
M2AN. MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS
- MODÉLISATION MATHÉMATIQUE ET ANALYSE NUMÉRIQUE

A. C. DENEUVY
Theoretical study and optimization of a fluid-
structure interaction problem
M2AN. Mathematical modelling and numerical analysis - Modéli-
sation mathématique et analyse numérique, tome 22, no 1 (1988),
p. 75-92
<http://www.numdam.org/item?id=M2AN_1988__22_1_75_0>

© AFCET, 1988, tous droits réservés.

L’accès aux archives de la revue « M2AN. Mathematical modelling and nume-
rical analysis - Modélisation mathématique et analyse numérique » implique
l’accord avec les conditions générales d’utilisation (http://www.numdam.org/
conditions). Toute utilisation commerciale ou impression systématique est
constitutive d’une infraction pénale. Toute copie ou impression de ce fi-
chier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=M2AN_1988__22_1_75_0
http://www.numdam.org/conditions
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


MAmEWATICALMOOtLIJHGAHOHÜMERICALAHALYSK
MODÉLISATION MATHÉMATIQUE ET ANALYSE NUMÉRIQUE

(Vol. 22, n° 1, 1988, p. 75 à 92)

THEORETICAL STUDY AND OPTIMIZATION
OF A FLUID-STRUCTURE INTERACTION PROBLEM (*)

by A. C. DENEUVY (*)

Communicated by R. TEMAM

Abstract. — In the present paper, the small harmonie vibrations of an elastoacoustic coupled
system are under study. A symmetrie variational formulation is presented, which particularly
suits the model problem. The mathematical study is derived and the existence of a real spectrum
of eigenvalues is proved. Then, the problem of designing the coupled structure suc h as to obtain
as large a gap as possible in the eigenvalues spectrum is considered, in order to avoid résonance
for a wide range o f external excitation frequencies. An optimality criterion method is applied,
using the structure thickness distribution as a control variable.

Résumé. — Dans cet article, on étudie les petites vibrations harmoniques d'un système couplé
élasto-acoustique. On présente une formulation variationnelle symétrique particulièrement
adaptée au cas étudié, et dont Vétude mathématique conduit à la démonstration de Vexistence d'un
spectre-réel de valeurs-propres. On considèm~ensuirele problème d^« optimum design » de la
structure couplée, pour créer le plus grand trou possible dans le spectre des fréquences couplées.
On utilise une méthode par critère d'optimalité, la variable de contrôle étant l'épaisseur de la
structure.

SECTION 1 : PRESENTATION

1.1. Présentation of the physical model

The present work studies the small harmonie vibrations of an enclosure
which is completely filled up with fluid. The enclosure has a rectangular
section in the plan referred to as (oxl, ox2) and is of infinité dimension in
the perpendicular direction denoted by ox3 (see fig. 1). Therefore the

(*) Received in December 1986, revised in April 1987.
The present work had been done within the framework of an A.N.R.T. « contrat CIFRE »

between METRAVIB R. D. S. and Ecole Centrale de Lyon.
C1) C.R.N.S. U.A. 040740 Département M.I.S., Ecole Centrale de Lyon.
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76 A. C. DENEUVY

Figure 1.

corresponding state équations are those of a bidimensional elastoacoustic
interaction problem in a bounded medium. The fluid is assumed to be idéal,
irrotational and compressible. The structure is resolved into two parts :

— its top side is identified to a transversally vibrating plate, which is
supposed to be thin, elastic, homogeneous and of variable thickness ;

— the rest of the structure is assumed to be rigid. Consequently, the
(oxu ox2) — section of the vibrating part, namely T, obeys the clamped-
clamped beam équation.

Gravity effects are neglected and assumptions leading to linear équations
are made (i.e. small displacements and perturbations, fïxed geometry).

1.2. Notations

H = ]— a, + a[x ]— b,0[ represents the bounded domain occupied by
the fluid. Its boundary dfl is splitted into two parts T and 2, where
F — ]— a, + a [ x {0} and 2 = bfl — Y . nY (resp. nx) represents the out-
ward normal vector to Y (resp. to 2).

From now on, Y will be identified to ] - « , + « [ .
p (resp. a) is the constant density of the fluid (resp. of the structure).
c is the constant sound celerity in the fluid.
E is the constant Young modulus of the structure.
D is the variable plate thickness distribution.
Let o> be the harmonie pulsation for the coupled System which can be
described by the following variables :

P (x\9 xi) eM is the pressure field in the fluid ;
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A FLUID-STRUCTURE INTERACTION PROBLEM 77

y{x\) eJiùt is t n e structure transversal deflection ;
r{x1 ) e

;W is the dynamic reaction force .

N.B. : For the sake of brievity, the time dependence in e/a)' will be omitted
in the équations.

The present choice of variables deserves an explanation. It has been
attempted, for a long time, to formulate interaction problems, in a
symmetrie way [1, 2, 3], by means of a restricted number of unknowns. In
this optie, three-fields représentations have been introduced (see [4, 5]). In
the present paper, the basic idea, due to R. Ohayon [6], is to use a mixed
description for the structure involving a dynamic dual variable and a scalar
représentation for the fluid, whereas, in the above mentionned papers, a
mixed représentation for the fluid was used, with a primai description for
the structure. For many problems it might be more interesting to use the
present description which needs two unknowns on the boundary and only
one in the domain.

1,3. The governing équations

The hereabove hypothesis lead to the following set of équations :
The pressure field p obeys Helmholtz équation in il

Ap + ̂ Lp = 0, (1)
C

with boundary interface conditions :

dp | dn 12 = 0 on 2 , (2)

dp | dn | r = tu2 py on T , (3)

the following compatibility condition, derived by a Green formula applied
to (1) and (2), (3), must be fulfilled

j pdü + pc2 j ydy = 0. (4)

On the structure T, the dual variable is defined as the inertia reaction
force :

r - co2 o-Dy , (5)

the dynamic equilibrium équation is
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78 A. C. DENEUVY

and the clamping boundary conditions are

y(±a)=yf(±a) = 0. (7)

SECTION 2 : THEORETICAL STUDY

2.1. Définitions

Assume that function D, which represents the structure thickness
distribution, belongs to the admissible set denoted by °Uad and defined by

f<ad = {Z>eZ,°°(r);O<Z>rain^D^£>max!a.e. on T} ,

where Dmm and Dmax are given positive numbers.
The usual Sobolev spaces L 2 ( t t ) , L2(T), H\n) and H2(T) will be used,

endowed with natural Hubert scalar product. The associated norms are
respectively denoted by |w|0 a, \u\0 r, \u\y n and \u\2 r . Note that, in
HQ(T), the semi-norm ]w"|0 r is equivalent to \u\2 r according to Korn's
Lemma (cf. [7]). Last, let Lo(ft) be defined by

f
Ja

2.2 Variational formulation

Define <&\ Y€ standing for Coupling space], by :

<e = {x = (p, r, v) G z/1^) x L2(r ) x Hl(r) ;

/? dn + pc2 y dy = 0
Ja Jr

^ is a Hubert space equipped with the natural scalar product (p, q)liü -h
(^,5)0^ + (y", z")0 r and the associated norm | |^| |^.

The variational formulation for équation (1) to (7) is given by :
Find co2 in R* and X = (p,r,y) in ^ , X # 0 , such that, for every

Y = ( ^ 5 , z ) in «y,

i f yp V^ dû - co2l ^ - \ pq d(l + f
P Jn l pc2 Jn Jr

!

(8)

zpdy+ j zrdy = 0. (10)
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A FLUID-STRUCTURE INTERACTION PROBLEM 79

N.B. : This formulation is symmetrie in (p, r,y) versus (q, s, z).
In this section, the existence of a real discrete spectrum of eigenvalues for

problem (8), (9), (10) is proved.
The variational formulation (8), (9), (10) is set into the form of a spectral

problem in a constrained space, on which classical spectral analysis applies.
The most interesting point in that proof is to show off how to settle down

a modal synthesis method which can be used to discretise the problem. This
point is developed in another paper [9] by the author (see also [8]).

2.3 Décomposition of Coupling space ^

Let (p, r,y) be an element of cê. The pressure field p can be uniquely
decomposed into :

— a « purely acoustic » part, denoted by p and characterized by zero-
mean over O ;

— and a « pneumatic » constant contribution denoted by ps (y ) which
dépends upon the structure displacement y ; the value of this constant
function is the pressure field mean over H.

So,

(the minus sign in (11) has been chosen for convenience for later calculus).
As p belongs to H1 (Ci) and obeys compatibility condition (4), it can be

deduced that :
p belongs to H1 (il) n Z^(ft) ,

and that

(For the sake of brievity, the notation Ps will stand for the function and its
constant value in H).

The « physical décomposition » (11) of p naturally induces a décomposi-
tion of the coupling space # into a direct sum of two subspaces denoted by
^ST and <€AC :

— y>STi (ST for structure), is formed with the éléments of # for which the
pressure field is defined by relation (12) :

Consequently, %AC* (AC for acoustic), is reduced to

vol. 22, n° 1, 1988



80 A. C. DENEUVY

It can be checked that, for every X - (p, r, y ) in <g\ the following relation
is satisfied :

(i.e., p and Ps(y) are orthogonal in L2(H)).
Therefore, ^ 5 r and <ëAC are orthogonal subspaces in <$.

2.4. Translated variationnal formulation

An other implication of décomposition (11) is presented hère.
Instead of using the pressure field/» to describe the fluid, one can just use

its purely acoustic part/?, its pneumatic part P$(y) being totally determined
by the knowledge of y. This permits to get rid of compatibility condition (4)
in the Coupling space. The translated variationnal formulation writes :

Find u>2 in IR* and (p,r,y) in (tfffi) n L0
2((l)) x L2(r) x #

(py r, y) =£ (0, 0, 0), such that, for every (q, s, z) in

(H\a) n L0
2(r» x L\T) I

- f vpvq<m-<»2\—,-, [ pqdci+ \ yqdy\=o, (14)
P Jn L pc Jn J J

"z"dy- \ Ps(y)zdy+ f *pdy+ï zrdy = 0. (16)

The actual pressure field p is, of course, calculated afterwards, owing to
relation

P=P- Psiy), where Ps(y) = - ^ - \ y dy .
meas AI J p

Equation (16) reveals the part played by the structure displacement y :
y is an auxiliary variable for problem (14), (15), (16). Indeed, for every

given (p, r) in (/^(O) Pi LQ(F) ) X L2(T), there exists a unique >> in
HQ(T) defined by équation (16). This resuit dérives from Lax-Milgram's
theorem.

Furthermore, it can be checked that y obeys the estimation ;

where c is a strictly positive constant.
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A FLUID-STRUCTURE INTERACTION PROBLEM 81

To prove (17), one has to use Deny-Lion's resuit (see [10]) saying that the
gradient semi-norm |Vp|Q n is a norm in (H1 (Cl) n LQ(£1)) equivalent to

y is also solution to an energy minimization problem :

J(y) = Inf {J(z), z e HQ(T)} where functional / is defined

as follows

J(z) = \\ j
Notes :
J represents the structure dissipated energy,

f ED3

—— (z")2 dy represents the elastic déformation energy,
J r 12

Ps(z)z dy represents the pneumatic déformation energy,
r

zp dy represents the acoustic stress work,
r

zr dy represents the inertia stress work .

»f dy + J Ps(z) zdy\-^ pzdy~[ rz dy .

Jr

A Green operator G may be associated to équation (16)

G : H\£l) H L2(n) x L2(T) - H0
2(r)

Operator G enables a condensation for the problem under study, by
eliminating y from équations (14) and (15), without loosing the symmetry in

2.5. Spectral formulation

Though the initial formulation in (p, r, y ) is resumed in this section, the
abovementionned results are exploited. As y is an auxiliary variable, its
determinating équation (10) is now treated as a constraint équation. Hence,
a restricted Coupling space is introduced : dénote by ̂  * the subspace of ^
defined as follows

Vzetf0
2(O, I ^-y"z"dy= zpdy+ zp dy\ .

Jr iZ h h J
vol. 22, ne 1, 1988



82 A. C. DENEUVY

Resuit 1 : ̂  * is a Hubert space equipped with the energy scalar product

P J n JrcrD J r 12 measa jp J r

and the associated norm, denoted by ||-ï||^* is equivalent to \\X\\^.

Proof of Resuit 1 : (see [8])
• Résume the direct décomposition of <$ into

section 2.3) .

? 0, 0) ,p € H^ft) n L|(O)} is a Hilbert space endowed

with the scalar product - VpVq d£l, and the associated norm is
P Jn

equivalent to \\X\\^ in *6AQ*

• ^ST= \(P,r,y)e<$;p = ~Ps(y) = -~P?~- f y dy\
[ meas il JT J

is a Hilbert space endowed with the scalar product

f rs , f ED3 „ „. pc2 f . f .
J ra-D J r 12 meas f l j r J r

and the associated norm is equivalent to H^H^ in *$ST.
m Consequently, ||X||^* is equivalent to \\X\\^ i n ^ .
• Finally, remark that <? * is closed in <jf as <g * is the Kernel of a bilinear

continuous form on <€. D
Now, consider the two bilinear forms :

and

= - \ Vp
Jr*1®

1 f f FD3

,Y) = W pqda+ E±Ly»z
pc ia JT

 1 2

Result 2 :
The spectral problem

f ? ^ ?
< such that, for every Y in # * :

[ 2 ) (18)
is equivalent to variational problem {(8), (9), (10)}
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Proof o f resuit 2 :
• Take a solution w2 and X in ^ to variational problem (8), (9), (10).

Constraint équation (10) being satisfied, X belongs to <g?*.
Now, add équations (8) and (9). There cornes :

l f f rs

p J n 9 J r C T £ )

= j \ — 7 [ pqd(l+ \ yqdy+ ! ys dy)(19)
l pc Jn Jr Jr J

for every Y = (g, 5, z) in <g\
If Y belongs to # *, one can write that

J ysdy= J (20)

Therefore, équation (19), written for every Y in #* , becomes :

1 f f rs __ 2 { 1 f dÇl f ££>3

P Jn * J r a Z ) Ü > j pc 2 Jn Jr 12
and so, {o>2, X} is a solution to spectral problem (18).

• Reciprocally, take a solution w2 in R* and X in ^ * to spectral
problem (18). Equation (10) is satisfied, as X belongs to #* . Check now,
that X obeys also équations (8) and (9). For that, write équation (18), for
peculiar éléments Y of < *̂ : first, take Y = (0, s, z) in <^* and check that
équation (8) is satisfied, then take Y— (q,0,z) in # * and check that
équation (9) is satisfied.

Those vérifications present no difficulties. D

THEOREM: The spectral problem: find <o2 in R* and X in #* ,
X # 0 , such that for every Y in <$*, A(X9 Y) - o>2 B(X, Y), admits a
denumerable séquence o f real, strictly positive eigenvalues :

The associated eigenvectors, denoted by Xn, form a complete basis in
<$*, which is orthonormal for the scalar product B(X, Y) :

A (Xn, Xm) = o>2
nB {X\ Xm) = co2 Ônm . (21)

Proof o f theorem :

• The bilinear form A(X9Y) = - Vp VqdCl+ — dy is conti-
P Jn J r a Z >

nuous, symmetrie and coercitive on ^* .

vol. 22, n° 1, 1988



84 A. C. DENEUVY

Check the last point : Remind that

P<2 / f , V 2
meas fi \ J r

From estimation (17) (section 2.4)

Deduce that :

l / ' l o , r ^ 2 C 2 { | V < n + | r | ; ; r } . (22)

So, équation (22) permits to deduce that

12 measft \ J / ' / 2 j P Jn JT<*D

where C2 is a strictly positive constant.
Then, équation (23) leads to the wanted conclusion :

%.. (24)

• It is trivial that B(X,Y) = —\ pq dû, + E±Ly» z» di defines a
?c2Ja JT 1 2

scalar product in ^ * , the associated norm being equivalent to the norm

I K . + i/'iU1'2-
• Let there si be the linear continuous mapping in <^* associated to

A(X,Y).
se is defined, for every X and Y in <ë*9 by :

B(j*X,Y)=A(X,Y), (25)

si is self ad joint, positive and invertible.
To be in the classical spectral analysis framework (see [11] for instance),

one has to check that si ~l is compact in ̂  * for the topology associated to
B(X, Y), and this is the only non-immediat point of the proof.

Let there be a séquence, bounded in #*. A subsequence, denoted by
Xn, Xn = (pn, rn, yn), can be extracted and weakly converges in #*.

Let there be X = (p7 r, y ) its weak limit, such that

p n weakly tends to p in H1 (ft ) , (26)

M2 AN Modélisation mathématique et Analyse numérique
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rn weakly tends to r in L 2(T) , (27)

y" weakly tends to y in H$(T) . (28)

The injection of H1 (il) into L2(H) is compact according to Rellich's
theorem. From (26), deduce that :

pn strongly tends to p in L 2(T) . (29)

In the same way, the injection of HQ(T) into H1^) is continuous, and the
injection of H1^) into L2(T) is compact. From (28), deduce that

yn strongly tends to y in L 2(T) . (30)

The trace operator is continuous from H1^) into L2(T). From (26),
deduce that

pn\ r weakly tends to /> | r in L 2 ( r ) . (31)

Now, from results (30) and (31), deduce that

ynpndy tends to yp dy (32)
Jr JT

and from results (27) and (30), deduce that

I yn rn dy tends to î yr dy . (33)
Jr Jr

Write that Xn and X belong to **. There cornes the identities

f ^ (yn"f dy = [ ynpndy + f y-r"d7 (34)
Jr 1 2 Jr Jr

and

| ^ 2 f J 7 . (35)= f XP ̂ 7 + J

Finally, from (32), (33), (34), (35), deduce that

yn strongly tends to y in Hl(T) . (36)

Results (26) and (36) permit to conclude that Xn strongly tends to X for
the topology associated to B(X, Y).

The classical spectral analysis theory permits to conclude. D

vol. 22, ns 1, 1988



86 A C. DENEUVY

SECTION 3 : THE OPTIMIZATION PROBLEM

3.1. Formulation of the optimization problem

In this section, we intend to maximize the gap between two consécutive
coupled eigenvalues oiN_1 and a>N of spectral problem (21), (see sec-
tion 2.5), for a given frequential order N. This optimum design problem is
simplified as domain variations are controled by a lone design function, the
structure thickness distribution D.

The problem can be summed up by the following scheme :
For a given control variable Z>, the system is governed by the state

équation whose solutions, the state variables, permit to define the criterion
to minimize in an admissible control set °Uaà :

D
ï

A (D)(X*(D), . ) = <*?(/>) B(D)(Xl(D) , . )
i

? ï € l \ l *

I

Note that similar problems have been studied by M. P. Bends0e and N.
Olhoff for beams [12], shallow arches [13] and plates [14] in vacuo. As far as
we know, optimization for a coupled fluid-structure system had never been
looked at bef ore.

According to Taylor and Bends0e [15], a bound formulation is used to
avoid cumbersome difficulties due to the non-differentiability of multi-
modal eigenvalues.

The trick consists in introducing two artificial variables <o(D) and
P(D), respectively middle-point and radius of the interval deüned by
[oiN _1(D) ; o>N(D)], and stating the problem as the minimization of the
criterion defined by

j(D) = J(D ;X\D), «?(/)), co(D), p(D)) = - p(D) . (37)

This minimization is submitted to suitable constraints of three types :
design constraints, artificial constraints and state constraints.

The design constraints are imposed for technological reasons, and, in the
present case, they are also necessary to ensure the existence of an optimum
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(see [16]). Control variable D is searched in the space <%aé of piecewise
continuous fonctions on Y and obeys the following two constraints :

0 < Dmin ^ D , (38)

Ddy = v, (39)
r

where Dmin and v are given positive numbers.
The artificial constraints relate the bound-criterion j {D ) = — p (D ) to the

initial problem of minimizing g(D) = o>N _ x (D) — <ÛN(D), by excluding any
eigenvalues oyt {D ) from control interval :

foii^N-l, o)?(£>)^(a)(D)-p(D))2, (40)

and

foTi^N, u>2
i{D)^{iü{D) + ̂ {D)f . (41)

Last, the state problem is related as a constraint :

for i = 1 to + oo , A {D)(Xl(D), X) = <o?(D) B(D)(Xl{D), X) (42)

for every X in # * (cƒ. section 2.5 ) ; and for every j ^ i ,
B(D)(Xi(D),X\D)) = Sij. (43)

Inequality constraint (38), (resp. (40) and (41), is relaxed by means of a
stack variatde denoted by d(D) (resp. crt(D% r ^ Â  — 1 and
/ ^ iV) and defined by

= D~Dmin (44)

(resp. <rf(D)= (<*(D) - £(D))2 - i»*(D) , for i ^ N - 1 (45)

and

? 2 for i > iV) . (46)

Now, for the sake of brievity, implicit dependance of all variables upon
control D shall be omitted.

3.2. Lagrangian of the problem

To introducé the Lagrangian functionnal i f for the present optimization
problem, a multiplier is associated to each constraint. Namely,

— the function a to relaxe minimum thickness constraint (44),
— the scalar v to volume constraint (39),

vol. 22, ns 1, 1988



88 A. C. DENEUVY

— the scalars r\t to relaxed artificial constraints (45) and (46),
— the X1, éléments of <g*, to state problem (42), and
— the scalars rtJ to orthonormality constraint (43).
jSf is defined as follows :

(d2-D + JDmm)a<i7+ ( D dy - v) v (47)
\JT I

{a2 - (co - P)2 + co2} -n, + £ {a2 + (o> + p) 2 - co2} ^
i=N

«Sf dépends upon design variable D, artificial variables o> and p, state
variables (X\ o>f ), slack variables d and CT,, and Lagrangian multipliers a,
v, r\l7 X

1 and rtJ. In order to obtain necessary conditions satisfied by any
optimum solution, stationarity of £f with respect to ail its variables is
written.

First, note that dérivation of if with respect to multipliers gives back all
the constraints (38) to (43).

Then, dérivation with respect to slack variables a (resp. <rt) enables to
dérive activity conditions for inequality constraints (38) (resp. (40)
and (41))

From = ad = 0, deduce that :
dd

on Tw= {xeT;d(x)^0} ,

constraint (38) is inactive as

D(x)>Dmm and a(jc) = 0 and onT c = {^€F; d(x) = O}9

constraint (38) is active as D(x) = D .
From = y\t <x( = 0 , i = 1, + oo, deduce the following conditions :

— for i = N to TV - 1, co2 = (o> - p )2, where m = N - Nisthc multipli-
city order of the eigenvalue equal to (<*> — p )2 ;

— for i = N to N, cof = (<o + p )2, where m = /7 - Â  + 1 is the multipli-
city order of the eigenvalue equal to (<o + p )2 ;

— else, constraints (40) and (41) are inactive and r\t = 0 for i = 1 to
iV - 1 and j = N + 1 to + oo.
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Dérivation with respect to artificial variables <o and p permits to
détermine the last unknown multipliers r\t, i — N to N. It is found out that

for i = N to N - 1 , Ti - = T) =
m(o>-p) '

and

for i - N to N , T|I; = Tj = .
4m(ü>- p)

Note that necessarily m, (resp. m), is greater or equal than 1, as
constraint (40), (resp. (41)), is always active for i = TV - 1, (resp. i = N).

Dérivation with respect to state variables (X\ ( Û ? , I ' G N * ) leads to write
the so-called « co-state équation ». Let us mention the main results obtained
(more details can be found in [8]) :

— Orthonormality condition (43) is not a real constraint to the problem,
as Tij = 0 for every i and ƒ.

— The costate variables ÏC are proportional to the state variables
X1:

X* = ri; X1 for i ^ N - 1 ,

JC - - t\i X1 for i>N .

Note that X* is equal to zero, as soon as i ^ N or i - N. Hence, only the
eigenvectors associated to the eigenvalues equal to (w — p )2 and (o> + p )2

should be computed.
Last, dérivation with respect to design variable D gives the « optimality

criterion » (see [8]).
Let us recall that eigenvector X1 stands for X1 = (p\ r\ y1) (see sec-

tion 2.5), hence X stands for X! = (p*, F', y1) ; and that

A(X, Y) = I f Vp V̂  rfa + f JLd7

and

5(2f, Y) = —,i \ pq dû, + f

where X = (p,q, r) and Y = (q, s, z) belong to <g*.
Thanks to all the above results, the optimality criterium can be finally

reduced to the following équations.
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"y r'{x) y r'2(jc)

+ 3.
iV

for almost every x on Tu. Of course, Dix) = Dmm on Tc.
Lagrangian multiplier v can be explicitely determined :

1 ^
® = - £ {-4(nl<o? + E(O + 3cû?F(f)} (49)

where w = t? — D m i n meas F c ,

*^ min *> r c " ^ n

and

3 f ^yl'yl' _, î f
F(î) = Dim E——dy + —\ PtPtdn

JYC
 i Z pc Jn

for i = N to N.

3.3 Numerical resolution

From section 3.2, it can be deduced that every optimum solution
necessarily satisfies the following problem :

Find (X\ <oN_ly <*N, N9 N, m, a>, p, 3, ;n, U, D, Fcî Tu) such that :

c o ^ + c o ^ _ i Û»IV - <»N - 1

o>^ -2 ; P - -2

- 1 . _ _ l
4 m ( o j - P ) ' 4m(o) + P ) '

v defined by équation (49),

D(x) = Dmm , for x in r c ,
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