suppose r.=ke (0<k<1/2), then the sequence

(izP Eus) converges in the weak topology of L*(Q) to the function
€ €

u; equal to

(3) U = Zf s

where Z is the mean value (Z = J Z(y) dy) of the solution Z of:
Y

£ AN L VoS [1 r 1l Ry soNtD . r R .]

\T) Vi1l _J jgraa z(y)| - ax — J z\y)ayi.
z Y-periodic 2 Y\T Y\KT
z=00n3(kT)

Let us now present the two model equations which will be considered
here :

1) Highly oscillating potentials

u, is the solution of :
—Au,+a,u,=f in &,
u, =0 on 3,

(Hg{

where a, takes the values &, on | ) 7, (hE - + oo) and 0 elsewhere.
i e—0
2) Mixed problem
u, is the solution of :
—Au,=f in Q,
ou, . .
(M) Tt b.u,=0 on L,) 8T,; (n is the outer normal to 3T ;, b, € R*),
u.=0 on 8Q.

Clearly, when A, or b, are equal to + oo, (H.) and (M,) coincide with
(D.). When b, is equal to 0, (M,) is Laplace’s problem in , with Neumann

M? AN Modélisation mathématique et Analyse numérique
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ELLIPTIC EQUATIONS WITH OSCILLATING TERMS 191

boundary conditions on the boundary of the inclusions and Dirichlet
boundary conditions on the fixed boundary 8(2.

The asymptotic analysis of these two problems will be based on epi-
convergence methods. Let us recall the main properties of this variational
convergence well-fitted to the asymptotic analysis of minimization problems.

B. Epi-convergence [2], [13]

Let (X, ) be a metrizable vector space and (F°®), be a sequence of
functionals defined on X. Then (F°®), epi,-converges to a functional F if :

(%) Vxe X <li_meF5) (x) = (mer) x)=F(x),
where E 8

(n_meP) (x) = Min lim F*(x,) , (EeF) (x) = Min im F*(x,),

Xe > X X=X
or, equivalently if :
(6) VxeX, x5 x Tm F(x) < F(x),
€ €0
0 VxeX, Vx.-» x lim F(x,)=F(x).
€ €0

The main result about this convergence is :

THEOREM 1.3: Suppose that (FF), epi,-converges to F and that

X, is an o.-minimizer of F*{o, — 0 that is:
e-0

F®(x.)=< inf F*(x) + 0, .
xeX

Then every T-converging subsequence (x.').. converges to a minimizer x of F
and moreover F(x) = lim-F*® (x,.).

€

Notice that for any problem, the topology T is choosen so that the
sequence (x.), of minimizers of F*® is 7-relatively compact.

Epi-convergence is related to the G-convergence of the linked operators
in the sense of [21], [15] (see [2]). Consequently, the use of epi-convergence
methods gives simultaneously, the limit problem, the convergence of total

vol. 22, n° 2, 1988



192 A. BRILLARD

energy (see theorem 1.3) and the convergence of some mathematical
objects linked to the problems such as eigenvalues of the operators [5] or
solutions of the evolution problems [6].

The following result deals with the stability of epi-convergence under
T-continuous perturbations.

PROPOSITION 1.4 : If (F°®), epi,-converges to F, for every v-continuous
function G, (F®+ G), epi,-converges to F + G.

For the asymptotic analysis of (H,), a direct method, consisting in the
verification of (6) and (7) will be used, while for the study of (M,), a
compacity method, using the results of [3], will be presented.

C. Notations

L3(Q), H'(Q), H}(Q) denote the classical function spaces.
C(Q) denotes the space of functions which have partial derivatives of
any order and with a compact support in {2,

A is the family of the Borel subsets of O

O is the family of the open Borel subsets of Q,
1, is the indicator function of the set A

0 if x belongs to A
I = ’
40 + oo elsewhere ,

X4 is the characteristic function of the set A
1 if xbelongsto A ,
x4 () = | g

| 0 elsewhere,

9F is the subdifferential operator of the convex function F defined on a
locally convex topological vector space V with dual V *:

oF(u)= {u*eV*/VveV F@)=Fu)+ (u*,v—-ud)}.

Finally, let me express my thanks to H. Attouch and F. Murat for
stimulating and very helpful discussions concerning the asymptotic analysis
of (H,.). The asymptotic analysis of (M) was first considered in the Thesis

[71.

II. ASYMPTOTIC ANALYSIS OF THE HIGHLY OSCILLATING POTENTIAL PROBLEM
(HE)
Throughout this paragraph, u, denotes the solution of (H,).

M? AN Modélisation mathématique et Analyse numérique
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ELLIPTIC EQUATIONS WITH OSCILLATING TERMS 193

LEMMA 2.1: a) u, is the solution of the minimization problem :

Fi(u)= Min Fp(u),
ue H}(Q)

where Fj is the functional defined on H(Q) by :
. 1 2 1 2
®) Fru) =3z |grad u|“dx+ 5 | a,u’dx— | fudx.
2 Ja 2 Ja Q

b) The sequence (u.), is bounded in H}(Q).

Proof of Lemma 2.1: a) Is an immediate consequence of (H,).
b) Notice that Fj(u.) < F5(0) = 0. Then, use Poincaré’s inequality [1]
and the positivity of a,.

Our main result concerning the asymptotic analysis of (H.) is :

THEOREM 2.2: a) The sequence (Fpy). epi, _pgyqyconverges to the
functional Fy given by

9) FH(u)=%f |gradu|2dx+%CHJ uzdx—J fudx,
Q Q o

where Cy is the positive constant given by

10) Cy=Ilim L Min (|grad w|?(x) + a.(x) w?(x)) dx| .
N
e | € w=1lonaB(e/2) VB(/2)

b) Consequently (see theorem 1.3) we have :

bl) the sequence (u.), of solutions of (H.) converges in the weak topology
of HY(Q) to the solution u, of :

—Au0+CHu0=f in Q
(Ho) 1
up € Ho(2),

b2) the sequence (J (| grad uE|2 +a, u?) dx) of total energies con-
Q

€

verges Lo :

J |gradu0|2dx+CHJ ud dx .
s o

Before proving the theorem 2.2, let us give more precisely the value of
Cy.

vol. 22, n°® 2, 1988



194 A. BRILLARD

PROPOSITION 2.3 : The constant C g given by (10) has the following values
(N = 3) which depend on the limit of the critical ratios : r,/e¥/ N ~2) and
hrN/eN .

h, rN 0 h rN k h,rN
N © N2 N © +®
PN -2
—— 2 0 Cy=0 Cy=0 Cy=0
€
N-2
EN =k1 CH=0 CH= Min CH=k1CapRN(T)=
€ we HY(RY)
{klj |grad w|2dx + =k, Min
RV w e H(RY)
w=1onT
+k2[ (w—l)zdx} [ |grad w |% dx
T J JRNNT
oN -2
—— > +0 | Cy=0 Cy = k, meas (T) Cyu=+o
&

Proof of Proposition 2.3 : Write x = r, y in (10). Then,

(10bis) Cpy = lim Min X
€ w=10ondB(e/2)

rg\l—2 2 hE re 2
S ~ |grad w | dy+TJWdy .
€ B(e/2r.) € T

Proof of Theorem 2.2 : Let w, be the solution of the local minimization
problem occurring in (10) and denote C (e¢) the quantity given by :

(11) C(s)=J (|grad w,|* + a, w?) dx =
B(e/2)

= Min J (lgrad w|? + a, w?) dx .
B(e/2)

we HY(B(:/2))
w=10ndB(e/2)

Then w, may be extended e-periodically in a function still denoted by
w, equal to 1 in U Y. \B‘(¢/2). Let us admit for a moment the following

properties of this function w,.

M? AN Modélisation mathématique et Analyse numérique
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ELLIPTIC EQUATIONS WITH OSCILLATING TERMS 195

PROPOSITION 2.4 : Suppose that hm ( )< + o0, then :

a) (w.). converges in the weak topology of H'(Q) to the constant
function 1.
ow

b) (Z , ) converges in the strong topology of H=1(Q) to the
~ OV |aBi(e/2)/ ¢
constant Cy given by (10),

and let us verify the two assertions (6) and (7) which become in this case

€

w — Hy(Q)

(6) Vve Hy(Q), I0?——vIm Fy(%) < Fyu(v),
€0 3
woHNQ)
7 Vv e H}(Q), Vv, viim Fj(v.)= Fyu(v).
e-0 €

1st step : verification of (6) when lim Cle) < + o0.

EN

First consider a smooth function v in CP(Q) and let v? be equal to
vw, where w, is the solution of (11).

Proposition 2.4. a) implies that (v?), converges to v in w — H}(Q).

F‘(vo)—1 | radvlzdx+l v2(x,;) X

H\Ye/ — 2 0 g 2‘2 i
xj (|gradws|2+a£w§)dx—J fvdx+o,,
Bi(e/2) Q
From Proposition 2.4. a) and the regularity of v, one obtains :

F;,(vo)zlj |gradv|2dx+12v2(x-)><

€ 2 o 2 - €l

XJ (|gradw5|2+a£w§)dx—f fvdx+o,,
B'(e/2) Q

vol. 22, n® 2, 1988



196 A. BRILLARD

where o, is a quantity which converges to 0 when & goes to 0. Then, write

Fy(?) = %J |gradv|2dx+%ZeN v2(x,) x
Q f

X (LNJ (|gradw£|2+asw§)dx) —J fodx + o,
B'(e/2) Q

€

_1 2 1 2
_ZJ;; |grad v | dx+2Zl:JYHv (x) dx x

X (—lﬁj (|gradw€|2+asw§)dx) —j fodx +o,,
B'(s/2) 0

€
because v is smooth. The definition of C(10) implies
: 0
lim F(v7) = Fy(v).
€
Than far a oanaral fiimatine 0 in IO 1at 1o annle o dancity armimant
LL]\’LL, iavi a 5\-1Av1(.u AUiav LIVl VvV oaar L‘.O\HH l, ivL wuo ﬂyyl] «a \JUAAO]LJ uL5uAuvAAl..

There exists a sequence (v,,), of functions in C° () which converges to v in
the strong topology of H}(Q). By the previous argument, for each n:

lim Fi(v, w,) = Fy(v,),

hence

Iim lim Fi(v, w,) < Fy(v)
an €

(Fy is continuous for the strong topology of Hg(Q)).
From the diagonalization argument of Corollary 1.16 [2], one derives the

existence of a sequence (n(e)). growing to + 00, such that: (V) w.),
converges to v in the weak topology of H}(2), and

ITIE F;I(vn(s) WE) = FH(U) . Then take Ug = Un(e) WE .
€

C(e)
€N

2nd step : verification of (7) when Iim

€

< + 00.

Let v be any element of H}(Q) and (v,), a sequence of functions in
C&(2) converging to v in the strong topology of H}(Q). Then, for every
sequence (v,), converging to v in the weak topology of H}(Q), we write

Fi(v)=Fy(v,we) + QF (v, w,), v, — v, w,)

M? AN Modélisation mathématique et Analyse numérique
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ELLIPTIC EQUATIONS WITH OSCILLATING TERMS 197

where
(F (v, w,), v, — v, W) = J grad (v, w,.).grad (v, —v, w,)dx +
O
+ j a v, w, (v, —v,w.)dx — J f(v,—v,w)dx
a o
= f gradv, . grad (v, — v, w,) w, dx
o

+ZJ (-Aw,+a. w)v,(v,—v,w.)dx
. JB'(e/2)

3w,
+ _a'v_un(vs_vn WS)dO'E(X)‘l- J f(ve_vnws)dx
' 3B'(/2) 9]

- f grad w,. gradv,(v, — v, w,)dx.
o

From the definition of w, and Proposition 2.4, one deduces

lim F§(v,) = Fy(v,) + f gradv,.grad (v —v,)dx +
€ Q
+CHJ vn(v—vn)dx+J fv —v,)dx.
Q Q

Then let n go to + co. The properties of (v,), give the conclusion.

3rd step : when lim ¢ (;’)
e E

= 4 00.

In this case (see Proposition 2.3), r, is bigger than Ar{ for every \ in
R*". Then, for every u in H}(Q):

Fu(u)=Fg\(u),
where Fj , corresponds to the case r, = Ar¢. Then, for every u in
Hj(Q):

+ oo ifuisnot0 (a.e.in ),

lim, Fj(u) = lim, Fi(u)= Sup F = .
im, Fg(u) = lim, Fg(u) 1:p EANCY) 0 ifuisO(a.e.in Q).

€ €

The assertion (5) is verified with Fy =1 (, _gmnay-
Let us now prove the properties of the solution w, of the local problem,
exposed in Proposition 2.4.

vol. 22, n° 2, 1988



198 A. BRILLARD

a) From the definition of w, (or its extension), one derives

(12) X Jr\Be (I —w)=0.

The sequence (XU Yu\B'(c,2))e converges, in the weak topology of

L*(Q) to the strictly positive constant Vol (Y\B(1/2)) (see Lemma 4.1 of
[20]). As soon as (w,.), is bounded in H'(Q), and therefore strongly
convergent in L?(Q), the assertion a) is a consequence of (12).

In order to prove that (w,), is bounded in H!(Q), we notice that (11)
implies

C(e)sj |grad W, | dx ,
B(e/2)

where W, is the solution of the Dirichlet problem :

[_ AW, =0 in B(e/2)\B(r./2),
(i3) W, =1 on d5(e/2),

]WE =0 on 3B(r./2).

W, is easily computable in terms of radial functions (see [9] p. 114). From
the positivity of a, and Theorem 2.2 of [9], one deduces that (w.), is
bounded in H(Q).
b) The solution w_ of (11) satisfies
(14 —Aw,+a,w,=0 in B(eg/2),
w, =1 on 9B(g/2).

We first deduce from (14) that w, is positive in B(e/2) (multiplying (14) par
w_, the negative part of w, and integrating by parts [1]). With the same
idea, we prove that

(15) w,=W, in B(e/2)\B(r./2)

where W, is the solution of (13)).
Since w, = W, =1 on 8B(e/2), (15) implies

W,
v

aw,

a
3B(es2) OV

0.

aB(e/2) -

14

oaw
Then, Lemma 2.3 and Lemma 2.8 of [9], imply that (Z :

BB'(S/Z)) €
converges in the strong topology of H™1(Q).

M? AN Modélisation mathématique et Analyse numérique
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ELLIPTIC EQUATIONS WITH OSCILLATING TERMS 199

This limit, whose computation is not necessary, for the proof of
Theorem 2.2, may be calculated in the following way :
For every v in C(Q2):

(16) J grad w, . grad (vw,) dx + J a, vwldx =
Q o

=ZJ (- Aw, +a, w,)ow,_ dx
T JB'(e/2)

ow,
+Y | Sy vdo(x)
. JaB'(e/2)

= J v(lgrad w,|*> +a, wDdx + o, ,
o

because v is smooth. Using the same argument as in step 1 of the proof of
Theorem 2.2, one derives

0

WE
ov

,0) :CHJ vdx = o,
3B'(e/2) Q

2

and therefore, for every v in C§°(Q2)

aw,
v

lirn<za ,v):CHJ vdx.
£ . (Y]

3B'(c/2)

One can improve the result of convergence exposed in Theorem 2.2b) in the
following way.

PROPOSITION 2.5 :

a) If Cy =0, then (u,). converges to uy in the strong topology of
HL(Q).

b) If Cy =+ 0, then (u.), converges to 0 in the strong topology of
H(Q).

¢) If Cy is finite, but not 0, then (u, — w, u,), converges to 0 in the strong
topology of W} (Q). And, ifuyisin CY(Q), that is, if T and f are sufficiently
smooth so that ugy is in C1(Q), then (u, — w, uy), converges to 0 in the strong
topology of H}(Q).

Proof of Proposition 2.5 :

a) and b) are simple consequences of assertion b) in Theorem 2.2.

vol. 22, n° 2, 1988



200 A. BRILLARD

¢) Take v in C}(Q) N H}(Q) and compute

17) J.Q (|grad (v, —w, v)]2 +a.(u, —w,v)) dx =

=f (|grad u,|* + a, (u, ) dx
(¢}
+J (|grad we|2+ae(ws)2)vzdx+2j grad w, . grad vw,_ v dx
Q 0
+J lgrad v |? (We)zdx—2j (grad w, . grad u, v + a, u, vw,) dx
o o

-2 J grad u, . grad vw, dx .
Q

One can pass to the limit in (17) using Proposition 2.4 a) and b),
Theorem 2.2 b) and the idea exposed in the computation of (16)

j (grad (us - Ws)z +
Q

+a,(u,—w,v))dx - (| grad (uo—v)|2 + Cylug—v)?)dx.
e-0 JvOQ

From the inequality

e, — w, ”Ouwg,vl(n) =< lu.—w.v| wiioy ¥ fwe(v — o) Wi (@)

and the density of smooth functions in Hi(Q), we get the conclusion. If
uy is in C*(Q1), then we take in the above computation v = u.

Let us conclude this section giving some results of convergence concerning
the mathematical objets linked to (H.). From [6], we deduce

THEOREM 2.6: Given f in L¥(0,T);Q) and g, in HL(Q), let
u, be the solution of:

du (x,t)

T—Aue(x,t)+a5ug(x,t)=f(x,t) in Qx]0, 17,
us(.,0)=go(.) in Q,

u (x,t)=0 for t=0,xo0n3Q,

M? AN Modélisation mathématique et Analyse numérique
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ELLIPTIC EQUATIONS WITH OSCILLATING TERMS 201

then (u,), converges in the strong topology of L*((0, T) ; Q) to the solution
Uy Of.'

au"g’:’ 0 Aug(x, 1) + Cyug (x, 1) = f(x, 1) in Qx]0, T,

Uy (. 0) = go(-)»
uy(x,t) =0 for t=0,xo0n3Q.

And from [5], we deduce :

THEOREM 2.7: Let &/, (resp. &) be the operator associated to
(H,) (resp. to (H,))
D(s£.) = HY(Q) N Hy(Q),
. u=—Au+a,u

(resp. D(Ay) = H*NH}, Agu=—Au+Cghu).

Then, the sequence of eigenvalues of &, converges to the sequence of
eigenvalues of o in the following sense. If (N, )i (resp. (\i)y) is the
nondecreasing sequence of eigenvalues of o . (resp. &) and if u, ; is an
eigenvector associated to \, , then :

a) (A i) converges to N\ ;

b) the eigenspace E; associated to \ is the limit in Kuratowski’s sense [17]
and for the strong topology of L*(Q) of the subspace generated by
(Ue k> Ue, k415 -5 Ue ko m) if m is the multiplicity order of \,.

Let us precise the connections between the two problems (/) and
(D.). Let a, j, be the oscillating potential defined on Q by :

h on| )T, heR*"*,

a =
& h 0 elsewhere ,

and let F; be the functional associated to this oscillating potential
ag p:

Fi(u) =+ J |grad u|? dx + J a, p u®dx — J fu dx(u e HY(Q)).
2 Ja 2J)a o
From Theorem 2.40 of [2], one deduces that when % goes to + co, the
sequence (F}y), epi, _p)@)yconverges to the functional F* defined on
Hy(Q) by:
¢ 1
Fe(u) = 5 J;) |grad u|® dx + I gy, () — J;l fudx .
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(Notice that F* is the functional associated to the problem (D,).)

Hence, a diagonalization argument [2] implies the existence of a sequence
(h(e)). going to + o, such that the sequence (Fj,)), epi, _ g}(a)-converges

to the epi-limit of (F®), i.e. to the functional F defined on H}(Q) by:
1 2 1 2
F(u)==| |gradu|?dx+zCp | u’dx—~ | fudx
2Ja 2 o a

(where Cp is defined in (2). Notice that F is the functional associated to (1)).

The Proposition 2.3 gives some information about the sequence
(h(e)). : if N is greater or equal to 3, then the last column in the array shows
that the sequence (k(e)), has to be choosen so that :

__h(e)rl

lim——=+o00,
N

€ €

and since the critical size r¢ is equal to CeV/ WV -2);

lim i, 2N/ N-2) = 4 oo,

€

III. ASYMPTOTIC ANALYSIS OF THE MIXED PROBLEM (M,)
In this section u, denotes the solution of
—Au, = f in &,
ou,
(Me) a_n'+bsua:0 onUaTsl (bs>0)

=0 on 3Q) .

LEMMA 3.1:
a) There exists a linear continuous operator P® from Hio(Q,)
(Hya () = {ue H'(Q,)/u =0 on 3Q)}), into H}(Q), satisfying :

sup || P (Hia(@,), Hy@) = T %
€

b) u, is the solution of the minimization problem :

Fy(u.) = Min Fj(u)
Hin(R,)
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where Fj; is the functional defined by :

(18) Ffw(u)=lj |gradu12dx+leZJ udei,_l(x)—J fudx,
2 Jq, 2 "4 0,

€

dHy _(.) denoting the Hausdorff measure of the regular N — 1 dimensional
manifold dT,;.

c) (P®u,), is bounded in H}(Q).

Proof of Lemma 3.1 :

a) See [22], [10], Note that such an operator is not unique. However, in
the sequel we will choose one among them. The results obtained below do
not depend on such a choice.

b) Is an immediate consequence of (M,).
¢) Is a consequence of @) and b), and the positivity of b,.

r . -
A) The case lim —= = 0 : a low concentration of inclusions.
€

€

Our main result of convergence is :

THEOREM 3.2 :
a) The sequence (Fy), defined by (18) epi, _pgi)converges to the
functional F,

FM(u)=%J |gradu|2dx+%CMj uzdx—J fudx,
Q QO 9]

where Cy is the constant

Min X
w=10ndB(e/2)

X <J‘ |gradw|2dx+bej wz(x)dva_l(x)>} .
B(e/2)\T, oT,

b) The sequence (P*u,), converges in the weak topology of H}(Q) to the
solution uy of :

(19) Cy= lim{

mzl =

—Au0+CMu0=f inQ,
uy=0 on 3 .

(Mo){
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Moreover the sequence (j | grad u€|2 dx+b.y f
i aT,

e ] €

u? dHi,_l(x)) con-

verges to

J |gradu0[2dx+CMJ uldx .
0 Q

As in Proposition 2.3, depending on the limit of the critical ratios :
r¥=2/¢N and b, rY ~1/eN ~2, the values of Cy, are :

PROPOSITION 3.3 : If N = 3, then

b, r¥N-1! b, V-1 b rV-1
ele 0 ele =k €€ > + o0
N © N 2 N

r
T __.a lcy=o0 Cu=0 Ch=0
N/ (N -2)

r, . -
=k [ Cu=0 CM=Mm{k1~-2 Cu = kY ~2cap (T)
€ u=1

a Pinfini

J | grad u|? dx
RVN\T

+ kzj udeN—l(x)}
aT

7e

ST *®|Cu=0 Cy =k, Hy_,(3T) Cy=+w

Proof of Theorem 3.2 : One can apply the same « direct method » as the

one given in the Proof of Theorem 2.3. One has now to take w, the solution
of the following minimization problem

(20) |gradwe|2dx+bej w2dHY _(x) =
B(e/2) aT,

= Min (J |gradw|2dx+b£J. wdef\,_l(x)>
w=1ondB(¢/2) B(e/2) a7,

and to derive, for this function w,, properties similar to the ones given in

Proposition 2.4 (see [7]). However, we present here a different method
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based on a « compacity argument » and a decomposition of the functional

. . 1 .
Fj into a quadratic term 3 j |grad u|?dx and the « constraints »
Q

3

%Z b, j u?dH§ _,(x). We will point out that the limit constraints still
i aTez

keep the same expression in the two cases: limr,/e =0 and

€

r.=ke (0 <k <1/2). Indeed, only the limit of the quadratic term is
changed.
Let us first recall the following « compacity theorem » :

THEOREM 3.4 [3] : Let E, be the family of quadratic energy functionals on
H}(Q):

E;,= {®/®(u)= J;) Ya,DuD udx; a,=a,andVEe RV
L]

NlEIP<Y a, & & =< Agl&]*, 0<Ng=<Ag}.
1

Let & be the family of unilateral constraints :

F = {[F:H}(Q)x B~ R*/ i)Yo e H}: B~ F (v, B) is a positive

outer regular Borel measure,

ii)Vow € O, v - F (v, ) is lower semicontinuous
on H}(Q) and proper, convex,

iii)Vu,v € H}(Q),Voe O:ul ,=vl = F(u,») =
=F(v,»),

iv)Vu,v e H}(Q),Vo e O :

F(nf (u,v),w)+ F (sup (u,v),0)<Fu,w)+F@,0)}.

Let (®,), be a sequence in E,. Let (F ), and (F?), be two sequences in F
such that F} is decreasing and F? is increasing (with respect to v in
Hi(Q)).

Suppose there exist z and (z,), converging to z in the strong topology of
L?*(Q), such that

®,(z,) » ®(z), Fl(z,, B)=F2(z,,B)=0 foreveryBin # .
n
Then, there exist a subsequence still denoted n, ® in E, F 1 and
Flin #,
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