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THEORETICAL STUDY AND OPTIMIZATION
OF A FLUID-STRUCTURE INTERACTION PROBLEM (*)

by A. C. DENEUVY ()

Communicated by R. TEMAM

Abstract. — In the present paper, the small harmonic vibrations of an elastoacoustic coupled
system are under study. A symmetric variational formulation is presented, which particularly
suits the model problem. The mathematical study is derived and the existence of a real spectrum
of eigenvalues is proved. Then, the problem of designing the coupled structure such as to obtain
as large a gap as possible in the eigenvalues spectrum is considered, in order to avoid resonance
for a wide range of external excitation frequencies. An optimality criterion method is applied,
using the structure thickness distribution as a control variable.

Résumé. — Dans cet article, on étudie les petites vibrations harmoniques d’un systéme couplé
élasto-acoustique. On présente une formulation variationnelle symétrique particuliérement
adaptée au cas étudié, et dont I'étude mathématique conduit a la démonstration de Uexistence d’un
spectre-réel de valeurs propres—On considére ensuite le probléme d’« optimum design » de la
structure couplée, pour créer le plus grand trou possible dans le spectre des fréquences couplées.
On utilise une méthode par critére d’optimalité, la variable de controle étant I'épaisseur de la
structure.

SECTION 1: PRESENTATION
1.1. Presentation of the physical model

The present work studies the small harmonic vibrations of an enclosure
which is completely filled up with fluid. The enclosure has a rectangular
section in the plan referred to as (ox;, ox,) and is of infinite dimension in
the perpendicular direction denoted by ox; (see fig. 1). Therefore the

(*) Received in December 1986, revised in April 1987.

The present work had been done within the framework of an A.N.R.T. « contrat CIFRE »
between METRAVIB R. D. S. and Ecole Centrale de Lyon.

(*) C.R.N.S. U.A. 040740 Département M.LS., Ecole Centrale de Lyon.
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Figure 1.

corresponding state equations are those of a bidimensional elastoacoustic
interaction problem in a bounded medium. The fluid is assumed to be ideal,
irrotational and compressible. The structure is resolved into two parts :

— its top side is identified to a transversally vibrating plate, which is
supposed to be thin, elastic, homogeneous and of variable thickness ;

— the rest of the structure is assumed to be rigid. Consequently, the
(ox,, ox,) — section of the vibrating part, namely I, obeys the clamped-
clamped beam equation.

Gravity effects are neglected and assumptions leading to linear equations
are made (i.e. small displacements and perturbations, fixed geometry).

1.2. Notations

Q= ]-a,+a[ x ]- b, 0[ represents the bounded domain occupied by
the fluid. Its boundary 8} is splitted into two parts I' and 3, where
I'=]-a,+a[x {0} and 3 =08Q —T. s (resp. 7is) represents the out-
ward normal vector to I' (resp. to ).

From now on, I' will be identified to ]—a, + a[.

p (resp. o) is the constant density of the fluid (resp. of the structure).
c is the constant sound celerity in the fluid.

E is the constant Young modulus of the structure.

D is the variable plate thickness distribution.

Let » be the harmonic pulsation for the coupled system which can be
described by the following variables :

p(xy, x,) e’ is the pressure field in the fluid ;
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A FLUID-STRUCTURE INTERACTION PROBLEM 77

y(x;) e is the structure transversal deflection ;

r(x,) e is the dynamic reaction force .

N.B. : For the sake of brievity, the time dependence in ¢/ will be omitted
in the equations.

The present choice of variables deserves an explanation. It has been
attempted, for a long time, to formulate interaction problems, in a
symmetric way [1, 2, 3], by means of a restricted number of unknowns. In
this optic, three-fields representations have been introduced (see [4, 5]). In
the present paper, the basic idea, due to R. Ohayon [6], is to use a mixed
description for the structure involving a dynamic dual variable and a scalar
representation for the fluid, whereas, in the above mentionned papers, a
mixed representation for the fluid was used, with a primal description for
the structure. For many problems it might be more interesting to use the
present description which needs two unknowns on the boundary and only
one in the domain.

1.3. The governing equations

The hereabove hypothesis lead to the following set of equations :
The pressure field p obeys Helmholtz equation in Q

2
Ap+Zp=0, )
C

with boundary interface conditions :
ap|on|y =0 on 3, )
ap|an|r=m2py on T, 3)

the following compatibility condition, derived by a Green formula applied
to (1) and (2), (3), must be fulfilled

de9+pc2jydy=0. 4)
Q r

On the structure I', the dual variable is defined as the inertia reaction
force :

r = w?oDy, )
the dynamic equilibrium equation is

ED?® .\,
(S2v) =rerlr ©
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78 A. C. DENEUVY

and the clamping boundary conditions are
y(xa)=y'(xa)=0. M

SECTION 2: THEORETICAL STUDY

2.1. Definitions

Assume that function D, which represents the structure thickness
distribution, belongs to the admissible set denoted by %,; and defined by

Uog= {DeL®T);0<Dy,<D=<Dyy,ae. on T},

where D, and D, are given positive numbers.

The usual Sobolev spaces L*(Q), L%(T'), H*(Q) and H3(T") will be used,
endowed with natural Hilbert scalar product. The associated norms are
respectively denoted by |u|, o, |u|y > |ul; o and |u], .. Note that, in
H(T), the semi-norm |u"| r is equivalent to |u|,  according to Korn’s
Lemma (cf. [7]). Last, let L3(Q) be defined by

Li(Q) = {ueLZ(Q);J udQ:O} .
Q

2.2 Variational formulation
Define €, [¥ standing for Coupling space], by :
€ ={X=(p,r,y)e H(Q)x L*T ) x H{(I') ;

deQ+pc2Jydy=0}.
I r

% is a Hilbert space equipped with the natural scalar product (p,q), o +
(r,s)or + (¥",2"), r and the associated norm [|X |-

The variational formulation for equation (1) to (7) is given by :

Find o’ in R* and X = (p,7r,y) in €, X #0, such that, for every
Y=(q,s,2z)in ¥,

lj’vaqdn_wz{_l_zjpqu+qudy}=O, ®)
PJa pcTJo r
rs 2 _
LEE‘”_“’ Lysdv—o, ©)
3
_J ED” y”z"dV+JZPdY+JZrdV=O~ (10)
r 12 r r
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A FLUID-STRUCTURE INTERACTION PROBLEM 79

N.B. : This formulation is symmetric in (p, r,y) versus (g, s, z).

In this section, the existence of a real discrete spectrum of eigenvalues for
problem (8), (9), (10) is proved.

The variational formulation (8), (9), (10) is set into the form of a spectral
problem in a constrained space, on which classical spectral analysis applies.

The most interesting point in that proof is to show off how to settle down
a modal synthesis method which can be used to discretise the problem. This
point is developed in another paper [9] by the author (see also [8]).

2.3 Decomposition of Coupling space ¥

Let (p,r,y) be an element of ¥. The pressure field p can be uniquely
decomposed into :

— a « purely acoustic » part, denoted by j and characterized by zero-
mean over () ;

— and a « pneumatic » constant contribution denoted by p,(y) which
depends upon the structure displacement y ; the value of this constant
function is the pressure field mean over (2.

So,
p=pP-Ps(y) 11
(the minus sign in (11) has been chosen for convenience for later calculus).

As p belongs to H'(Q) and obeys compatibility condition (4), it can be
deduced that :

P belongs to H}(Q) N L3(Q),
and that

P pc d 12
s0) = 2o | yav. (12)

(For the sake of brievity, the notation P ¢ will stand for the function and its
constant value in ).
The « physical decomposition » (11) of p naturally induces a decomposi-

tion of the coupling space ¥ into a direct sum of two subspaces denoted by
€sr and € 4¢ :

— %1, (ST for structure), is formed with the elements of ¥ for which the
pressure field is defined by relation (12) :

Csr={(p,r,y)e€,p=-Ps(y)} .
Consequently, € 4¢, (AC for acoustic), is reduced to
ac = {(5,0,0),p € H'(Q) N L§(Q)} .

vol. 22, n° 1, 1988
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It can be checked that, for every X = (p, r, y)in €, the following relation
is satisfied :

Ploa=1Plgq+ lPs(y)IOn (13)

(i.e., p and Pg(y) are orthogonal in L%(Q2)).
Therefore, €5 and % 4. are orthogonal subspaces in €.

2.4. Translated variationnal formulation

An other implication of decomposition (11) is presented here.

Instead of using the pressure field p to describe the fluid, one can just use
its purely acoustic part j, its pneumatic part Ps(y) being totally determined
by the knowledge of y. This permits to get rid of compatibility condition (4)
in the Coupling space. The translated variationnal formulation writes :

Find o in R* and (5,r,y) in (H Q)N L3(Q)) x L*(T) x H(T),
P, 7, y) = (0,0,0), such that, for every (g,s,z) in

(H'(Q) N L§(T)) x LXT) x H3(T) ,

ljVﬁquﬂ—wz[%jﬁqdn+Jyqdv}=0, (14)
PJa pctJa Q

J———dy—m Jysdy:O, (15)
r
ED® , , .
- | = y'z"dy— | Ps(3)zdy+ | zPdy+ | zrdy=0. (16)
r r r r

The actual pressure field p is, of course, calculated afterwards, owing to
relation

oc?
= h = ——— .
p Pgs(y), where Ps(y) = meas O y dvy

Equation (16) reveals the part played by the structure displacementy :

y is an auxiliary variable for problem (14), (15), (16). Indeed, for every
given (p,r) in (H'Y(Q) N LT)) x L*(I"), there exists a unique y in
H3(T) defined by equation (16). This result derives from Lax-Milgram’s
theorem.

Furthermore, it can be checked that y obeys the estimation :

" lor=c{1VBly o+ I7loc) (17)

where ¢ is a strictly positive constant.
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To prove (17), one has to use Deny-Lion’s result (see [10]) saying that the
gradient semi-norm |Vj|  , is a norm in (H'(Q) N L§(Q)) equivalent to
121, o

y is also solution to an energy minimization problem :

J(y) = Inf {J(z),z € H{(T')} where functional J is defined

as follows
r 3 r r r
J(z):%“ -E—lg—(z")zde- Ps(z)zd'y}—J ﬁzdy—J rz dy .
r JTr r r
Notes :
J represents the structure dissipated energy,
( ED?®, .o . .
T (z")" dv represents the elastic deformation energy,
JT

J Pg(z) z dv represents the pneumatic deformation energy,
T

( zp dv represents the acoustic stress work,
vT

J zr dy represents the inertia stress work .
r

A Green operator G may be associated to equation (16)
G: HY(Q)N LQ) x LXT) - HXT)
@.r)-y=G@.r).

Operator G enables a condensation for the problem under study, by
eliminating y from equations (14) and (15), without loosing the symmetry in

{(ﬁ7 r)5 (q)s)}

2.5. Spectral formulation

Though the initial formulation in (p, r, y) is resumed in this section, the
abovementionned results are exploited. As y is an auxiliary variable, its
determinating equation (10) is now treated as a constraint equation. Hence,
a restricted Coupling space is introduced : denote by € * the subspace of ¢
defined as follows

¢*={X=(@ry)e¥;

r 3
Vz e H3(T), 2y”z” dy = J zp dy + J
vT 12 T r

zp dy} .

%)
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82 A. C. DENEUVY

Result 1 : €* is a Hilbert space equipped with the energy scalar product

3 2
lequdQ+J—dy+JED y'z"dy+ pe Jydyfzdy
P Ja r 12 meas ) r

and the associated norm, denoted by || X|. is equivalent to || X||,.

Proof of Result 1: (see [8])
e Resume the direct decomposition of ¥ into

€ =Cac ® €sr (seesection2.3).
o @uc= {(7,0,0), e H(Q) N L{(Q)} is a Hilbert space endowed

with the scalar product L Vp Vq d€), and the associated norm is
PJa
equivalent to || X||, in € 4¢.

2
= cp = I
R R L e Ll

is a Hilbert space endowed with the scalar product

s
II // d s
LUD J dy + agjydvjzv

and the associated norm is equivalent to [ X|, in €7
e Consequently, || X|| . is equivalent to || X||, in&.
e Finally, remark that € * is closed in € as € * is the Kernel of a bilinear
continuous form on %. O
Now, consider the two bilinear forms :

1 rs
AX,Y =—j Vp V dQ+J—dy
( ) o) q oD
and
3
B(X,Y) = = qudﬂ+f ED” v vy .
pc? r 12
Result 2 :

The spectral problem

Find 0’ in R*and Xin €*, X #0 ,
such that, for every Yin €* :
AX,Y)=w’B(X,Y) (18)

is equivalent to variational problem {(8), (9), (10)}
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Proof of result 2 :

o Take a solution w? and X in € to variational problem (8), (9), (10).
Constraint equation (10) being satisfied, X belongs to % *.
Now, add equations (8) and (9). There comes :

lj VqudQ+J idy:
PJa D

r ag.
- “’2{%] pqaQ + J yq dv + J s dv}(19)
pPC v r r
for every Y = (g,5,z) in 4.
If Y belongs to €*, one can write that
( ED ” "

J yqdv+fysdv=f—15-y dy . (20

r r r

Therefore, equation (19), written for every Y in € *, becomes :

lj VqudQ+J—dy_.w{ 1 qudQ+J—y” ”dy},
PJa PC

and so, {®?, X} is a solution to spectral problem (18).

e Reciprocally, take a solution w? in R* and X in €* to spectral
problem (18). Equation (10) is satisfied, as X belongs to € *. Check now,
that X obeys also equations (8) and (9). For that, write equation (18), for
peculiar elements Y of € * : first, take Y = (0, s,z) in €* and check that
equation (8) is satisfied, then take Y = (¢,0,z) in €* and check that
equation (9) is satisfied.

Those verifications present no difficulties. O

THEOREM : The spectral problem : find o® in R* and X in €%,
X #0, such that for every Y in €*, A(X,Y) = 0* B(X,Y), admits a
denumerable sequence of real, strictly positive eigenvalues :

2 2

0<w1sm2 e @p=ccc—> +00.

The associated eigenvectors, denoted by X", form a complete basis in
& *, which is orthonormal for the scalar product B(X,Y):

AX" X™ = 02 B(X", X™) = @2 8, . (21)

Proof of theorem :

e The bilinear form A(X,Y) _1 f Vp Vg dQ + J idy is conti-
PJa roD
nuous, symmetric and coercitive on € *.

vol. 22, n° 1, 1988
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Check the last point : Remind that

1

2 3
ED
||X||2W=B [ szd()—kf G'—Ddy+
v T

(52 s

vT 1
2 2
pc d
* heas 0 (Ly y) ’

17" lo.r =< C{IVBlg q+ I7lo ) -

From estimation (17) (section 2.4)

Deduce that :
e r=2C{IVPl5 o+ 1713 1} - (22)

So, equation (22) permits to deduce that

ED3 pc? J 2 1J r?
———y"dy+ dy) =C,1=| Vp*do —d
J; 27 T measn ry v) =% PJa P M roD K

where C, is a strictly positive constant.
Then, equation (23) leads to the wanted conclusion :

AX, X)= C| X|1%. . (24)

o It is trivial that B(X, Y) = — j
PC va

scalar product in ‘5/2*, the associated norm being equivalent to the norm
1

{pl5 o+ 19150}
e Let there &/ be the linear continuous mapping in € * associated to

AX,Y).

& is defined, for every X and Y in 4 *, by :

3
pq dQ + f ED—y”z” dvy defines a
r 12

B(#X,Y)=A(X,Y), (25)

& is selfadjoint, positive and invertible.

To be in the classical spectral analysis framework (see [11] for instance),
one has to check that o/ ~!is compact in % * for the topology associated to
B(X,7Y), and this is the only non-immediat point of the proof.

Let there be a sequence, bounded in ¥ *. A subsequence, denoted by
X", X" = (p", r" y*), can be extracted and weakly converges in € *.

Let there be X = (p, r, y) its weak limit, such that

p"weakly tends to p in H(Q), (26)

M? AN Modéhsation mathématique et Analyse numerique
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r" weakly tends to rin L *(T") ,

y" weakly tends to y in H3(T') .

85
@7)
(28)

The injection of H*(Q) into L%(Q) is compact according to Rellich’s

theorem. From (26), deduce that :

p"strongly tends to p in L %(T) .

(29)

In the same way, the injection of H3(T') into H(T") is continuous, and the

injection of H(T') into L*(T) is compact. From (28), deduce that

y"strongly tends to y in L (") .

(30)

The trace operator is continuous from H'(Q) into L*(T). From (26),

deduce that
p"| weakly tends to p| in L% ().

Now, from results (30) and (31), deduce that

J y" p" dvy tends to J yp dv
T r

and from results (27) and (30), deduce that
f y* r* dv tends to J: yrdy.
Jr r

Write that X” and X belong to € *. There comes the identities
3
J‘ F—D—(y"”)zd’y= J ynpnd,y+ J ynrnd,Y
r 12 r r
and

ED® ,
F)’Zd"/:J)’PdV'*’J‘yrdY-
r r r

Finally, from (32), (33), (34), (35), deduce that

y"strongly tends to y in H(T') .

(€2))

(32)

(33)

(34)

(35)

(36)

Results (26) and (36) permit to conclude that X" strongly tends to X for

the topology associated to B(X, Y).
The classical spectral analysis theory permits to conclude.

vol. 22, n° 1, 1988
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SECTION 3 : THE OPTIMIZATION PROBLEM
3.1. Formulation of the optimization problem

In this section, we intend to maximize the gap between two consecutive
coupled eigenvalues wy _; and wy of spectral problem (21), (see sec-
tion 2.5), for a given frequential order N. This optimum design problem is
simplified as domain variations are controled by a lone design function, the
structure thickness distribution D.

The problem can be summed up by the following scheme :

For a given control variable D, the system is governed by the state
equation whose solutions, the state variables, permit to define the criterion
to minimize in an admissible control set %, :

D
AD)X(D),.)= j>,2(D)B(D)(X‘(D) v )
X'(D), o*(D), iiN*
g(D)=G(D ;X’(lD), w;(D))

= oy_1(D) - wy(D).

Note that similar problems have been studied by M. P. Bendsge and N.
Olhoff for beams [12], shallow arches [13] and plates [14] in vacuo. As far as
we know, optimization for a coupled fluid-structure system had never been
looked at before.

According to Taylor and Bendsge [15], a bound formulation is used to
avoid cumbersome difficulties due to the non-differentiability of multi-
modal eigenvalues.

The trick consists in introducing two artificial variables (D) and
B(D), respectively middle-point and radius of the interval defined by
[ony _1(D); wy(D)], and stating the problem as the minimization of the
criterion defined by

j(D) =J(D; X(D), w}(D), »(D), B(D)) = - B(D) . (37)

This minimization is submitted to suitable constraints of three types :
design constraints, artificial constraints and state constraints.

The design constraints are imposed for technological reasons, and, in the
present case, they are also necessary to ensure the existence of an optimum

M’ AN Modélisation mathematique et Analyse numerique
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(see [16]). Control variable D is searched in the space %,; of piecewise
continuous functions on I' and obeys the following two constraints :

0<D,, <D, (38)

JDd'yzv, (39
r

where D_;, and v are given positive numbers.

The artificial constraints relate the bound-criterion j(D) = — B (D) to the
initial problem of minimizing g(D) = oy _{ (D) — wy (D), by excluding any
eigenvalues w; (D) from control interval :

fori<N -1, o}D)=< (o(D)-B(D)), (40)
and
fori=N, w?(D)= (o(D)+B(D)). (41)
Last, the state problem is related as a constraint :
fori=1 to +00, A(D)X(D),X)=0w(D)B(D)X(D),X) (42)
for every Xin €* (cf. section2.5) ; and foreveryj =i,

B(D)(X'(D), X(D)) = 8;. (43)

Inequality constraint (38), (resp. (40) and (41), is relaxed by means of a
stack variable denoted by d(D) (resp. o;(D), i=N —1 and o;(D),
i = N) and defined by

d*(D)=D —~ D, (44)
(resp. /(D) = («(D)—B(D)) —wi(D), for i<N -1 (45)

and
o¥(D) = w}(D) - (o(D) + B(D))*, for i=N). (46)

Now, for the sake of brievity, implicit dependance of all variables upon
control D shall be omitted.

3.2. Lagrangian of the problem

To introduce the Lagrangian functionnal . for the present optimization
problem, a multiplier is associated to each constraint. Namely,

— the function « to relaxe minimum thickness constraint (44),
— the scalar ¥ to volume constraint (39),

vol. 22, n” 1, 1988



88 A. C. DENEUVY

— the scalars m, to relaxed artificial constraints (45) and (46),
— the X', elements of ¥ *, to state problem (42), and

— the scalars 7,, to orthonormality constraint (43).

& is defined as follows :

g=_5+f(d2_D+Dmm)ady+<dev—v)5 (47)
JT r

+ 5 P (@-BY+u)m+ i {0l + (0 +BY -} m,
1 1=N

+

i

+ ; (B(Xl’X])_Sz])Tu} .

]

{AX, X') - o} B(X", X')

™8

1

n

&£ depends upon design variable D, artificial variables w and B, state
variables (X', »?), slack variables d and o,, and Lagrangian multipliers c,
v, m, X' and T, ;- In order to obtain necessary conditions satisfied by any
optimum solution, stationarity of % with respect to all its variables is
written.

First, note that derivation of .¥ with respect to multipliers gives back all
the constraints (38) to (43).

Then, derivation with respect to slack variables o (resp. ¢,) enables to
derive activity conditions for inequality constraints (38) (resp. (40)
and (41)).

From — = ad = 0, deduce that :
ad

on I'y={xel;d(x)+#0},
constraint (38) is inactive as
D(x)>Dg,, and a(x)=0 and onI' .= {xel; d(x)=0},

constraint (38) is active as D(x) = D_,,,.

From S = m, o, =0,i=1,+ o0, deduce the following conditions :

i

— fori =NtoN -1, o> = (w—B)*, where m = N — N is the multipli-
city order of the eigenvalue equal to (v —B)?;

— fori =N to N, 0> = (0 + B)?, where @ = N — N + 1 is the multipli-
city order of the eigenvalue equal to (o + B)*;

— else, constraints (40) and (41) are inactive and m, =0 for i =1 to
N-1landi=N+1 to + oo.
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Derivation with respect to artificial variables w and B permits to
determine the last unknown multipliers v,, i = N to N. It is found out that

, 1
for i=N to N-1, n==—1n0——,
' - N e —B)
and
— _ 1
for i=N to N, m;=9=
4m(w—B)

Note that necessarily m, (resp. /), is greater or equal than 1, as
constraint (40), (resp. (41)), is always active for i = N — 1, (resp.i = N).

Derivation with respect to state variables (X', w?, i € N*) leads to write
the so-called « co-state equation ». Let us mention the main results obtained
(more details can be found in [8]) :

— Orthonormality condition (43) is not a real constraint to the problem,
as 7;; = 0 for every i and j.

— The costate variables X' are proportional to the state variables
X

X =m; X' for i<sN-1,

X' =—-mX for i=N.

Note that X' is equal to zero, as soon as i < N ori — N. Hence, only the
eigenvectors associated to the eigenvalues equal to (0 — 8)* and (o + B)?
should be computed.

Last, derivation with respect to design variable D gives the « optimality
criterion » (see [8]).

Let us recall that eigenvector X' stands for X' = (p’, r', y’) (see sec-
tion 2.5), hence X’ stands for X' = (7', 7, 7') ; and that

A(X,Y):%J Vp Vq dQ + J r_st
C Q I-()'D
and
3
B, = [ pgdas [ B2y vy,
pPC va vT 12

where X = (p,q,r) and Y = (q, s, z) belong to € *.
Thanks to all the above results, the optimality criterium can be finally
reduced to the following equations.
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