Discontinuous solutions of deterministic optimal stopping time problems
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 21 (1987) no. 4, p. 557-579
@article{M2AN_1987__21_4_557_0,
     author = {Barles, Guy and Perthame, Beno\^\i t},
     title = {Discontinuous solutions of deterministic optimal stopping time problems},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     publisher = {Dunod},
     volume = {21},
     number = {4},
     year = {1987},
     pages = {557-579},
     zbl = {0629.49017},
     mrnumber = {921827},
     language = {en},
     url = {http://www.numdam.org/item/M2AN_1987__21_4_557_0}
}
Barles, G.; Perthame, B. Discontinuous solutions of deterministic optimal stopping time problems. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 21 (1987) no. 4, pp. 557-579. http://www.numdam.org/item/M2AN_1987__21_4_557_0/

[1] I. Capuzzo-Dolcetta and H. Ishii, Approximate solutions of the Bellman Equations of deterministic control theory. Applied Math, andOpt. 11, (1984),pp. 161-181. | MR 743925 | Zbl 0553.49024

[2] I. Capuzzo-Dolcetta and P. L. Lions, Hamilton-JacobiEquations and state- constraints problems ; In preparation.

[3] M. G. Crandall, L. C. Evans and P. L. Lions, Some properties of viscosity solutions of Hamilton-Jacobi Equations ; Trans. Amer. Math. Soc., 282 (1984). | MR 732102 | Zbl 0543.35011

[4] M. G. Crandall, H. Ishii, and P. L. Lions, Uniqueness of viscosity solutions revisited ; to appear.

[5] M. G. Crandall and P. L. Lions, Viscosity solutions of Hamilton-Jacobi Equations ; Trans. Amer. Math. Soc., 277 (1983). | MR 690039 | Zbl 0599.35024

[6] M. G. Crandall and P. L. Lions, On existence and uniqueness of solutions of Hamilton-Jacobi Equations ; Non Linear Anal. TMA. Vol. 10, N°6 (1986). | MR 836671 | Zbl 0603.35016

[7] W. H. Fleming and R. W. Rishel, Deterministic and stochastic optimal control. Springer, Berlin 1975. | MR 454768 | Zbl 0323.49001

[8] H. Ishii, Hamilton-Jacobi Equations with discontinuous Hamiltonians on arbitrary open subsets. | Zbl 0937.35505

[9] H. Ishii, Perron's method for Hamilton-Jacobi Equations ; to appear. | Zbl 0697.35030

[10] E. B. Lee and L. Markus, Foundations of optimal control theory, J. Wiley, New York (1967). | MR 220537 | Zbl 0159.13201

[11] P. L. Lions, Generalized solutions of Hamilton-Jacobi Equations. Pitman, 1982. | MR 667669 | Zbl 0497.35001

[12] P. L. Lions and B. Perthame, Remarks on Hamilton-Jacobi Equations with discontinuous time-dependent coefficients ; Non Linear Anal. TMA. Vol. 11, n° 7 (1987). | MR 886652 | Zbl 0688.35052

[13] P. L. Lions and P. E. Souganidis, Differential games, optimal control and directional derivatives of viscosity solutions of Bellman's and Isaac's Equations ; SIAM J. Control and Optimization, vol. 23, n° 4 (1985). | MR 791888 | Zbl 0569.49019

[14] J. P. Quadrat, in Thèse d'Etat, Univ. Paris IX-Dauphine.

[15] M. H. Soner, Optimal controlproblems with state-space constraints. SIAM J.on Control and Optimisation. Vol. 24, n° 3, pp. 551-561 and Vol. 24, n° 4, pp. 1110-1122. | MR 861089 | Zbl 0619.49013

[16] J. Warga, Optimal control of differential and functionnal equations. Academic press, (1972). | MR 372708 | Zbl 0253.49001