M2AN. Mathematical modelling and numerical analysis
 - Modélisation mathématique et analyse numérique

Y. MADAY
 B. Métivet

Chebyshev spectral approximation of Navier-Stokes equations in a two dimensional domain

M2AN. Mathematical modelling and numerical analysis - Modélisation mathématique et analyse numérique, tome $21, \mathrm{n}^{\circ} 1$ (1987), p. 93-123
http://www.numdam.org/item?id=M2AN_1987__21_1_93_0
© AFCET, 1987, tous droits réservés.
L'accès aux archives de la revue «M2AN. Mathematical modelling and numerical analysis - Modélisation mathématique et analyse numérique » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/ conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

$\mathcal{N u m d a m}^{\prime}$

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques
http://www.numdam.org/

CHEBYSHEV SPECTRAL APPROXIMATION OF NAVIER-STOKES EQUATIONS IN A TWO DIMENSIONAL DOMAIN (*)

by Y. Maday $\left({ }^{1}\right)$, B. Métivet (${ }^{2}$)
Communıqué par R Temam

Abstract

Résumé - On analyse dans cet article l'estimatıon de l'erreur commise dans l'approximation pseudo-spectrale de la solution des équatıons de Navier-Stokes homogenes posées sur un carré La formulatıon en fonctıon de courant de ces équatıons a été choısıe pour plusıeurs ralsons détaillées dans l'introduction Les resultats de convergence sont optimaux c'est-a-dire du même ordre que la melleure approximation polynômiale

Abstract

We analyse here the convergence of a pseudo-spectral method for the approximation of the homogeneous Navier-Stokes equations over a square We use the stream function formulation for various reasons detated in the introduction We prove optimal convergence rate $t e$ of the same order as the best polynomial approximation

I. INTRODUCTION

We present and analyse here a Chebyshev spectral method for non periodic, steady-state, 2-D incompressible Navier-Stokes equations.

A very large litterature exists now concerning the numerical resolution of Navier-Stokes equations by spectral methods (see Voigt-Gottlieb-Hussaini [1] for a survey).
Generally the velocity pressure formulation of the equations is used

$$
\begin{cases}\frac{\partial \underline{u}}{\partial t}-v \Delta \underline{u}+\underline{u} \cdot \underline{\nabla} \underline{u}+\underline{\nabla} p=\underline{f} & \text { in the domain } \tag{1.0}\\ \operatorname{div} \underline{u}=0 & \text { in the domain }\end{cases}
$$

with often periodic boundary conditions in 1,2 or 3 directions.

[^0]The great problem with non periodic boundary conditions is the treatment of the pressure. In order to solve numerically (1.0), the various authors propose different strategies for handling separately the velocity and the pressure :

* The most obvious way to obtain an equation for pressure is to take the divergence of the equation of momentum to obtain the following Poisson equation :

$$
\Delta p=\operatorname{div} \underline{f}-\operatorname{div}(\underline{u} \cdot \underline{\nabla} \underline{u})
$$

Various boundary conditions can be imposed then : Orszag-Israeli-Deville [1] have analysed several boundary conditions on pressure. Their conclusion is that numerical instabilities lead to prefer conditions with no physical meaning. These methods are compared in Deville-Kleiser-Montigny [1].

The best suited type of boundary conditions is :

$$
\operatorname{div} u=0
$$

It has been used by Kleiser-Schumann [1] and Lequeré-Alziary de Roquefort [1] but requires the inversion of the so called influence-matrix which is large, full and ill-conditioned. This method is then difficult to use in 3-D non periodic situations.

* Another strategy, that can be used in 3-D non periodic curved domains is proposed by Métivet-Morchoisne [1] (see also Métivet [1]). It consists in an iterative method based on a minimization of divergence at each time step that does not involve boundary conditions over the pressure, this one being considered as a Lagrangien multiplicator. A method with no boundary conditions over the pressure is also proposed in Malik-Zang and Hussaini [1] for a 2-D periodic/non periodic problem.
* A last treatment consists in the elimination of the pressure. A clever choice of divergence free velocity expansion functions can be used then, if directions of periodicity exist (see Mozer-Moin-Leonard [1]). But it seems difficult to be generalized to pure non periodic boundary conditions.

In fact, the difficulty encountered here, due the compatibility conditions between velocity and pressure, is well known in finite element method and lies partially in a good choice for velocity and pressure discrete spaces. This condition is known as " inf-sup condition" (see Girault-Raviart [1]). This problem, in spectral framework, has been analised in Bernardi-Maday-Métivet [2].

However, there exist two other presentations of 2-D incompressible NavierStokes equations that do not involve such a problem : the stream functionvorticity formulation that requires boundary conditions on vorticity, and
the stream function formulation. The last one has been used for numerical resolution in Morchoisne [1] and its extension to 3-D case is studied.

In this paper we analyse the 2-D approximation of this formulation :
Find Ψ, defined over $\Omega=]-1,1\left[{ }^{2}\right.$, such that :

$$
\left\{\begin{array}{c}
v \Delta^{2} \Psi+\frac{\partial}{\partial x_{1}}\left((-\Delta \Psi) \frac{\partial \Psi}{\partial x_{2}}\right)-\frac{\partial}{\partial x_{2}}\left((-\Delta \Psi) \frac{\partial \Psi}{\partial x_{1}}\right)=f, \text { in } \Omega \tag{1.1}\\
\Psi=\frac{\partial \Psi}{\partial n}=0 \quad \text { over } \quad \Gamma \equiv \partial \Omega
\end{array}\right.
$$

Note that problem (1.1) is well fitted to spectral approximations since their accuracy increases with the regularity of the function (Ψ is more regular than u). We prove here that the collocation method leads to a discrete solution Ψ_{N} asymptotically as close to Ψ as the best polynomial approximation of Ψ.

For other theoretical analysis concerning spectral approximations of NavierStokes equations we refer to Maday-Quarteroni [1], Bernardi-Maday-Métivet [1], [2] and Bernardi-Canuto-Maday [1] for pure spectral methods and Canuto-Maday-Quarteroni [1] for a combined finite element and spectral method.
In section 2 we recall some theoretical results concerning the approximation by Chebyshev spectral methods.

In section 3 we consider the approximation of the Stokes problem and section 4 deals with the Navier-Stokes problem. Optimal error bounds are proved. The analysis is based on the use of results of Descloux-Rappaz [1] on the approximation of branches of non singular solution of P.D.E. . We indicate in the appendix a suitable version of their theorems 3.1, 3.2.

Acknowledgements : The authors wish to express their gratitude to Professor A. Quarteroni for a detailed criticism of an earlier version of this paper and Doctor Y. Morchoisne for valuable discussions.

II. NOTATIONS AND DEFINITIONS

Let $I=]-1$, $+1[$ and $\Omega=I \times I$. A point of $I($ resp. Ω) is denoted by $x\left(\operatorname{resp} . \underline{x}=\left(x_{1}, x_{2}\right)\right)$ and $\Gamma=\partial \Omega$.

Let $\Phi \in \mathscr{D}^{\prime}(\Omega)$; then $D^{\alpha} \Phi$ means $\frac{\partial^{|\alpha|} \Phi}{\partial x_{1}^{\alpha_{1}} \partial x_{2}^{\alpha_{2}}} \Phi$ for any $\alpha=\left(\alpha_{1}, \alpha_{2}\right)$ in \mathbb{N}^{2}, and $|\alpha|=\alpha_{1}+\alpha_{2}$.

We consider the weight function $\omega(x)=\left(1-x^{2}\right)^{-1 / 2}, x \in I$, associated with the Chebyshev polynomials, and $\underline{\omega}(\underline{x})=\omega\left(x_{1}\right) \omega\left(x_{2}\right), \underline{x} \in \Omega$. We define the
weighted Sobolev spaces $H_{\underline{\omega}}^{s}(\Omega)$ as follows :
(i) $H_{\underline{\omega}}^{0}(\Omega)=L_{\underline{\omega}}^{2}(\Omega) \equiv\left\{\Phi: \Omega \rightarrow \mathbb{R} \mid \Phi\right.$ is measurable and $\left.(\Phi, \Phi)_{0, \underline{\omega}}<\infty\right\}$, where $(\Phi, \chi)_{0, \underline{\omega}}=\int_{\Omega} \Phi(\underline{x}) \chi(\underline{x}) \underline{\omega}(\underline{x}) d \underline{x}$,
(ii) for any $s \in \mathbb{N}^{*}$:

$$
H_{\underline{\omega}}^{s}(\Omega)=\left\{\Phi \in L_{\underline{\omega}}^{2}(\Omega)\left|D^{\alpha} \Phi \in L_{\underline{\omega}}^{2}(\Omega) ; \quad \forall \alpha \in \mathbb{N}^{2}, \quad\right| \alpha \mid \leqslant s\right\}
$$

These spaces are Hilbert spaces for the scalar product :

$$
((\Phi, \chi))_{s, \underline{\omega}}=\sum_{|\alpha| \leqslant s}\left(D^{\alpha} \Phi, D^{\alpha} \chi\right)_{0, \underline{\omega}},
$$

(iii) for any $s \in \mathbb{R}^{+} \backslash \mathbb{N}, H_{\underline{\omega}}^{s}(\Omega)$ is defined by interpolation of index $s-\bar{s}$ between $H_{\omega}^{\bar{s}}(\Omega)$ and $H_{\underline{\omega}}^{\bar{s}+1}(\Omega)$ where \bar{s} is the greatest integer $\leqslant s$ (see BerghLöfström [1] for the definition of interpolation).

The norm of $H_{\underline{\omega}}^{s}(\Omega)$ will be denoted by $\|\cdot\|_{s, \underline{\omega}}$ in the sequel. For any $s \in \mathbb{R}^{+}$ we denote by $H_{0 . \underline{\omega}}^{s}(\Omega)$ the closure of $\mathscr{D}(\Omega)$ in $H_{\underline{\omega}}^{s}(\Omega)$. Let us recall that :

* For any $s \in \mathbb{R}^{+} \backslash \mathbb{N} \cup\left\{\mathbb{N}+\frac{1}{4}\right\}$, $H_{0, \underline{\omega}}^{s}(\Omega)$ is the interpolate space of index $s-\bar{s}$ between $H_{0, \underline{\omega}}^{\bar{s}}(\Omega)$ and $H_{0, \underline{\omega}}^{\bar{s}+1}(\Omega)$.
* For any $s \in \mathbb{N}$:

$$
\begin{equation*}
\Phi \rightarrow|\Phi|_{s, \underline{\omega}}=\left(\sum_{|\alpha|=s}\left(D^{\alpha} \Phi, D^{\alpha} \Phi\right)_{0, \underline{\omega}}\right)^{1 / 2} \tag{2.1}
\end{equation*}
$$

is a norm over $H_{0, \underline{\omega}}^{s}(\Omega)$ equivalent to the norm $\|\cdot\|_{s, \underline{\omega}}$ (see Grisvard [1] for more details).

If X and Y are two Banach spaces such as $X \subset Y$ then $X \hookrightarrow Y$ (resp. $X \underset{c}{\hookrightarrow} Y$) will mean that the identity mapping is continuous (resp. compact) from X into Y. We recall now some rather simple properties (see Maday [3]) :

$$
\begin{align*}
& H_{\underline{\varrho}}^{s}(\Omega) \hookrightarrow C^{0}(\bar{\Omega}) \text { for any } \tag{2.2}\\
& s>1, \tag{2.3}\\
& H^{s+1 / 2}(\Omega) \hookrightarrow H_{\underline{\omega}}^{s}(\Omega) \text { for any } \tag{2.4}\\
& s \geqslant 0, \\
& H_{\underline{\omega}}^{s}(\Omega) \text { is an algebra } \text { for any } \\
& s>1 .
\end{align*}
$$

Next we introduce some notations and results commonly used in spectral methods. Let $\mathbb{P}_{N}(I)$ (resp. $\mathbb{P}_{N}(\Omega)$) denote the space of all polynomials over \mathbb{R} of degree $\leqslant N$ (resp. over \mathbb{R}^{2} of degree $\leqslant N$ in each variable).

The results we will mention now are valid for $\theta=I$ or $\theta=\Omega$, the various norm $\|\cdot\|_{s, \omega}$ and scalar product $(., .)_{0, \omega}$ standing for the one previously defined if $\theta=\Omega$, and for those defined in the same way for $\theta=I$.

For any $(\mu, v) \in \mathbb{R}^{2}, 0 \leqslant \mu \leqslant v$, there exists a positive constant C such that : (inverse inequality)

$$
\begin{equation*}
\|\Phi\|_{v, \omega} \leqslant C N^{2(\nu-\mu)}\|\Phi\|_{\mu, \omega}, \quad \forall \Phi \in \mathbb{P}_{N}(\theta) \tag{2.5}
\end{equation*}
$$

Besides, let $\Pi_{0, N}$ denote the orthogonal projection operator from $L_{\omega}^{2}(\theta)$ onto $\mathbb{P}_{N}(\theta)$, we have :

$$
\begin{equation*}
\left\|\Phi-\Pi_{0, N} \Phi\right\|_{0, \omega} \leqslant C N^{-\sigma}\|\Phi\|_{\sigma, \omega}, \quad \forall \Phi \in H_{\omega}^{\sigma}(\theta) \tag{2.6}
\end{equation*}
$$

(see Canuto-Quarteroni [1] for the proofs of (2.5) and (2.6)). Let $V=H_{0, \omega}^{2}(\theta)$ and $V_{N}=V \cap \mathbb{P}_{N}(\theta)$. We recall that, for any real $r \geqslant 2$, there exists an operator $\Pi_{r, N}$ from $H_{\omega}^{r}(\theta) \cap V$ onto V_{N} such that :

$$
\begin{align*}
&\left\|\Phi-\Pi_{r, N} \Phi\right\|_{\mu, \omega} \leqslant C N^{\mu-v}\|\Phi\|_{v, \omega}, \quad \forall \Phi \in H_{\omega}^{v}(\theta) \cap V \\
& 0 \leqslant \mu \leqslant r \leqslant v \tag{2.7}
\end{align*}
$$

(see Maday [1] and [3]).
Let $F_{\omega, N}^{G L}=\left\{\left(\xi_{v}, \omega_{\imath}\right) \mid 0 \leqslant i \leqslant N\right\}$, (resp. $\left.F_{\underline{\omega}, N}^{G L}=\left\{\left(\underline{\xi_{\imath}}, \omega_{\imath j}\right) \mid 0 \leqslant i, j \leqslant N\right\}\right)$, be the set of abcissae and weights of the Gauss Lobatto quadrature formula of order $2 N-1$ associated with the weight ω (resp. ω).

From the definition we have the following properties :

$$
\underline{\xi}_{i j}=\left(\xi_{\imath}, \xi_{\jmath}\right) \quad \text { and } \quad \omega_{i j}=\omega_{\imath} \omega_{j}, \quad 0 \leqslant i, j \leqslant N
$$

for any pair $(\Phi, \chi) \in C^{0}(\bar{\theta})^{2}$ such that $\Phi \chi \in \mathbb{P}_{2 N-1}(\theta)$ we have :

$$
\begin{equation*}
\sum_{\imath \in I(N)} \Phi\left(\xi_{\imath}\right) \chi\left(\xi_{\imath}\right) \omega_{\imath}=\int_{\theta} \Phi(x) \chi(x) \omega(x) d x=(\Phi, \chi)_{0, \omega} \tag{2.8}
\end{equation*}
$$

(here, the notation $I(N)$ stands for $\{0,1, \ldots, N\}$ if $\theta=I$ and for $\{0,1, \ldots, N\} \times$ $\{0,1, \ldots, N\}$ if $\theta=\Omega$, in this latter case i is an element of \mathbb{N}^{2}).

Let us set :

$$
\begin{equation*}
(\Phi, \chi)_{\omega, N}=\sum_{\imath \in I(N)} \Phi\left(\xi_{\imath}\right) \chi\left(\xi_{\imath}\right) \omega_{\imath}, \quad \forall(\Phi, \chi) \in C^{0}(\bar{\theta})^{2} \tag{2.9}
\end{equation*}
$$

This bilinear form is a scalar product over $\mathbb{P}_{N}(\theta)$. The associated norm is denoted $\|\cdot\|_{\omega, N}$, and verifies the following property (see Canuto-Quarteroni [1]) :

$$
\begin{equation*}
\|\Phi\|_{0, \omega} \leqslant\|\Phi\|_{\omega, N} \leqslant 4\|\Phi\|_{0, \omega}, \quad \forall \Phi \in \mathbb{P}_{N}(\theta) \tag{2.10}
\end{equation*}
$$

vol $21, n^{\circ} 1,1987$

Let us now introduce the interpolation operator $P_{N}\left(\right.$ resp. $\left.\underline{P}_{N}\right)$ at the point ξ_{i} (resp. $\underline{\xi}_{i j}$) defined by :

$$
\begin{array}{rr}
P_{N}: C^{0}(\bar{I}) \rightarrow \mathbb{P}_{N}(I) & \left(\operatorname{resp} \cdot \underline{P}_{N}: C^{0}(\bar{\Omega}) \rightarrow \mathbb{P}_{N}(\Omega)\right) \\
P_{N}(\varphi)\left(\xi_{\imath}\right)=\varphi\left(\xi_{\imath}\right), \quad 0 \leqslant i \leqslant N \quad\left(\operatorname{resp} \cdot \underline{P}_{N}(\Phi)\left(\underline{\xi}_{t j}\right)=\Phi\left(\underline{\xi}_{t}\right)\right. \\
0 \leqslant i, j \leqslant N) \tag{2.11}
\end{array}
$$

These operators verify : (we use again an unique notation for the one and two dimension cases)

$$
\begin{equation*}
\left\|\Phi-P_{N} \Phi\right\|_{0, \omega} \leqslant C N^{-\approx}\|\Phi\|_{\sigma, \omega}, \quad \forall \Phi \in H_{\omega}^{\tau}(\theta) \tag{2.i2}
\end{equation*}
$$

with $\sigma>1 / 2$ if $\theta=I$ and $\sigma>1$ if $\theta=\Omega$.
Moreover, for any $\Phi \in C^{0}(\bar{\theta}), \chi \in \mathbb{P}_{N}(\theta)$:
$\left|(\Phi, \chi)_{\omega, N}-(\Phi, \chi)_{0, \omega}\right| \leqslant C\|\chi\|_{0, \omega}\left(\left\|\Phi-P_{N} \Phi\right\|_{0, \omega}+\left\|\Phi-\Pi_{0, N-1} \Phi\right\|_{0, \omega}\right)$
(see Maday-Quarteroni [3]).

III. SOME RESULTS CONCERNING THE CONTINUOUS PROBLEM

III. 1. The biharmonic problem

Let us first consider the following biharmonic problem : Given g, find Ψ such that :

$$
\left\{\begin{align*}
\Delta^{2} \Psi & =g & & \text { in } \Omega \tag{3.1}\\
\Psi=0, & \frac{\partial \Psi}{\partial n}=0 & & \text { on } \partial \Omega
\end{align*}\right.
$$

In order to analyse a spectral approximation of that problem we want to find a solution Ψ in $V=H_{0, \omega}^{2}(\Omega)$. A necessary condition for solving problem (3.1) is that g (being the laplacian of an element of $L_{\underline{\omega}}^{2}$) belongs to the space $\mathscr{H}_{\underline{\omega}}{ }^{-2}(\Omega)$ defined by :

$$
\begin{equation*}
\mathscr{H}_{\underline{\omega}}^{-2}(\Omega)=\left\{f=\sum_{|\alpha| \leqslant 2} D^{\alpha} g_{\alpha}, g_{\alpha} \in L_{\underline{\omega}}^{2}(\Omega) ; \quad \alpha \in \mathbb{N}^{2}\right\} . \tag{3.2}
\end{equation*}
$$

The main result of this section states that this condition is also sufficient.
Let us first recall a preliminary one-dimensional result which can be found in Maday [1].

Lemma 3.1: There exist positive constants C_{1} and C_{2} such that, for any $\varphi \in H_{0, \omega}^{2}(I)$,

$$
\begin{equation*}
\int_{I} \varphi^{2} \omega^{9} d x \leqslant C_{1} \int_{I} \varphi^{\prime 2} \omega^{5} d x \leqslant C_{2} \int_{I} \varphi^{\prime \prime 2} \omega d x \tag{3.3}
\end{equation*}
$$

Moreover there exist positive constants C_{1}^{\prime} and C_{2}^{\prime} such that, for any $(\varphi, \chi) \in \mathscr{D}^{2}(I):$

$$
\begin{align*}
& \left|\int_{I} \varphi(\chi \omega)^{\prime \prime} d x\right| \leqslant C_{1}^{\prime}\|\varphi\|_{0, \omega}\left\|\chi^{\prime \prime}\right\|_{0, \omega} \tag{3.4}\\
& \left|\int_{I} \varphi^{\prime \prime}(\varphi \omega)^{\prime \prime} d x\right| \geqslant C_{2}^{\prime}\left\|\varphi^{\prime \prime}\right\|_{0, \omega}^{2} \tag{3.5}
\end{align*}
$$

These results will now be extended to the 2-D case.
Lemma 3.2 : There exist two positive constants α and β such that, for any $(\Phi, \chi) \in V^{2}$:

$$
\begin{align*}
& \int_{\Omega} \Delta \Phi \Delta(\chi \underline{\omega}) d \underline{x} \leqslant \alpha\|\Phi\|_{2, \underline{\omega}}\|\chi\|_{2, \underline{\omega}} \tag{3.6}\\
& \int_{\Omega} \Delta \Phi \Delta(\Phi \underline{\omega}) d \underline{x} \geqslant \beta\|\Phi\|_{2, \underline{\omega}}^{2} \tag{3.7}
\end{align*}
$$

Proof : Let Φ and χ be in $\mathscr{D}(\Omega)$. Then, $\Phi \underline{\omega}$ and $\chi \underline{\omega}$ belong also to $\mathscr{D}(\Omega)$ and we can write :

$$
\begin{equation*}
\int_{\Omega} \Delta \Phi \Delta(\chi \underline{\omega}) d \underline{x}=A_{20}+2 A_{11}+A_{02} \tag{3.8}
\end{equation*}
$$

where

$$
A_{i j}=\int_{\Omega} D^{(i, j)} \Phi D^{(i, j)}(\chi \underline{\omega}) d \underline{x}
$$

We have : (we precise here by ω_{i} the factor in $\underline{\omega}$ which depends on $x_{i}, i=1,2$)

$$
A_{20}=\int_{I} \omega_{2}\left[\int_{I} \frac{\partial^{2} \Phi}{\partial x_{1}^{2}} \frac{\partial^{2}\left(\chi \omega_{1}\right)}{\partial x_{1}^{2}} d x_{1}\right] d x_{2}
$$

Using (3.4) we obtain :

$$
\left|A_{20}\right| \leqslant C_{1}^{\prime} \int_{I} \omega_{2}\left\|\frac{\partial^{2} \Phi}{\partial x_{1}^{2}}\right\|_{0, \omega_{1}}\left\|\frac{\partial^{2} \chi}{\partial x_{1}^{2}}\right\|_{0, \omega_{1}} d x_{2}
$$

vol. 21, n° 1, 1987
so that, from the Cauchy-Schwarz's inequality we get :

$$
\begin{equation*}
\left|A_{20}\right| \leqslant C_{1}^{\prime}\|\Phi\|_{2, \underline{\omega}}\|\chi\|_{2, \underline{\omega}} \tag{3.9}
\end{equation*}
$$

Similarly, we find :

$$
\begin{equation*}
\left|A_{02}\right| \leqslant C_{1}^{\prime}\|\Phi\|_{2, \underline{\omega}}\|\chi\|_{2, \underline{\omega}} . \tag{3.10}
\end{equation*}
$$

and :

$$
\begin{equation*}
\left|A_{11}\right| \leqslant\left\|\frac{\partial^{2} \Phi}{\partial x_{1} \partial x_{2}}\right\|_{0, \underline{\omega}}\left\|\frac{1}{\omega} \frac{\partial^{2}(\chi \underline{\omega})}{\partial x_{1} \partial x_{2}}\right\|_{0, \underline{\omega}} \tag{3.11}
\end{equation*}
$$

Since $\frac{\partial \omega_{2}}{\partial x_{\imath}}=x_{\imath} \omega_{l}^{3}$ we obtain :

$$
\begin{aligned}
& \left\|\frac{1}{\omega} \frac{\partial^{2}(\chi \underline{\omega})}{\partial x_{1} \partial x_{2}}\right\|_{0, \underline{\omega}} \leqslant C\left[\left\|\frac{\partial^{2} \chi}{\partial x_{1} \partial x_{2}}\right\|_{0, \underline{\omega}}+\left(\int_{\Omega}\left(\frac{\partial \chi}{\partial x_{2}}\right)^{2} \omega_{1}^{5} \omega_{2} \underline{d x}\right)^{1 / 2}+\right. \\
& \left.\quad+\left(\int_{\Omega}\left(\frac{\partial \chi}{\partial x_{1}}\right)^{2} \omega_{2}^{5} \omega_{1} d \underline{x}\right)^{1 / 2}+\left(\int_{\Omega} \chi^{2} \underline{\omega}^{5} d \underline{x}\right)^{1 / 2}\right] .
\end{aligned}
$$

Now using (3.3) we find :

$$
\begin{equation*}
\left\|\frac{1}{\underline{\omega}} \frac{\partial^{2}(\chi \underline{\omega})}{\partial x_{1} \partial x_{2}}\right\|_{0, \underline{\omega}} \leqslant C\left\|\frac{\partial^{2} \chi}{\partial x_{1} \partial x_{2}}\right\|_{0, \underline{\omega}} \tag{3.12}
\end{equation*}
$$

Thus, the estimate (3.6) follows from (3.8)-(3.12).
Next, in order to derive the ellipticity condition (3.7) we take $\chi=\Phi$ in (3.8). Using (3.5) we have :

$$
\left\{\begin{array}{l}
A_{20} \geqslant C_{2}^{\prime} \int_{I} \omega_{2}\left(\int_{I}\left(\frac{\partial^{2} \Phi}{\partial x_{1}^{2}}\right)^{2} \omega_{1} d x_{1}\right) d x_{2} \geqslant C_{2}\left\|\frac{\partial^{2} \Phi}{\partial x_{1}^{2}}\right\|_{0, \underline{\omega}}^{2} \tag{3.13}\\
\text { and } \\
A_{02} \geqslant C_{2}^{\prime} \int_{I} \omega_{1}\left(\int_{I}\left(\frac{\partial^{2} \Phi}{\partial x_{2}^{2}}\right)^{2} \omega_{2} d x_{2}\right) d x_{1} \geqslant C_{2}\left\|\frac{\partial^{2} \Phi}{\partial x_{2}^{2}}\right\|_{0, \underline{\omega}}^{2}
\end{array}\right.
$$

Let us now check that the term A_{11} is nonnegative. We set :

$$
\begin{aligned}
J=\int_{\Omega}\left(\frac{\partial^{2} \Phi}{\partial x_{1} \partial x_{2}} \underline{\omega}+x_{2} \frac{\partial \Phi}{\partial x_{1}} \omega_{1} \omega_{2}^{3}+\right. & x_{1} \frac{\partial \Phi}{\partial x_{2}} \omega_{1}^{3} \omega_{2}+ \\
& \left.+\frac{3}{2} x_{1} x_{2} \Phi \underline{\omega}^{3}\right)^{2} \underline{\omega}^{-1} d \underline{x} .
\end{aligned}
$$

Since :

$$
\begin{equation*}
\frac{\partial \omega_{i}}{\partial x_{i}}=x_{i} \omega_{i}^{3} \quad \text { and } \quad \frac{\partial^{2} \omega_{i}}{\partial x_{i}^{2}}=\left(1+2 x_{i}^{2}\right) \omega_{i}^{5} \tag{3.14}
\end{equation*}
$$

an elementary calculation shows that :

$$
\begin{aligned}
J=A_{11}+\int_{\Omega}\left[\frac{1}{4} x_{1}^{2} x_{2}^{2}+\frac{1}{8} x_{1}^{2}\right. & \left.+\frac{1}{8} x_{2}^{2}-\frac{1}{2}\right] \Phi^{2} \underline{\omega}^{5} d \underline{x}+ \\
& -\frac{1}{2} \int_{\Omega}\left[\frac{\partial \Phi}{\partial x_{1}} \omega_{1}^{1 / 2} \omega_{2}^{5 / 2}+\frac{3}{2} x_{1} \Phi \underline{\omega}^{5 / 2}\right]^{2} d \underline{x}+ \\
& -\frac{1}{2} \int_{\Omega}\left[\frac{\partial \Phi}{\partial x_{2}} \omega_{1}^{5 / 2} \omega_{2}^{1 / 2}+\frac{3}{2} x_{2} \Phi \underline{\omega}^{5 / 2}\right]^{2} d \underline{x} .
\end{aligned}
$$

But we note that, for $\underline{x} \in \Omega$:

$$
\left[\frac{1}{4} x_{1}^{2} x_{2}^{2}+\frac{1}{8} x_{1}^{2}+\frac{1}{8} x_{2}^{2}-\frac{1}{2}\right] \leqslant 0 .
$$

Since J is non negative we obtain :

$$
\begin{equation*}
A_{11} \geqslant 0 . \tag{3.15}
\end{equation*}
$$

Thus it follows from (3.8) and (3.13) that :

$$
\begin{equation*}
\int_{\Omega} \Delta \Phi \Delta(\Phi \underline{\omega}) d \underline{x} \geqslant C_{2}\left(\left\|\frac{\partial^{2} \Phi}{\partial x_{1}^{2}}\right\|_{0, \underline{\omega}}^{2}+\left\|\frac{\partial^{2} \Phi}{\partial x_{2}^{2}}\right\|_{0, \underline{\omega}}^{2}\right) . \tag{3.16}
\end{equation*}
$$

For proving (3.7), it remains to check that there exists $C^{\prime} \geqslant 0$ such that :

$$
\begin{equation*}
\int_{\Omega}\left(\frac{\partial^{2} \Phi}{\partial x_{1} \partial x_{2}}\right)^{2} \underline{\omega} d \underline{x} \leqslant C^{\prime}\left(\int_{\Omega}\left[\left(\frac{\partial^{2} \Phi}{\partial x_{1}^{2}}\right)^{2} \underline{\omega}+\left(\frac{\partial^{2} \Phi}{\partial x_{2}^{2}}\right)^{2} \underline{\omega}\right] d \underline{x}\right) . \tag{3.17}
\end{equation*}
$$

In fact, integrating by parts yields :

$$
\int_{\Omega}\left(\frac{\partial^{2} \Phi}{\partial x_{1}} \partial x_{2}\right)^{2} \underline{\omega} d \underline{x}=\int_{\Omega} \frac{\partial}{\partial x_{1}}\left(\frac{\partial \Phi}{\partial x_{1}} \omega_{1}\right) \frac{\partial}{\partial x_{2}}\left(\frac{\partial \Phi}{\partial x_{2}} \omega_{2}\right) d \underline{x},
$$

hence, we have :

$$
\left\{\begin{align*}
& \int_{\Omega}\left(\frac{\partial^{2} \Phi}{\partial x_{1} \partial x_{2}}\right)^{2} \underline{\omega} d \underline{x} \leqslant \frac{1}{2}\left(\int_{\Omega}\left[\frac{\partial}{\partial x_{1}}\left(\frac{\partial \Phi}{\partial x_{1}} \omega_{1}\right)\right]^{2} \frac{\omega_{2}}{\omega_{1}} d \underline{x}+\right. \tag{3.18}\\
&\left.+\int_{\Omega}\left[\frac{\partial}{\partial x_{2}}\left(\frac{\partial \Phi}{\partial x_{2}} \omega_{2}\right)\right]^{2} \frac{\omega_{1}}{\omega_{2}} d \underline{x}\right) .
\end{align*}\right.
$$

Using (3.14) we find :

$$
\frac{\partial}{\partial x_{1}}\left(\frac{\partial \Phi}{\partial x_{1}} \omega_{1}\right)=\frac{\partial^{2} \Phi}{\partial x_{1}^{2}} \omega_{1}+\frac{\partial \Phi}{\partial x_{1}} x_{1} \omega_{1}^{3},
$$

hence we have :

$$
\begin{aligned}
\int_{\Omega}\left[\frac{\partial}{\partial x_{1}}\left(\frac{\partial \Phi}{\partial x_{1}} \omega_{1}\right)\right]^{2} \frac{\omega_{2}}{\omega_{1}} d \underline{x}=\int_{\Omega}\left[\left(\frac{\partial^{2} \Phi}{\partial x_{1}^{2}}\right)^{2} \underline{\omega}+2 \frac{\partial^{2} \Phi}{\partial x_{1}^{2}}\right. & \frac{\partial \Phi}{\partial x_{1}} x_{1} \omega_{1}^{3} \omega_{2}+ \\
& \left.+x_{1}^{2}\left(\frac{\partial \Phi}{\partial x_{1}}\right)^{2} \omega_{1}^{5} \omega_{2}\right] d \underline{x} \\
=\int_{\Omega}\left[\left(\frac{\partial^{2} \Phi}{\partial x_{1}^{2}}\right)^{2} \underline{\omega}+\frac{\partial}{\partial x_{1}}\left(\frac{\partial \Phi}{\partial x_{1}}\right)^{2} x_{1} \omega_{1}^{3} \omega_{2}\right. & \left.+x_{1}^{2}\left(\frac{\partial \Phi}{\partial x_{1}}\right)^{2} \omega_{1}^{5} \omega_{2}\right] d \underline{x} .
\end{aligned}
$$

Integrating by parts and using (3.14) once more we obtain :

$$
\begin{align*}
\int_{\Omega}\left[\frac{\partial}{\partial x_{1}}\left(\frac{\partial \Phi}{\partial x_{1}} \omega_{1}\right)\right]^{2} \frac{\omega_{2}}{\omega_{1}} d \underline{x}=\int_{\Omega} & {\left[\left(\frac{\partial^{2} \Phi}{\partial x_{1}^{2}}\right)^{2} \underline{\omega}\right.} \\
& \left.-\left(1+x_{1}^{2}\right)\left(\frac{\partial \Phi}{\partial x_{1}}\right)^{2} \omega_{1}^{5} \omega_{2}\right] d \underline{x} . \tag{3.19}
\end{align*}
$$

Similarly we find :

$$
\begin{equation*}
\int_{\Omega}\left[\frac{\partial}{\partial x_{2}}\left(\frac{\partial \Phi}{\partial x_{2}} \omega_{2}\right)\right]^{2} \frac{\omega_{1}}{\omega_{2}} d \underline{x}=\int_{\Omega}\left[\left(\frac{\partial^{2} \Phi}{\partial x_{2}^{2}}\right)^{2} \underline{\omega}-\left(1+x_{2}^{2}\right)\left(\frac{\partial \Phi}{\partial x_{2}}\right)^{2} \omega_{1} \omega_{2}^{5}\right] d \underline{x} . \tag{3.19}
\end{equation*}
$$

We derive the estimate (3.17) with $C^{\prime}=\frac{1}{2}$ from (3.18)-(3.19'). The ellipticity condition (3.7) follows from (3.16), (3.17) and the property (2.1).

Let us now consider an element \hat{g} of $H_{\varrho}^{-2}(\Omega)=\left(H_{0, \Omega}^{2}(\Omega)\right)^{\prime}$. It follows from lemma 3.2 and Lax-Milgram theorem that there exists a unique solution Ψ of problem :
find $\Psi \in V$ such that :

$$
\begin{equation*}
\mathfrak{a}(\Psi, \chi)=\langle\hat{g}, \chi\rangle, \quad \forall \chi \in \mathrm{V}, \tag{3.20}
\end{equation*}
$$

where $\mathrm{a}(\Psi, \chi)=\int_{\Omega} \Delta \Psi \Delta(\chi \underline{\omega}) d \underline{x}$ and $\langle\ldots\rangle$ stands for the $H_{\underline{\underline{\omega}}}^{-2}(\Omega) \times H_{0, \underline{\omega}}^{2}(\Omega)$ duality pairing.

Taking $\chi \in \mathscr{D}(\Omega)$ in (3.20) we deduce that the solution Ψ of (3.20) verifies :

$$
\left(\Delta^{2} \Psi\right) \underline{\omega}=\hat{g},
$$

(this equality holds in $\mathscr{D}^{\prime}(\Omega)$). Hence, for any \hat{g} in $H_{\underline{a}}^{-2}(\Omega)$, there exists a unique Ψ of V such that

$$
\begin{equation*}
\Delta^{2} \Psi=\frac{\hat{g}}{\underline{\omega}}, \tag{3.21}
\end{equation*}
$$

this equality holds in $\mathscr{D}^{\prime}(\Omega)$ and more precisely in $\mathscr{H}_{\underline{\mathrm{Q}}}{ }^{-2}(\Omega)$.
For any $g \in \mathscr{H}_{\underline{\underline{\omega}}}{ }^{-2}(\Omega)$ we know that there exists $\left(g_{\alpha}\right)_{|\alpha| \leqslant 2}, g_{\alpha} \in L_{\underline{\omega}}^{2}(\Omega)$ such that $g=\sum_{|\alpha| \leqslant 2} D^{\alpha} g_{\alpha}$. This element can be associated with \tilde{g} of $H_{\underline{\underline{\sigma}}}{ }^{-2}(\Omega)$ as follows (remind (3.4)) :

$$
\begin{equation*}
\langle\tilde{g}, \Phi\rangle=\sum_{|\alpha| \leqslant 2} \int_{\Omega}(-1)^{|\alpha|} g_{\alpha} D^{\alpha}(\Phi \underline{\omega}) d \underline{x}, \quad \forall \Phi \in V, \tag{3.22}
\end{equation*}
$$

\tilde{g} is independent of the decomposition $g=\sum_{|\alpha| \leqslant 2} D^{\alpha} g_{\alpha}$. Indeed if there exist g_{α}, g_{α}^{\prime} in $L_{\underline{\omega}}^{2}(\Omega),|\alpha| \leqslant 2$ such that :

$$
\sum_{|\alpha| \leqslant 2} D^{\alpha} g_{\alpha}=\sum_{|\alpha| \leqslant 2} D^{\alpha} g_{\alpha}^{\prime},
$$

this equality holding in $\mathscr{D}^{\prime}(\Omega)$; then, for any χ in $\mathscr{D}(\Omega)$

$$
\sum_{|\alpha| \leqslant 2} \int_{\Omega}(-1)^{|\alpha|} g_{\alpha} D^{\alpha} \chi d \underline{x}=\sum_{|\alpha| \leqslant 2} \int_{\Omega}(-1)^{|\alpha|} g_{\alpha}^{\prime} D^{\alpha} \chi d \underline{x}
$$

vol. $21, \mathrm{n}^{\circ} 1,1987$
this result remains true if we take $\chi=\Phi \underline{\omega}$ with $\Phi \in \mathscr{D}(\Omega)$; by density we then derive that \tilde{g} is independent of the decomposition of g.

The previous remark and (3.21) prove that the mapping of $\mathscr{D}^{\prime}(\Omega)$:

$$
h \mapsto \frac{h}{\underline{\omega}},
$$

defines an isomorphism from $H_{\infty}^{-2}(\Omega)$ onto $\mathscr{H}_{\rho}^{-2}(\Omega)$; hence, we can solve problem (3.1) in V iff $g \in \mathscr{H}_{\underline{\omega}}{ }^{-2}(\Omega)$. This enables us to define an operator $T: g \in \mathscr{H}_{\underline{\omega}}{ }^{-2}(\Omega) \mapsto T g \in V$ by :

$$
\begin{equation*}
\mathfrak{a}(T g, \chi)=\langle\tilde{g}, \chi\rangle, \quad \forall \chi \in V . \tag{3.23}
\end{equation*}
$$

Theorem 3.1 : The linear operator T is bounded from $\mathscr{H}_{\underline{\omega}}^{-2}(\Omega)$ into V and is a linear compact operator from $H^{-s}(\Omega)$ into V for any such that $0<s<\frac{3}{2}$.

Remark 3.1 : The space $\mathscr{H}_{\underline{\omega}}^{-2}(\Omega)$ is now equipped with the norm :

$$
\|g\|_{\mathscr{H}_{\underline{\mathrm{o}}}^{-2}(\Omega)}=\|\tilde{g}\|_{H_{\underline{\underline{\alpha_{2}}}}^{-2}(\Omega)} .
$$

Proof: The first part of this theorem is an easy consequence of Lax-Milgram theorem.

Let $g \in H^{-s}(\Omega)$. It follows from Grisvard [2] or more easily from BernardiRaugel [1] that there exists an f in $H^{4-s}(\Omega) \cap H_{0}^{2}(\Omega)$ such that :

$$
\begin{equation*}
\Delta^{2} f=g \tag{3.24}
\end{equation*}
$$

and

$$
\begin{equation*}
\|f\|_{H^{4-s_{(}(\Omega)}} \leqslant C\|g\|_{H^{-s(\Omega)}} . \tag{3.25}
\end{equation*}
$$

Hence T is continuous from $H^{-s}(\Omega)$ into $H^{4-s}(\Omega)$. It is well known (see Adams [1]) that $H^{4-s}(\Omega) \underset{c}{\hookrightarrow} H^{5 / 2}(\Omega)$. From (2.3) we derive that

$$
H^{5 / 2}(\Omega) \hookrightarrow H_{\underline{\omega}}^{2}(\Omega) .
$$

T is then compact from $H^{-s}(\Omega)$ into $H_{\underline{\omega}}^{2}(\Omega)$ and the theorem is proved.

III. 2. The Navier-Stokes problem

Let B be defined by : for any $(\Phi, \chi) \in \mathscr{D}(\Omega)^{2}$:

$$
\begin{align*}
B(\Phi, \chi)=-\frac{1}{2}\left[\frac{\partial}{\partial x_{1}}\left(\Delta \Phi \frac{\partial \chi}{\partial x_{2}}+\Delta \chi \frac{\partial \Phi}{\partial x_{2}}\right)\right. & \\
& \left.-\frac{\partial}{\partial x_{2}}\left(\Delta \Phi \frac{\partial \chi}{\partial x_{1}}+\Delta \chi \frac{\partial \Phi}{\partial x_{1}}\right)\right] \tag{3.26}
\end{align*}
$$

and, for any $(\lambda, \Phi) \in \mathbb{R} \times \mathscr{D}(\Omega), f \in \mathscr{D}^{\prime}(\Omega)$:

$$
\begin{equation*}
H_{f}(\lambda, \Phi)=\lambda[B(\Phi, \Phi)-f] . \tag{3.27}
\end{equation*}
$$

From the next lemma we see that, the Navier-Stokes equations (1.1) consist in finding $\Psi \in V$ such that :

$$
\begin{equation*}
\Delta^{2} \Psi=-H_{f}\left(\lambda_{0}, \Psi\right) \tag{3.28}
\end{equation*}
$$

with

$$
\lambda_{0}=\frac{1}{v}
$$

Lemma 3.3 : Let us assume that $1<s<3 / 2$; then:
i) There exists a constant $\gamma>0$ such that, for any (Φ, χ) in $\mathscr{D}(\Omega)^{2}$:

$$
\begin{equation*}
\|B(\Phi, \chi)\|_{H^{-s}(\Omega)} \leqslant \gamma\|\Phi\|_{2, \underline{\omega}}\|\chi\|_{2, \underline{\omega}} . \tag{3.29}
\end{equation*}
$$

ii) B can be extended in a continuous mapping from V^{2} into $H^{-s}(\Omega)$.

Proof : Let (Φ, χ, Ξ) in $\mathscr{D}(\Omega)^{3}$, from (3.26) we obtain :

$$
\left\{\begin{align*}
\int_{\Omega} 2 B(\Phi, \chi) \Xi d \underline{x} & =\int_{\Omega} \frac{\partial^{2} \Phi}{\partial x_{1}^{2}} \frac{\partial \chi}{\partial x_{2}} \frac{\partial \Xi}{\partial x_{1}} d \underline{x}+\int_{\Omega} \frac{\partial^{2} \Phi}{\partial x_{2}^{2}} \frac{\partial \chi}{\partial x_{2}} \frac{\partial \Xi}{\partial x_{1}} d \underline{x}+ \tag{3.30}\\
& +\int_{\Omega} \frac{\partial^{2} \chi}{\partial x_{1}^{2}} \frac{\partial \Phi}{\partial x_{2}} \frac{\partial \Xi}{\partial x_{1}} d \underline{x}+\int_{\Omega} \frac{\partial^{2} \chi}{\partial x_{2}^{2}} \frac{\partial \Phi}{\partial x_{2}} \frac{\partial \Xi}{\partial x_{1}} d \underline{x} \\
& -\int_{\Omega} \frac{\partial^{2} \Phi}{\partial x_{1}^{2}} \frac{\partial \chi}{\partial x_{1}} \frac{\partial \Xi}{\partial x_{2}} d \underline{x}-\int_{\Omega} \frac{\partial^{2} \Phi}{\partial x_{2}^{2}} \frac{\partial \chi}{\partial x_{1}} \frac{\partial \Xi}{\partial x_{2}} d \underline{x} \\
& -\int_{\Omega} \frac{\partial^{2} \chi}{\partial x_{1}^{2}} \frac{\partial \Phi}{\partial x_{1}} \frac{\partial \Xi}{\partial x_{2}} d \underline{x}-\int_{\Omega} \frac{\partial^{2} \chi}{\partial x_{2}^{2}} \frac{\partial \Phi}{\partial x_{1}} \frac{\partial \Xi}{\partial x_{2}} d \underline{x}
\end{align*}\right.
$$

We shall only consider the first term; the others can be treated in the same way. Let $q=\frac{2}{s-1}$; then, due to the hypothesis on s, we have $4<q<\infty$. Therefore, from Hölder's inequality we have :

$$
\left\{\begin{align*}
&\left|\int_{\Omega} \frac{\partial^{2} \Phi}{\partial x_{1}^{2}} \frac{\partial \chi}{\partial x_{2}} \frac{\partial \Xi}{\partial x_{1}} d \underline{x}\right| \leqslant\left.\left.\left.\left.\left|\int_{\Omega}\right| \frac{\partial^{2} \Phi}{\partial x_{1}^{2}}\right|^{2} d \underline{x}\right|^{1 / 2}\left|\int_{\Omega}\right| \frac{\partial \chi}{\partial x_{2}}\right|^{q} d \underline{x}\right|^{1 / q} \tag{3.31}\\
&\left.\left.\left|\int_{\Omega}\right| \frac{\partial \Xi}{\partial x_{1}}\right|^{2 q /(q-2)} d \underline{x}\right|^{(q-2) / 2 q}
\end{align*}\right.
$$

Moreover it is well known that (see Adams [1]) :

$$
\begin{gathered}
\left.\left.\left|\int_{\Omega}\right| \frac{\partial \chi}{\partial x_{2}}\right|^{q} d \underline{x}\right|^{1 / q} \leqslant C\|\chi\|_{H^{2}(\Omega)} \\
\left.\left.\left|\int_{\Omega}\right| \frac{\partial \Xi}{\partial x_{1}}\right|^{2 q /(q-2)} d \underline{x}\right|^{(q-2) / 2 q} \leqslant C\|\Xi\|_{H^{s}(\Omega)}
\end{gathered}
$$

By (3.31) and the obvious imbedding $H_{\underline{\varrho}}^{2}(\Omega) \hookrightarrow H^{2}(\Omega)$, we get :

$$
\left|\int_{\Omega} \frac{\partial^{2} \Phi}{\partial x_{1}^{2}} \frac{\partial \chi}{\partial x_{2}} \frac{\partial \Xi}{\partial x_{1}} d \underline{x}\right| \leqslant C\|\Phi\|_{2, \underline{\omega}}\|\chi\|_{2, \underline{\omega}}\|\Xi\|_{H^{s}(\Omega)}
$$

and (3.29) follows. The end of the lemma is derived by a classical density argument.

With the previous notations, we have the following result.
Lemma 3.4 : Let us consider the problem: given $f \in \mathscr{H}_{\underline{\omega}}{ }^{-2}(\Omega)$,

$$
\left\{\begin{array}{l}
\text { find }(\lambda, \Psi) \in \mathbb{R} \times V \quad \text { such that }: \tag{3.32}\\
F(\lambda, \Psi) \equiv \Psi+T H_{f}(\lambda, \Psi)=0
\end{array}\right.
$$

Then, $\Psi \in V$ is a solution of (3.28) if and only if $\left(\lambda_{0}, \Psi\right)$ is a solution of (3.32).
Using the same kind of arguments as in Lions [1], we can prove that there exists a λ_{0} in \mathbb{R} and a compact interval $\Lambda=\left[\lambda_{0}-\delta, \lambda_{0}+\delta\right], \delta>0$, such that, for any $\lambda \in \Lambda$, problem (3.32) has exactly one solution $(\lambda, \Psi(\lambda))$. We shall denote $\Psi_{0}=\Psi\left(\lambda_{0}\right)$ in the sequel, and shall assume :

$$
\begin{equation*}
f \in H_{\underline{\varrho}}^{\mathrm{\rho}}(\Omega), \quad \rho>1, \tag{3.33}
\end{equation*}
$$

so that $f \in C^{0}(\bar{\Omega})(\operatorname{see}(2.2))$.

IV. APPROXIMATION OF NAVIER-STOKES EQUATIONS BY A PSEUDO-SPECTRAL METHOD

IV.1. Formulation of the approximate problem

A straightforward calculation gives, from (3.26)

$$
\begin{aligned}
B(\Phi, \chi)=-\frac{1}{2}\left(\frac{\partial^{2}}{\partial x_{1}^{2}}-\frac{\partial^{2}}{\partial x_{2}^{2}}\right)\left(\frac{\partial \Phi}{\partial x_{1}} \frac{\partial \chi}{\partial x_{2}}\right. & \left.+\frac{\partial \Phi}{\partial x_{2}} \frac{\partial \chi}{\partial x_{1}}\right)+ \\
& +\left(\frac{\partial^{2}}{\partial x_{1} \partial x_{2}}\right)\left(\frac{\partial \Phi}{\partial x_{1}} \frac{\partial \chi}{\partial x_{1}}-\frac{\partial \Phi}{\partial x_{2}} \frac{\partial \chi}{\partial x_{2}}\right)
\end{aligned}
$$

We set, for Φ and χ in $\mathbb{P}_{N}(\Omega)$ and λ in \mathbb{R} :

$$
\left\{\begin{align*}
\stackrel{\circ}{B}_{N}(\Phi, \chi)=-\frac{1}{2}\left(\frac{\partial^{2}}{\partial x_{1}^{2}}-\right. & \left.\frac{\partial^{2}}{\partial x_{2}^{2}}\right)\left(\underline{P}_{N}\left(\frac{\partial \Phi}{\partial x_{1}} \frac{\partial \chi}{\partial x_{2}}\right)+\underline{P}_{N}\left(\frac{\partial \Phi}{\partial x_{2}} \frac{\partial \chi}{\partial x_{1}}\right)\right)+ \tag{4.1}\\
& +\frac{\partial^{2}}{\partial x_{1} \partial x_{2}}\left(\underline{P}_{N}\left(\frac{\partial \Phi}{\partial x_{1}} \frac{\partial \chi}{\partial x_{1}}\right)-\underline{P}_{N}\left(\frac{\partial \Phi}{\partial x_{2}} \frac{\partial \chi}{\partial x_{2}}\right)\right)
\end{align*}\right.
$$

and :

$$
\begin{equation*}
\stackrel{\circ}{H}_{N, f}(\lambda, \Phi)=\lambda\left(\stackrel{\circ}{B}_{N}(\Phi, \Phi)-\underline{p}_{N} f\right) \tag{4.2}
\end{equation*}
$$

Then, we define the approximate problem as follows : find $\Psi_{N} \in V_{N}$ such that, for any Φ in $V_{N}=P_{N}^{2}(\Omega) \cap V$:

$$
\begin{equation*}
\left(\Delta^{2} \Psi_{N}, \Phi\right)_{\underline{\omega}, N}+\left(\stackrel{\circ}{H}_{N, f}\left(\lambda_{0}, \Psi_{N}\right), \Phi\right)_{\varrho, N}=0 \tag{4.3}
\end{equation*}
$$

Remark 4.1: Interpretation of the scheme as a collocation method.
Let us define $\Phi_{i}(x)$, for $i=2, \ldots, N-2$ as being the element of $\mathbb{P}_{N}(I)$ such that :

$$
\Phi_{i}\left(\xi_{\jmath}\right)=\delta_{i \jmath}, \quad j=1, \ldots, N-1, \quad j \neq i-1 \quad \text { and } \quad j \neq i+1
$$

and $\Phi_{i} /\left(1-x^{2}\right)^{2} \in \mathbb{P}_{N-4}(I)$.

vol 21, $\mathrm{n}^{0} 1,1987$

We define then $\Phi_{i j}$ over Ω by

$$
\Phi_{i j}(\underline{x})=\Phi_{i}\left(x_{1}\right) \Phi_{j}\left(x_{2}\right) \text { for any } i, j, \quad 2 \leqslant i, j \leqslant N-2
$$

This set of elements of $\mathbb{P}_{N}(\Omega)$ is a basis of V_{N} and using this basis as test function in (4.3) leads to the following equivalent problem :

$$
\left\{\begin{array}{l}
\text { find } \Psi_{N} \in V_{N} \text { such that : } \tag{4.3}\\
\mathscr{S}\left(\Delta^{2} \Psi_{N}+\stackrel{\circ}{H}_{N, f}\left(\lambda_{0}, \Psi_{N}\right)\right)\left(\underline{\xi}_{i j}\right)=0 \quad 2 \leqslant i, j \leqslant N-2
\end{array}\right.
$$

where for any function χ in $C^{0}(\bar{\Omega})$ we have posed

$$
\mathscr{P} \chi\left(\underline{\xi}_{i j}\right)=\sum_{\substack{k=i-1, i, i+1 \\ l=j-1, j, j+1}} \Phi_{i j}\left(\underline{\xi}_{k l}\right) \chi\left(\underline{\xi}_{k l}\right) \omega_{k l}
$$

The scheme (4.3') would be a collocation scheme for the equation (3.28) if the values $\Phi_{i j}\left(\xi_{k, l}\right)$ were equal to zero for $(k, l) \neq(i, j)$. Since it is not the case, it is a collocation-like method involving nine points at the same time.

Some indications for the numerical treatment of the scheme.
First we want to point out that the expression of the nonlinear term we have used is not only a theoretic tool but has been prefered by Basdevant [1] for the approximation of the evolutionnary Navier-Stokes equations with periodic boundary conditions. In this latter case the formulation provides an economy of C.P.U. time and input-output.

For the numerical resolution of the problem we suggest and iterative method treating explicitly the non linear terms : Ψ_{N} is the limit of a sequence $\left(\psi_{N}^{n}\right)_{n \in \mathbb{N}}$.

The following method :

$$
\mathscr{S}\left(\Delta^{2} \psi_{N}^{n+1}\right)\left(\underline{\xi}_{i j}\right)=\mathscr{P}\left[\stackrel{\circ}{H}_{N, f}\left(\lambda_{0}, \psi_{N}^{n}\right)\right]\left(\underline{\xi}_{i j}\right) \quad 2 \leqslant i, j \leqslant N-2
$$

would involve the inversion of a full and ill conditionned system. Hence, as it is preconised in the litterature we prefer the use of a finite difference preconditionning $\Delta_{F D}^{2}$ of the operator Δ^{2} (see Orszag [1], for example)

$$
\begin{array}{r}
\mathscr{P}\left(\Delta_{F D}^{2}\left(\psi_{N}^{n+1}-\psi_{N}^{n}\right)\right)\left(\underline{\xi}_{i j}\right)=\varepsilon \mathscr{S}\left[\Delta^{2} \psi_{N}^{n}+\stackrel{\circ}{H}_{N, f}\left(\lambda_{0}, \psi_{N}^{n}\right)\right]\left(\underline{\xi}_{i j}\right) \\
2 \leqslant i, j \leqslant N-2
\end{array}
$$

where ε is a relaxation parameter.
The evaluation of the explicit right hand side of (4.3") involves two types of calculus : first the values of a product of two functions on the set of $(N+1)^{2}$ points $\underline{\xi}_{i j}$, secondly the values of the derivative of a function on this set. The first calculus is very easy to perform in $O\left(N^{2}\right)$ operations. The second one is very expensive $\left(O\left(N^{4}\right)\right.$ operations) directly, in the " physical space ". It can be done in $O\left(N^{2}\right)$ operations, using recurrence formulae in the space of components of
the functions in the bases of Chebyshev polynomials (the spectral space). The passage from one space the other one is performed via the F.F.T. algorithm in $O\left(N^{2} \log N\right)$ operations (see Gottlieb-Orszag [1] for more details about this procedure).

Let us introduce a discrete bilinear form \mathfrak{a}_{N}, defined over V_{N} by :

$$
\begin{equation*}
\mathfrak{a}_{N}(\Phi, \chi)=\left(\Delta^{2} \Phi, \chi\right)_{\underline{\varrho}, N}, \quad \forall(\Phi, \chi) \in V_{N}^{2} \tag{4.4}
\end{equation*}
$$

and an operator $L: \mathbb{P}_{N}(\Omega) \rightarrow \mathbb{P}_{N}(\Omega)$ defined by :

$$
\int_{\Omega}(L \Phi) \chi \underline{\omega} d \underline{x}=(\Phi, \chi)_{\underline{\varrho}, N}, \quad \forall(\Phi, \chi) \in V_{N}^{2}
$$

Let us set :

$$
\begin{equation*}
B_{N}=L \stackrel{\circ}{B}_{N}, \quad H_{N, f}=L \stackrel{\circ}{H}_{N, f} \tag{4.5}
\end{equation*}
$$

Then, an equivalent formulation of problem (4.3) is :

$$
\left\{\begin{array}{l}
\text { Find } \Psi_{N} \in V_{N}, \text { such that, for any } \Phi \in V_{N}: \tag{4.6}\\
\mathfrak{a}_{N}\left(\Psi_{N}, \Phi\right\rangle+\left\langle\widehat{\left.H_{N, f}\left(\lambda_{0}, \Psi_{N}\right)\right),} \Phi\right\rangle=0
\end{array}\right.
$$

(see (3.22) for the notation $\tilde{\sim}$).
We first prove that \mathfrak{a}_{N} is continuous and elliptic.
Lemma 4.1 : There exist two positive constants $\tilde{\alpha}$ and $\widetilde{\beta}$ independent of N such that, for any $(\Phi, \chi) \in V_{N}^{2}$:

$$
\begin{gather*}
\left|\mathfrak{a}_{N}(\Phi, \chi)\right| \leqslant \tilde{\alpha}\|\Phi\|_{2, \underline{\omega}}\|\chi\|_{2, \underline{\omega}}, \tag{4.7}\\
\mathfrak{a}_{N}(\Phi, \Phi) \geqslant \widetilde{\beta}\|\Phi\|_{2, \underline{\omega}}^{2} . \tag{4.8}
\end{gather*}
$$

Proof : We first prove (4.7). Let $(\Phi, \chi) \in V_{N}^{2}$, we have, as in (3.8):

$$
\mathfrak{a}_{N}(\Phi, \chi)=A_{20, N}+2 A_{11, N}+A_{02, N}
$$

with :

$$
A_{i j, N}=\sum_{k, l=0}^{N} \frac{\partial^{4}}{\partial x_{i}^{2 i} \partial x_{j}^{2 j}} \Phi\left(\underline{\xi_{k l}}\right) \chi\left(\underline{\xi}_{k l}\right) \omega_{k l} .
$$

Using (2.8) we obtain :

$$
A_{20, N}=\sum_{l=0}^{N}\left(\int_{I} \frac{\partial^{4} \Phi}{\partial x_{1}^{4}}\left(x_{1}, \xi_{l}\right) \chi\left(x_{1}, \xi_{l}\right) \omega_{1}\left(x_{1}\right) d x_{1}\right) \omega_{l}
$$

so that, by integration by parts :

$$
\begin{equation*}
A_{20, N}=\sum_{l=0}^{N}\left(\int_{I} \frac{\partial^{2} \Phi}{\partial x_{1}^{2}}\left(x_{1}, \xi_{l}\right) \frac{\partial^{2}}{\partial x_{1}^{2}}\left(\chi\left(x_{1}, \xi_{l}\right) \omega_{1}\left(x_{1}\right)\right) d x_{1}\right) \omega_{l} . \tag{4.9}
\end{equation*}
$$

Thus, it follows from (3.4) that :

$$
\begin{gathered}
\left|A_{20, N}\right| \leqslant C_{1} \sum_{l=0}^{N} \omega_{l}\left[\left(\int_{I}\left(\frac{\partial^{2} \Phi}{\partial x_{1}^{2}}\right)^{2}\left(x_{1}, \xi_{l}\right) \omega_{1}\left(x_{1}\right) d x_{1}\right)^{1 / 2} \times\right. \\
\left.\times\left(\int_{I}\left(\frac{\partial^{2} \chi}{\partial x_{1}^{2}}\right)^{2}\left(x_{1}, \xi_{l}\right) \omega_{1}\left(x_{1}\right) d x_{1}\right)^{1 / 2}\right] \\
\leqslant C_{1} \sum_{l=0}^{N} \omega_{l}\left\|\Phi\left(., \xi_{l}\right)\right\|_{H_{\omega}^{2}(I)}\left\|\chi\left(., \xi_{l}\right)\right\|_{H_{\omega}^{2}(l)} .
\end{gathered}
$$

Hence, by (2.10) we find :

$$
\begin{equation*}
\left|A_{20, N}\right| \leqslant C\|\Phi\|_{2, \underline{\varrho}}\|\chi\|_{2, \underline{\omega}} . \tag{4.10}
\end{equation*}
$$

Similarly we get :

$$
\begin{equation*}
\left|A_{02, N}\right| \leqslant C\|\tilde{\Phi}\|_{2, \underline{\omega}}\|\chi\|_{2, \underline{\varrho}} . \tag{4.11}
\end{equation*}
$$

Finally, from (2.8) we have :

$$
\begin{equation*}
A_{11, N}=\int_{\Omega} \frac{\partial^{4} \Phi}{\partial x_{1}^{2} \partial x_{2}^{2}} \chi \underline{\omega} d \underline{x}=A_{11} . \tag{4.12}
\end{equation*}
$$

Therefore, (4.7) is a consequence of (4.10) - (4.12), (3.11), (3.12).
Let us prove now (4.8). We keep the above notations but with $\chi=\Phi$. Due to (3.5) and (4.9) we have :

$$
A_{20, N} \geqslant C_{2}^{\prime} \sum_{l=0}^{N}\left[\int_{I}\left(\frac{\partial^{2} \Phi}{\partial x_{1}^{2}}\right)^{2}\left(x_{1}, \xi_{l}\right) \omega_{1}\left(x_{1}\right) d x_{1}\right] \omega_{l}
$$

so that, by (2.10), we derive :

$$
\begin{equation*}
A_{20, N} \geqslant C\left\|\frac{\partial^{2} \Phi}{\partial x_{1}^{2}}\right\|_{0, \mathrm{e}}^{2} \tag{4.13}
\end{equation*}
$$

Similarly, we have :

$$
\begin{equation*}
A_{02, N} \geqslant C\left\|\frac{\partial^{2} \Phi}{\partial x_{2}^{2}}\right\|_{0, \underline{\omega}}^{2} . \tag{4.14}
\end{equation*}
$$

Moreover (4.12) and (3.15) give :

$$
\begin{equation*}
A_{11, N}=A_{11} \geqslant 0 \tag{4.15}
\end{equation*}
$$

Thus, (4.8) is a consequence of (3.17), (4.13)-(4.15) and the property (2.1).
As in the continuous case (see (3.23)) we can introduce an operator T_{N} : $\mathscr{H}_{\underline{\omega}}^{-2}(\Omega) \rightarrow V_{N}$ by :

$$
\begin{equation*}
\mathfrak{a}_{N}\left(T_{N} g, \Phi\right)=\langle\tilde{g}, \Phi\rangle \quad \forall \Phi \in V_{N}, \quad \forall g \in \mathscr{H}_{\underline{\omega}}^{-2}(\Omega) \tag{4.16}
\end{equation*}
$$

Problem (4.6) is equivalent to the following one :

$$
\left\{\begin{array}{l}
\text { Find } \Psi_{N} \in V_{N} \text { such that : } \\
\Psi_{N}+T_{N} H_{N, f}\left(\lambda_{0}, \Psi_{N}\right)=0
\end{array}\right.
$$

We consider now a slightly more general problem :

$$
\left\{\begin{array}{l}
\text { Find }\left(\lambda, \Psi_{N}\right) \in \mathbb{R} \times V_{N} \text { such that : } \tag{4.17}\\
F_{N}\left(\lambda, \Psi_{N}\right) \equiv \Psi_{N}+T_{N} H_{N, f}\left(\lambda, \Psi_{N}\right)=0
\end{array}\right.
$$

IV.2. Existence of a solution of the approximate problem and error bound

We shall use now the general theorem concerning the approximation of problems stated as (3.32) by problems stated as (4.17) developped in Des-cloux-Rappaz [1]. We have recalled a suitable version of it in the appendix.

First we shall assume in the sequel that the solution Ψ_{0} of (3.28) satisfies the following property :

$$
\left(\lambda_{0}, \Psi_{0}\right) \text { is a regular point of }(3.32)
$$

Let us now prove that $\lim _{N \rightarrow \infty} T_{N}=T$. We introduce the projection operators Π_{N} and $\stackrel{\circ}{\Pi}_{N}$ from V onto V_{N} by :

$$
\begin{align*}
\mathfrak{a}\left(\Pi_{N} \Phi, \chi\right) & =\mathfrak{a}(\Phi, \chi), \quad \tag{4.18}\\
\mathfrak{a}_{N}\left(\stackrel{\circ}{\Pi}_{N} \Phi, \chi\right) & =\mathfrak{a}(\Phi, \chi), \quad \forall \chi \in V_{N}, \quad \forall \Phi \in V .
\end{align*}
$$

vol. $21, \mathrm{n}^{\circ} 1,1987$

Using lemma 3.2 and well-known technics upon projection operators we get :

$$
\left\|\Phi-\Pi_{N} \Phi\right\|_{2, \underline{\omega}} \leqslant C \inf _{\Phi_{N} \in V_{N}}\left\|\Phi-\Phi_{N}\right\|_{2, \underline{\omega}} .
$$

From (2.7), with $r=2$ we derive that, for any Φ in $H_{\underline{\varrho}}^{\sigma}(\Omega) \cap V(\sigma \geqslant 2)$:

$$
\begin{equation*}
\left\|\Phi-\Pi_{N} \Phi\right\|_{2, \underline{\omega}} \leqslant C N^{2-\sigma}\|\Phi\|_{\sigma, \underline{\omega}} \tag{4.20}
\end{equation*}
$$

Let us remark now that $T_{N}=\stackrel{\circ}{\Pi}_{N} \circ T$. The property :

$$
\lim _{N \rightarrow \infty} T_{N}=T
$$

will be a consequence of an estimate concerning $\stackrel{\circ}{\Pi}_{N}$ analogous to (4.20).
Lemma 4.2 : There exists a positive constant C, independent of N such that, for any $\sigma \geqslant 2$ and any $\Phi \in H_{\underline{\varrho}}^{\circ}(\Omega) \cap V$;

$$
\begin{equation*}
\left\|\Phi-\stackrel{\circ}{\Pi}_{N} \Phi\right\|_{2, \underline{\omega}} \leqslant C N^{2-\sigma}\|\Phi\|_{\sigma, \underline{\omega}} . \tag{4.21}
\end{equation*}
$$

Proof : Let Φ be in $V \cap H_{\underline{\omega}}^{\sigma}(\Omega)$, using (4.8) we have :

$$
\left\|\left(\stackrel{\circ}{\Pi}_{N}-\Pi_{\sigma, N}\right) \Phi\right\|_{2, \underline{\omega}}^{2} \leqslant \tilde{\beta}^{-1} \mathfrak{a}_{N}\left(\left(\stackrel{\circ}{\Pi}_{N}-\Pi_{\sigma, N}\right) \Phi,\left(\stackrel{\circ}{\Pi}_{N}-\Pi_{\sigma, N}\right) \Phi\right)
$$

Next we deduce from (4.18) and (4.19) that:

$$
\left\{\begin{align*}
\left\|\left(\stackrel{\circ}{\Pi}_{N}-\Pi_{\sigma, N}\right) \Phi\right\|_{2, \underline{\omega}}^{2} \leqslant \widetilde{\beta}^{-1} & {\left[\left|\mathfrak{a}\left(\left(\Pi_{N}-\Pi_{\sigma, N}\right) \Phi,\left(\stackrel{\circ}{\Pi}_{N}-\Pi_{\sigma, N}\right) \Phi\right)\right|+\right.} \tag{4.22}\\
& \left.+\left|\left(\mathfrak{a}-\mathfrak{a}_{N}\right)\left(\Pi_{\sigma, N} \Phi,\left(\stackrel{\circ}{\Pi}_{N}-\Pi_{\sigma, N}\right) \Phi\right)\right|\right]
\end{align*}\right.
$$

Besides, as in the proof of (4.20), we get :

$$
\begin{equation*}
\left|\mathfrak{a}\left(\left(\Pi_{N}-\Pi_{\sigma, N}\right) \Phi,\left(\stackrel{\circ}{\Pi}_{N}-\Pi_{\sigma, N}\right) \Phi\right)\right| \leqslant C N^{2-\sigma}\|\Phi\|_{\sigma, \underline{\omega}}\left\|\left(\stackrel{\circ}{\Pi}_{N}-\Pi_{\sigma, N}\right) \Phi\right\|_{2, \underline{\omega}} \tag{4.23}
\end{equation*}
$$

On the other hand, we define for $1 \leqslant i, j \leqslant 2$:

$$
\left\{\begin{align*}
& J_{\imath j}=\int_{\Omega} \frac{\partial^{4}}{\partial x_{\imath}^{2} \partial x_{J}^{2}}\left(\Pi_{\sigma, N} \Phi\right)\left[\left(\stackrel{\circ}{\Pi}_{N}-\Pi_{\sigma, N}\right) \Phi\right] \underline{\omega} \tag{4.24}\\
&-\sum_{k, l} \frac{\partial^{4}}{\partial x_{\imath}^{2} \partial x_{j}^{2}}\left(\Pi_{\sigma, N} \Phi\right)\left[\left(\stackrel{\circ}{\Pi}_{N}-\Pi_{\sigma, N}\right) \Phi\right]\left(\xi_{k l}\right) \omega_{k l}
\end{align*}\right.
$$

Then, we have :

$$
\begin{equation*}
\left(\mathfrak{a}-\mathfrak{a}_{N}\right)\left(\Pi_{\sigma, N} \Phi,\left(\stackrel{\circ}{\Pi}_{N}-\Pi_{\sigma, N}\right) \Phi\right)=J_{11}+2 J_{12}+J_{22} . \tag{4.25}
\end{equation*}
$$

Setting $\hat{\Phi}_{N}=\left(\stackrel{\circ}{\Pi}_{N}-\Pi_{\sigma, N}\right) \Phi$ and using (2.8) (see (4.9)) :

$$
\begin{aligned}
& J_{11}=\int_{I}\left[\left(\frac{\partial^{2}}{\partial x_{1}^{2}}\left(\Pi_{\sigma, N} \Phi\right)\left(x_{1}, \cdot\right), \frac{\partial^{2}}{\partial x_{1}^{2}}\left(\hat{\Phi}_{N} \omega_{1}\right)\left(x_{1}, .\right)\right)_{0, \omega_{2}}\right. \\
&\left.-\left(\frac{\partial^{2}}{\partial x_{1}^{2}}\left(\Pi_{\sigma, N} \Phi\right)\left(x_{1}, .\right), \frac{\partial^{2}}{\partial x_{1}^{2}}\left(\hat{\Phi} \omega_{1}\right)\left(x_{1}, .\right)\right)_{\omega_{2}, N}\right] d x_{1} .
\end{aligned}
$$

Using (2.6) and (2.13), noticing that $\Pi_{\sigma, N} \Phi\left(x_{1},.\right) \in \mathbb{P}_{N}(I)$ and that P_{N} reduces to the identity mapping over $\mathbb{P}_{N}(I)$ we get :

$$
\begin{aligned}
&\left|J_{11}\right| \leqslant C N^{2-\sigma} \int_{I} \omega_{1}\left\|\frac{\partial^{2}}{\partial x_{1}^{2}}\left(\Pi_{\sigma, N} \Phi\right)\left(x_{1}, .\right)\right\|_{\sigma-2, \omega_{2}} \\
& \times\left\|\frac{1}{\omega_{1}} \frac{\partial^{2}}{\partial x_{1}^{2}}\left(\hat{\Phi}_{N} \omega_{1}\right)\left(x_{1}, .\right)\right\|_{0, \omega_{2}} d x_{1} \\
& \leqslant C N^{2-\sigma}\left\|\frac{\partial^{2}}{\partial x_{1}^{2}}\left(\Pi_{\sigma, N} \Phi\right)\right\|_{\sigma-2, \underline{\varrho}}\left\|\frac{1}{\omega_{1}} \frac{\partial^{2}}{\partial x_{1}^{2}}\left(\hat{\Phi}_{N} \omega_{1}\right)\right\|_{0, \underline{\varrho}} .
\end{aligned}
$$

Following the same lines as in the proof of (3.12) we obtain :

$$
\begin{equation*}
\left\|\frac{1}{\omega_{1}} \frac{\partial^{2}}{\partial x_{1}^{2}}\left(\Phi_{N} \omega_{1}\right)\right\|_{0, \underline{\omega}} \leqslant C\left\|\frac{\partial^{2} \hat{\Phi}_{N}}{\partial x_{1}^{2}}\right\|_{0, \underline{\omega}}, \tag{4.26}
\end{equation*}
$$

so that :

$$
\begin{equation*}
\left|J_{11}\right| \leqslant C N^{2-\sigma}\left\|\Pi_{\sigma, N} \Phi\right\|_{\sigma, \underline{\underline{\omega}}}\left\|\hat{\Phi}_{N}\right\|_{2, \underline{\underline{\omega}}} . \tag{4.27}
\end{equation*}
$$

Similarly we obtain :

$$
\begin{equation*}
\left|J_{22}\right| \leqslant C N^{2-\sigma}\left\|\Pi_{\sigma, N} \Phi\right\|_{\sigma, \underline{\omega}}\left\|\tilde{\Phi}_{N}\right\|_{2, \underline{\omega}} . \tag{4.28}
\end{equation*}
$$

Finally, noticing that :

$$
\frac{\partial^{4}}{\partial x_{1}^{2} \partial x_{2}^{2}}\left(\Pi_{\sigma, N} \Phi\right) \hat{\Phi}_{N} \in \mathbb{P}_{2 N-2}(\Omega),
$$

and using (2.8) we check that $J_{12}=0$. Hence (4.21) follows from (2.7), (4.22), (4.23), (4.25) - (4.28).
vol. 21, $\mathrm{n}^{0} 1,1987$

According to (4.20) the hypothesis (A.2) of Theorem A. 1 holds if we choose $\mathscr{P}_{N} \equiv \Pi_{N}$. In order to prove that hypothesis (A.1) and (A.3) holds we compute the derivatives of F and F_{N}. Using (3.26), (3.27) and (3.32) we have, for any $(\lambda, \Phi),\left(\mu_{i}, x_{i}\right) \in \mathbb{P} \times V(i=1,2,3):$

$$
\begin{gather*}
F^{(1)}[\lambda, \Phi]\left(\mu_{1}, \chi_{1}\right)= \\
=\chi_{1}+2 T\left(\lambda B\left(\Phi, \chi_{1}\right)\right)+T\left(\mu_{1}(B(\Phi, \Phi)-f)\right) \tag{4.29}\\
F^{(2)}[\lambda, \Phi]\left(\left(\mu_{1}, \chi_{1}\right),\left(\mu_{2}, \chi_{2}\right)\right)= \\
=2 T\left(\lambda B\left(\chi_{1}, \chi_{2}\right)\right)+2 T\left(\mu_{1} B\left(\Phi, \chi_{2}\right)+\mu_{2} B\left(\Phi, \chi_{1}\right)\right) \tag{4.30}\\
F^{(3)}[\lambda, \Phi]\left(\left(\mu_{1}, \chi_{1}\right),\left(\mu_{2}, \chi_{2}\right),\left(\mu_{3}, \chi_{3}\right)\right)= \\
=2 T\left(\mu_{1} B\left(\chi_{2}, \chi_{3}\right)+\mu_{2} B\left(\chi_{3}, \chi_{1}\right)+\mu_{3} B\left(\chi_{1}, \chi_{2}\right)\right) \tag{4.31}\\
F^{(k)}[\lambda, \Phi] \equiv 0 \quad \forall k \geqslant 4 . \tag{4.32}
\end{gather*}
$$

Similar formulae are obtained for the derivatives of F_{N}, replacing T by T_{N} and B by B_{N} and (A.1) is clearly verified.

Moreover it can be checked that (A.3) is a consequence of the following property :

$$
\begin{equation*}
\lim _{N \rightarrow+\infty}\left\|T B(\Phi, \chi)-T_{N} B_{N}\left(\Pi_{N} \Phi, \Pi_{N} \chi\right)\right\|_{2, \underline{\omega}}=0, \quad \forall(\Phi, \chi) \in V^{2} \tag{4.33}
\end{equation*}
$$

The following lemma and (4.20) will imply (4.33).
Lemma 4.3 : There exist two positive constants C and η independent of N such that, for any $(\Phi, \chi) \in V^{2}$:

$$
\left\{\begin{array}{r}
\left\|T B(\Phi, \chi)-T_{N} B_{N}\left(\Pi_{N} \Phi, \Pi_{N} \chi\right)\right\|_{2, \underline{\omega}} \leqslant C\left[N^{-\eta}\|\Phi\|_{2, \underline{\omega}}\|\chi\|_{2, \underline{\omega}}+\right. \\
\left.+\left\|\Phi-\Pi_{N} \Phi\right\|_{2, \underline{\omega}}\|\chi\|_{2 \underline{\omega}}+\left\|\chi-\Pi_{N} \chi\right\|_{2, \underline{\underline{\omega}}}\|\Phi\|_{2, \underline{\underline{\omega}}}\right] .
\end{array}\right.
$$

Proof : Let (Φ, χ) be in $\mathscr{D}(\Omega)^{2}$. We have :
$\left\{\begin{array}{l}\left\|T B(\Phi, \chi)-T_{N} B_{N}\left(\Pi_{N} \Phi, \Pi_{N} \chi\right)\right\|_{2, \underline{\omega}} \leqslant\left\|\left(T-T_{N}\right) B(\Phi, \chi)\right\|_{2, \underline{\omega}}+(4.35) \\ +\left\|T_{N}\left(B(\Phi, \chi)-B\left(\Pi_{N} \Phi, \Pi_{N} \chi\right)\right)\right\|_{2, \underline{\omega}}+\left\|T_{N}\left(B-B_{N}\right)\left(\Pi_{N} \Phi, \Pi_{N} \chi\right)\right\|_{2, \underline{\omega}} .\end{array}\right.$
From (3.29) and the regularity of T we have, if $1<s<3 / 2$:

$$
\begin{aligned}
& \|T B(\Phi, \chi)\|_{H^{4-s}(\Omega)} \leqslant C\|\Phi\|_{2, \omega}\|\chi\|_{2, \underline{\omega}}, \\
& \mathrm{M}^{2} \text { AN } \begin{array}{r}
\text { Modélisation mathematique et Analyse numérique } \\
\text { Mathematical Modelling and Numerical Analysis }
\end{array}
\end{aligned}
$$

so that, by (2.3) :

$$
\|T B(\Phi, \chi)\|_{7 / 2-s, \underline{\omega}} \leqslant C\|\Phi\|_{2, \underline{\omega}}\|\chi\|_{2, \underline{\omega}} .
$$

Using (4.21) and the equality $T_{N}=\stackrel{\circ}{\Pi}_{N} \circ T$, we obtain, for any $s, 1<s<3 / 2$:

$$
\begin{equation*}
\left\|\left(T-T_{N}\right) B(\Phi, \chi)\right\|_{2, \underline{\omega}} \leqslant C N^{s-3 / 2}\|\Phi\|_{2, \underline{\omega}}\|\chi\|_{2, \underline{\omega}} \tag{4.36}
\end{equation*}
$$

Let us consider now the next term in the right hand side of (4.35). We get :

$$
\left\{\begin{align*}
\left\|T_{N}\left[B(\Phi, \chi)-B\left(\Pi_{N} \Phi, \Pi_{N} \chi\right)\right]\right\|_{2, \underline{\omega}} & \leqslant\left\|T_{N}\right\|_{\mathscr{L}\left(H^{-s}(\Omega), V\right)} \times \tag{4.37}\\
\times & \left\|B(\Phi, \chi)-B\left(\Pi_{N} \Phi, \Pi_{N} \chi\right)\right\|_{H^{-s}(\Omega)}
\end{align*}\right.
$$

Using Theorem 3.1 and (4.21) we obtain :

$$
\begin{equation*}
\left\|T_{N}\right\|_{\mathscr{L}\left(H^{-s}(\Omega), V\right)} \leqslant C \tag{4.38}
\end{equation*}
$$

Moreover it follows from lemma 3.3 that :

$$
\begin{aligned}
& \left\|B(\Phi, \chi)-B\left(\Pi_{N} \Phi, \Pi_{N} \chi\right)\right\|_{H^{-s}(\Omega)} \leqslant\left\|B\left(\Phi, \chi-\Pi_{N} \chi\right)\right\|_{H^{-s}(\Omega)}+ \\
& \quad+\left\|B\left(\Phi-\Pi_{N} \Phi, \Pi_{N} \chi\right)\right\|_{H^{-s}(\Omega)} \leqslant \\
& \leqslant \gamma\left(\|\Phi\|_{2, \underline{\omega}}\left\|\chi-\Pi_{N} \chi\right\|_{2, \underline{\omega}}+\left\|\Phi-\Pi_{N} \Phi\right\|_{2, \underline{\omega}}\left\|\Pi_{N} \chi\right\|_{2, \underline{\omega}}\right) .
\end{aligned}
$$

Hence combining (4.37), (4.38) and the use of (4.20) with $\sigma=2$, we get :

$$
\left\{\begin{align*}
\left\|T_{N}\left[B(\Phi, \chi)-B\left(\Pi_{N} \Phi, \Pi_{N} \chi\right)\right]\right\|_{2, \underline{\omega}} & \leqslant\left(C\|\Phi\|_{2, \underline{\omega}}\left\|\chi-\Pi_{N} \chi\right\|_{2, \underline{\omega}}+\right. \tag{4.39}\\
& \left.+\|\chi\|_{2, \underline{\omega}}\left\|\Phi-\Pi_{N} \Phi\right\|_{2, \underline{\omega}}\right) .
\end{align*}\right.
$$

For studying the last term in (4.35) we first notice that, by (4.8) we have, for any $g \in H^{-s}(\Omega)$:

$$
\left\|T_{N} g\right\|_{2, \underline{\omega}} \leqslant \frac{1}{\widetilde{\beta}} \sup _{\Xi \in V_{N}}\left|\frac{a_{N}\left(T_{N} g, \Xi\right)}{\|\Xi\|_{2, \underline{\omega}}}\right|
$$

Hence, from (4.16) and (4.5) we have :

$$
\left\{\begin{aligned}
&\left\|T_{N}\left[B\left(\Pi_{N} \Phi, \Pi_{N} \chi\right)-B_{N}\left(\Pi_{N} \Phi, \Pi_{N} \chi\right)\right]\right\|_{2, \underline{\omega}} \leqslant \\
& \leqslant \frac{1}{\widetilde{\beta}} \sup _{\Xi \in V_{N}}\left(\frac{\left\langle\widehat{B\left(\Pi_{N} \Phi, \Pi_{N} \chi\right)}, \Xi\right\rangle-\left(B_{N}\left(\Pi_{N} \Phi, \Pi_{N} \chi\right), \Xi\right)_{\underline{\varrho}, N}}{\|\Xi\|_{2, \underline{\omega}}}\right)
\end{aligned}\right.
$$

vol. 21, $\mathrm{n}^{\circ} 1,1987$

Moreover, according to the definition of B and $\stackrel{\circ}{B}_{N}$, the right hand side of (4.40) can be written as the sum of six expressions.

A typical one is the following :

$$
\begin{aligned}
I(\Phi, \chi, \Xi)=\int_{\Omega} \frac{-\partial}{\partial x_{1}}\left(\Pi_{N} \Phi\right) & \frac{\partial}{\partial x_{2}}\left(\Pi_{N} \chi\right) \frac{\partial^{2}}{\partial x_{1}^{2}}(\Xi \underline{\omega}) d \underline{x}- \\
& -\sum_{i, j}\left(\frac{\partial^{2}}{\partial x_{1}^{2}}\left[\underline{P}_{N}\left(\frac{-\partial}{\partial x_{1}}\left(\Pi_{N} \Phi\right) \frac{\partial}{\partial x_{2}}\left(\Pi_{N} \chi\right)\right)\right] \Xi\left(\xi_{i j}\right) \omega_{i j}\right)
\end{aligned}
$$

In order to estimate I, we note that, by (2.8) and an integration by parts in the x_{1} direction :

$$
\left\{\begin{align*}
I(\Phi, \chi, \Xi) & =\int_{\Omega} \frac{-\partial}{\partial x_{1}}\left(\Pi_{N} \Phi\right) \frac{\partial}{\partial x_{2}}\left(\Pi_{N} \chi\right) \frac{\partial^{2}}{\partial x_{1}^{2}}(\Xi \underline{\omega}) d \underline{x} \tag{4.41}\\
& -\int_{I} \sum_{j} \omega_{j} \underline{P}_{N}\left[\left(\frac{-\partial}{\partial x_{1}}\right)\left(\Pi_{N} \Phi\right) \frac{\partial}{\partial x_{2}}\left(\Pi_{N} \chi\right)\right] \frac{\partial^{2}}{\partial x_{1}^{2}}\left(\Xi \omega_{1}\right)\left(x_{1}, \xi_{j}\right) d x_{1} .
\end{align*}\right.
$$

Since $\Xi \in V_{N}$, then $\Xi=\left(1-x_{1}^{2}\right)^{2} \Lambda$ with $\Lambda(., y) \in \mathbb{P}_{N-4}(I)$.
It follows from (3.14) that :

$$
\begin{equation*}
\frac{1}{\omega_{1}} \frac{\partial^{2}}{\partial x_{1}^{2}}\left(\Xi \omega_{1}\right)\left(., \xi_{j}\right) \in \mathbb{P}_{N-2}(I), \quad 0 \leqslant j \leqslant N \tag{4.42}
\end{equation*}
$$

hence we obtain :

$$
\begin{aligned}
& I(\Phi, \chi, \Xi)=\int_{\Omega} \frac{-\partial}{\partial x_{1}}\left(\Pi_{N} \Phi\right) \frac{\partial}{\partial x_{2}}\left(\Pi_{N} \chi\right) \frac{\partial^{2}}{\partial x_{1}^{2}}\left(\Xi \omega_{1}\right) \frac{1}{\omega_{1}} \underline{\omega}(\underline{x}) d \underline{x} \\
&-\sum_{i, j}\left[\frac{-\partial}{\partial x_{1}}\left(\Pi_{N} \Phi\right) \frac{\partial}{\partial x_{2}}\left(\Pi_{N} \chi\right) \frac{\partial^{2}}{\partial x_{1}^{2}}\left(\Xi \omega_{1}\right) \frac{1}{\omega_{1}}\right]\left(\underline{\xi_{i j}}\right) \omega_{i j}
\end{aligned}
$$

Applying the estimate (2.13) and (4.26) (with $\left.\hat{\Phi}_{N}=\Xi\right)$ we obtain :

$$
\begin{align*}
|I(\Phi, \chi, \Xi)| \leqslant C \| & \Xi \|_{2, \omega}\left[\left\|\left(I-\underline{P}_{N}\right)\left(\frac{\partial}{\partial x_{1}}\left(\Pi_{N} \Phi\right) \frac{\partial}{\partial x_{2}}\left(\Pi_{N} \chi\right)\right)\right\|_{0, \omega}+\right. \\
& \left.+\left\|\left(I-\Pi_{0, N-1}\right)\left(\frac{\partial}{\partial x_{1}}\left(\Pi_{N} \Phi\right) \frac{\partial}{\partial x_{2}}\left(\Pi_{N} \chi\right)\right)\right\|_{0, \omega}\right] \tag{4.43}
\end{align*}
$$

Using (2.4), (2.12) and (2.5) we derive that, for any $\varepsilon>0$:

$$
\begin{aligned}
\left\|\left(I-\underline{P}_{N}\right)\left(\frac{\partial}{\partial x_{1}} \Pi_{N} \Phi \frac{\partial}{\partial x_{2}} \Pi_{N} \chi\right)\right\|_{0, \underline{\omega}} & \leqslant C N^{-1-\varepsilon}\left\|\Pi_{N} \Phi\right\|_{2+\varepsilon, \underline{\omega}} \times \\
\times\left\|\Pi_{N} \chi\right\|_{2+\varepsilon, \underline{\omega}} & \leqslant C N^{-1+3 \varepsilon}\left\|\Pi_{N} \Phi\right\|_{2, \underline{\omega}}\left\|\Pi_{N} \chi\right\|_{2, \underline{\omega}} .
\end{aligned}
$$

Similarly, using (2.6) we get :

$$
\begin{array}{r}
\left\|\left(I-\Pi_{0, N-1}\right)\left(\frac{\partial}{\partial x_{1}} \Pi_{N} \Phi \frac{\partial}{\partial x_{2}} \Pi_{N} \chi\right)\right\|_{0, \underline{\omega}} \leqslant C N^{-1+3 \varepsilon}\left\|\Pi_{N} \Phi\right\|_{2, \underline{\omega}} \times \\
\times\left\|\Pi_{N} \chi\right\|_{2, \underline{\omega}} \tag{4.45}
\end{array}
$$

Therefore, combining (4.43)-(4.45) and setting $\eta=\inf (3 / 2-s, 1-3 \varepsilon)$ $\left(0<\varepsilon<\frac{1}{3}\right)$ we obtain :

$$
|I(\Phi, \chi, \Xi)| \leqslant C N^{-\eta}\|\Phi\|_{2, \underline{\omega}}\|\chi\|_{2, \underline{\omega}}\|\Xi\|_{2, \underline{\omega}} .
$$

Similar estimates for the other expressions in (4.40) leads to :

$$
\begin{equation*}
\left\|T_{N}\left(B\left(\Pi_{N} \Phi, \Pi_{N} \chi\right)-B_{N}\left(\Pi_{N} \Phi, \Pi_{N} \chi\right)\right)\right\|_{2, \underline{\omega}} \leqslant C N^{-\eta}\|\Phi\|_{2, \underline{\omega}}\|\chi\|_{2, \underline{\omega}} \tag{4.46}
\end{equation*}
$$

The desired estimate (4.34) then follows from (4.35), (4.36), (4.39) and (4.46).

The hypothesis (A.4) of Theorem A. 1 is checked through :
Lemma 4.4 : There exist monotonically increasing functions

$$
\begin{gather*}
C_{k}: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}, k \in \mathbb{N}, \quad \text { such that, for any } \quad(\lambda, \Phi) \in \mathbb{R} \times V_{N}: \\
\left\|F_{N}^{(k)}[\lambda, \Phi]\right\|_{\mathscr{L}\left(\left(\mathbb{R} \times V_{N}\right){ }^{k}, V_{N}\right)} \leqslant C_{k}\left(|\lambda|+\|\Phi\|_{2, \underline{\omega}}\right) . \tag{4.47}
\end{gather*}
$$

Proof : By using the expressions of the derivatives of F_{N} (see (4.29)-(4.32)) and the upper bound (see (3.33)) :

$$
\left\|\underline{P}_{N} f\right\|_{0, \underline{\omega}} \leqslant C\|f\|_{\rho, \underline{\omega}},
$$

we shall get (4.47) by the proof of the existence of a constant $C>0$, such that, for any $(\Phi, \chi) \in V_{N}^{2}$:

$$
\begin{equation*}
\left\|T_{N} B_{N}(\Phi, \chi)\right\|_{2, \underline{\omega}} \leqslant C\|\Phi\|_{2, \underline{\omega}}\|\chi\|_{2, \underline{\omega}} . \tag{4.48}
\end{equation*}
$$

vol. $21, n^{\circ} 1,1987$

First we have

$$
\begin{equation*}
\left\|T_{N} B_{N}(\Phi, \chi)\right\|_{2, \underline{\omega}} \leqslant\|T B(\Phi, \chi)\|_{2, \underline{\omega}}+\left\|T B(\Phi, \chi)-T_{N} B_{N}(\Phi, \chi)\right\|_{2, \underline{\omega}} . \tag{4.49}
\end{equation*}
$$

Since $\Pi_{N} \Phi=\Phi$ and $\Pi_{N} \chi=\chi$ we have, by (4.34):

$$
\begin{equation*}
\left\|T B(\Phi, \chi)-T_{N} B_{N}(\Phi, \chi)\right\|_{2, \underline{\omega}} \leqslant C N^{-\eta}\|\Phi\|_{2, \varrho}\|\chi\|_{2, \varrho} . \tag{4.50}
\end{equation*}
$$

Due to (3.29) and Theorem 3.1 we find :

$$
\begin{equation*}
\|T B(\Phi, \chi)\|_{2, \underline{\omega}} \leqslant C\|\Phi\|_{2, \omega}\|\chi\|_{2, \underline{\omega}}, \tag{4.51}
\end{equation*}
$$

so that (4.48) is a consequence of $(4.49)-(4.51)$.
Finally let us check the hypothesis (A.5) of Theorem A.1. We compute for $(\lambda, \Phi) \in \mathbb{R} \times V_{N}$,

$$
F^{(1)}\left[\lambda_{0}, \Psi_{0}\right](\lambda, \Phi)-F_{N}^{(1)}\left[\lambda_{0}, \Pi_{N} \Psi_{0}\right](\lambda, \Phi) \equiv A(\lambda, \Phi)
$$

Using the expression of derivatives of F and F_{N} (see (4.29)), we obtain :
$\left\{\begin{array}{l}A(\lambda, \Phi)=2\left[T\left(\lambda_{0} B\left(\Psi_{0}, \Phi\right)\right)-T_{N}\left(\lambda_{0} B_{N}\left(\Pi_{N} \Psi_{0}, \Pi_{N} \Phi\right)\right)\right]+ \\ +\left[T\left(\lambda\left(B\left(\Psi_{0}, \Psi_{0}\right)-f\right)\right)-T_{N}\left(\lambda\left(B_{N}\left(\Pi_{N} \Psi_{0}, \Pi_{N} \Psi_{0}\right)-\underline{P}_{N} f\right)\right)\right] .\end{array}\right.$
Note that :

$$
\begin{equation*}
\left\|T f-T_{N} \underline{P}_{N} f\right\|_{2, \underline{\omega}} \leqslant\left\|\left(T-T_{N}\right) f\right\|_{2, \underline{\omega}}+\left\|T_{N}\left(f-\underline{P}_{N} f\right)\right\|_{2, \underline{\omega}} . \tag{4.53}
\end{equation*}
$$

Since $f \in H_{\omega}^{\rho}(\Omega), \rho>1$ we deduce from (3.24) and (3.25) that $T f \in H^{3}(\Omega)$ which is included in $H_{\underline{\omega}}^{5 / 2}(\Omega)$; from the equality $T_{N}=\stackrel{\circ}{\Pi}_{N} \circ T$ we get :

$$
\begin{equation*}
\lim _{N \rightarrow+\infty}\left\|\left(T-T_{N}\right) f\right\|_{2, \underline{\omega}}=0 \tag{4.54}
\end{equation*}
$$

Using the continuity of $\stackrel{\circ}{\Pi}_{N}$ from V into V_{N}, of T from $L_{\underline{\omega}}^{2}(\Omega)$ into V we derive, using (2.12) :

$$
\begin{equation*}
\left\|T_{N}\left(f-\underline{P}_{N} f\right)\right\|_{2, \underline{\omega}} \leqslant C\left\|f-\underline{P}_{N} f\right\|_{0, \underline{\omega}} \leqslant C N^{-\mathfrak{p}}\|f\|_{\rho, \underline{\omega}}, \tag{4.55}
\end{equation*}
$$

hence :

$$
\begin{equation*}
\lim _{N \rightarrow+\infty}\left\|T f-T_{N} \underline{P}_{N} f\right\|_{2, \underline{\omega}}=0 \tag{4.56}
\end{equation*}
$$

Finally (A.5) is derived from (4.52)-(4.56), (4.20) and (4.34).

Now we have proved that F_{N} is an approximation of F verifying the hypothesis of Descloux-Rappaz [1], we can state the main result of this paper, consequence of Theorem A.1.

Theorem 4.1 :

i) There exist two positive constants γ and $\delta^{\prime} \leqslant \delta$ and, for $N \geqslant N_{0}$ large enough, a unique C^{∞} mapping $\Psi_{N}:\left[\lambda_{0}-\delta^{\prime}, \lambda_{0}+\delta^{\prime}\right] \rightarrow V_{N}$ such that, $F_{N}\left(\lambda, \Psi_{N}(\lambda)\right)=0$ and $\left\|\Psi_{N}(\lambda)-\Pi_{N} \Psi_{0}\right\|_{2, \underline{\omega}} \leqslant \gamma$ for any $\lambda \in\left[\lambda_{0}-\delta^{\prime}, \lambda_{0}+\delta^{\prime}\right]$.
ii) Moreover, if there exist a positive constant \mathbf{M} and a real $\sigma>2$ such that :

$$
\begin{equation*}
\forall \lambda \in\left[\lambda_{0}-\delta^{\prime}, \lambda_{0}+\delta^{\prime}\right], \quad\|f\|_{\sigma-2, \underline{\omega}}+\|\Psi(\lambda)\|_{\sigma, \underline{\omega}} \leqslant \mathbf{M} \tag{4.57}
\end{equation*}
$$

then, there exists a positive constant C, independent of N, such that :

$$
\begin{equation*}
\sup _{\left|\lambda-\lambda_{0}\right| \leqslant \delta^{\prime}}\left\|\Psi(\lambda)-\Psi_{N}(\lambda)\right\|_{2, \omega} \leqslant C N^{2-\sigma} \tag{4.58}
\end{equation*}
$$

Proof: The point i) is a direct consequence of Theorem A. 1. With regard to ii), we derive from Theorem A. 1 that there exists a positive constant C, such that, for any $\lambda \in\left[\lambda_{0}-\delta^{\prime}, \lambda_{0}+\delta^{\prime}\right]$:

$$
\left\|\Psi(\lambda)-\Psi_{N}(\lambda)\right\|_{2, \underline{\omega}} \leqslant C\left(\left\|\Psi(\lambda)-\Pi_{N} \Psi(\lambda)\right\|_{2 . \underline{\omega}}+\| F_{N}\left(\lambda, \Pi_{N} \Psi(\lambda) \|_{2, \underline{\omega}}\right)\right.
$$

From (4.20), we get immediately :

$$
\begin{equation*}
\left\|\Psi(\lambda)-\Pi_{N} \Psi(\lambda)\right\|_{2, \underline{\omega}} \leqslant C N^{2-\sigma}\|\Psi(\lambda)\|_{\sigma, \underline{\omega}} \tag{4.59}
\end{equation*}
$$

Besides, from the definitions of $\Psi(\lambda), F$ and F_{N} we obtain :

$$
\left\{\begin{array}{l}
\left\|F_{N}\left(\lambda, \Pi_{N} \Psi(\lambda)\right)\right\|_{2, \underline{\omega}} \leqslant\left\|F_{N}\left(\lambda, \Pi_{N} \Psi(\lambda)\right)-F(\lambda, \Psi(\lambda))\right\|_{2, \omega} \leqslant \\
\leqslant\left\|\left(I-\Pi_{N}\right) \Psi(\lambda)\right\|_{2, \underline{\omega}}+|\lambda|\left\|\left(T-T_{N}\right)[B(\Psi(\lambda), \Psi(\lambda))-f]\right\|_{2, \underline{\omega}}+ \\
+|\lambda|\left\|T_{N}\left[B(\Psi(\lambda), \Psi(\lambda))-B\left(\Pi_{N} \Psi(\lambda), \Pi_{N} \Psi(\lambda)\right)\right]\right\|_{2, \underline{\omega}}+ \\
\quad+|\lambda|\left\|T_{N}\left(B-B_{N}\right)\left(\Pi_{N} \Psi(\lambda), \Pi_{N} \Psi(\lambda)\right)\right\|_{2, \underline{\omega}}+|\lambda|\left\|T_{N}\left(f-\underline{P}_{N} f\right)\right\|_{2, \underline{\omega}} .
\end{array}\right.
$$

The first term on the right hand side of (4.60) is bounded thanks to (4.59). The second one is studied easily if we note that :

$$
T[B(\Psi(\lambda), \Psi(\lambda))-f]=-\frac{1}{\lambda} \Psi(\lambda)
$$

The third one uses the continuity of B (see (4.39)). The last one has been studied vol. $21, \mathrm{n}^{0} 1,1987$
in (4.55). Finally denoting $\Pi_{N} \Psi(\lambda)$ by $\bar{\Psi}(\lambda)$ we can prove that :

$$
\begin{equation*}
\left\|T_{N}\left(B-B_{N}\right)(\bar{\Psi}(\lambda), \bar{\Psi}(\lambda))\right\|_{2, \underline{\omega}} \leqslant C N^{2-\sigma}\|\Psi(\lambda)\|_{\sigma, \underline{\omega}}^{2} \tag{4.61}
\end{equation*}
$$

For this, we are led, as in (4.40), to study expressions as $I(\bar{\Psi}(\lambda), \bar{\Psi}(\lambda), \Xi)$ defined at (4.41) for $\Xi \in V_{N}$. Due to (4.43) we have :

$$
\left\{\begin{align*}
|I(\bar{\Psi}(\lambda), \bar{\Psi}(\lambda), \Xi)| \leqslant & C\|\Xi\|_{2 \cdot \underline{\omega}}\left[\left\|\left(I-\underline{P}_{N}\right)\left(\frac{\partial}{\partial x_{1}} \bar{\Psi}(\lambda) \frac{\partial}{\partial x_{2}} \bar{\Psi}(\lambda)\right)\right\|_{0, \underline{\omega}}+\right. \tag{4.62}\\
& \left.+\left\|\left(I-\Pi_{0, N-1}\right)\left(\frac{\partial}{\partial x_{1}} \bar{\Psi}(\lambda) \frac{\partial}{\partial x_{2}} \bar{\Psi}(\lambda)\right)\right\|_{0, \omega}\right],
\end{align*}\right.
$$

each term, on the right hand side of (4.62) are studied similarly by introducing $\frac{\partial}{\partial x_{1}} \Psi(\lambda) \frac{\partial}{\partial x_{2}} \Psi(\lambda)$.

$$
\left\{\begin{aligned}
& \|(I\left.-\underline{P}_{N}\right)\left(\frac{\partial}{\partial x_{1}} \bar{\Psi}(\lambda) \frac{\partial}{\partial x_{2}} \bar{\Psi}(\lambda)\right)\left\|_{0, \underline{\omega}} \leqslant\right\|\left(I-\underline{P}_{N}\right)\left(\frac{\partial}{\partial x_{1}} \bar{\Psi}(\lambda) \frac{\partial}{\partial x_{2}} \bar{\Psi}(\lambda)\right) \|_{0, \underline{\omega}} \\
& \quad+\left\|\left(I-P_{N}\right)\left(\frac{\partial}{\partial x_{1}} \bar{\Psi}(\lambda) \frac{\partial}{\partial x_{2}} \bar{\Psi}(\lambda)-\frac{\partial}{\partial x_{1}} \Psi(\lambda) \frac{\partial}{\partial x_{2}} \Psi(\lambda)\right)\right\|_{0, \underline{\omega}}
\end{aligned}\right.
$$

If we choose $\mu<\frac{7}{3}$ such that $2<\mu<\sigma$ we get from (2.12) and (2.4) :

$$
\begin{aligned}
& \left\|\left(I-\underline{P}_{N}\right)\left(\frac{\partial}{\partial x_{1}} \bar{\Psi}(\lambda) \frac{\partial}{\partial x_{2}} \bar{\Psi}(\lambda)-\frac{\partial}{\partial x_{1}} \Psi(\lambda) \frac{\partial}{\partial x_{2}} \Psi(\lambda)\right)\right\|_{0, \underline{\omega}} \leqslant \\
& \leqslant C N^{1-\mu}\left[\|\bar{\Psi}(\lambda)\|_{\mu, \underline{\omega}}\|(\Psi-\bar{\Psi})(\lambda)\|_{\mu, \omega}+\right. \\
& \\
& \left.\quad+\|\Psi(\lambda)\|_{\mu, \underline{\omega}}\|(\Psi-\bar{\Psi})(\lambda)\|_{\mu, \underline{\omega}}\right]
\end{aligned}
$$

Using now the following inequality :

$$
\|\bar{\Psi}(\lambda)-\Psi(\lambda)\|_{\mu, \underline{\omega}} \leqslant\left\|\bar{\Psi}(\lambda)-\Pi_{\mu, N} \Psi(\lambda)\right\|_{\mu, \underline{\omega}}+\left\|\Pi_{\mu, N} \Psi(\lambda)-\Psi(\lambda)\right\|_{\mu, \underline{\omega}}
$$

and the inverse inequality we derive after some calculation :

$$
\begin{gathered}
\left\|\left(I-\underline{P}_{N}\right)\left(\frac{\partial}{\partial x_{1}} \bar{\Psi}(\lambda) \frac{\partial}{\partial x_{2}} \bar{\Psi}(\lambda)-\frac{\partial}{\partial x_{1}} \Psi(\lambda) \frac{\partial}{\partial x_{2}} \Psi(\lambda)\right)\right\|_{0, \underline{\omega}} \leqslant \\
\leqslant C N^{2-\sigma}\|\Psi(\lambda)\|_{\sigma, \underline{\omega}}^{2} .
\end{gathered}
$$

The last term in the right hand side of (4.63) is bounded by the same quantity so that (4.58) is proved since $\|\Psi(\lambda)\|_{\sigma, \underline{\omega}}$ can be bounded independently of λ due to the compactness of Λ.

APPENDIX

Theorem A.1: Let V be a Banach space over \mathbb{R} and $F: \mathbb{R} \times V \rightarrow V$. We assume that :

- $F: \mathbb{R} \times V \rightarrow V$ is a C^{p} mapping with $p \geqslant 2$,
- $\left(\lambda_{0}, \Psi_{0}\right) \in \mathbb{R} \times V$ verifies $F\left(\lambda_{0}, \Psi_{0}\right)=0$ and $\left(\lambda_{0}, \Psi_{0}\right)$ is a regular point i.e. $D_{\Phi} F\left(\lambda_{0}, \Psi_{0}\right)$ is an homeomorphism from V onto V.

Then there exist positive numbers $\bar{\lambda}_{0}, \alpha$ and a map :

$$
\Psi: \lambda \in] \lambda_{0}-\bar{\lambda}_{0}, \lambda_{0}+\bar{\lambda}_{0}[\rightarrow \Psi(\lambda) \in V
$$

satisfying the condition :

$$
\left.F(\lambda, \Psi(\lambda))=0 \quad \text { and } \quad\left\|\Psi(\lambda)-\Psi_{0}\right\|_{V} \leqslant \alpha, \quad \forall \lambda \in\right] \lambda_{0}-\bar{\lambda}_{0}, \bar{\lambda}_{0}+\bar{\lambda}_{0}[
$$

Furthermore Ψ is of class C^{p}.
In order to approximate the branch $\{\Psi(\lambda), \lambda \in] \lambda_{0}-\bar{\lambda}_{0}, \lambda_{0}+\bar{\lambda}_{0}[\}$ we introduce a family of finite dimensional subspaces of V, denoted by $V_{N}, N \in \mathbb{N}$ and a family of mappings $F_{N}: \mathbb{R} \times V_{N} \rightarrow V_{N}$ which shall approximate F.

We assume that :

$$
\begin{equation*}
F_{N}: \mathbb{R} \times V_{N} \rightarrow V_{N} \text { are } C^{p} \text { mappings . } \tag{A.1}
\end{equation*}
$$

We are interested in solving the equation $F_{N}\left(\lambda, \Psi_{N}\right)=0$ in a neighbourhood of the branch $\{\Psi(\lambda), \lambda \in] \lambda_{0}-\bar{\lambda}_{0}, \lambda_{0}+\bar{\lambda}_{0}[\}$.

We suppose that the following hypotheses are satisfied:
(i) For any N, there exists a projection operator $\mathscr{P}_{N}: V \rightarrow V_{N}$:

$$
\begin{equation*}
\lim _{N \rightarrow+\infty}\left\|\Phi-\mathscr{P}_{N} \Phi\right\|_{V}=0, \quad \forall \Phi \in V \tag{A.2}
\end{equation*}
$$

(ii) for any $0 \leqslant k \leqslant p-1$ and any fixed $(\lambda, \Phi),\left(\lambda_{1}, \Phi_{1}\right), \ldots,\left(\lambda_{k}, \Phi_{k}\right)$ in $\mathbb{R} \times V$, we have :

$$
\begin{align*}
\lim _{N \rightarrow \infty} \| F^{(k)}(\lambda, \Phi)\left(\lambda_{1},\right. & \left.\Phi_{1}, \lambda_{2}, \Phi_{2}, \ldots, \lambda_{k}, \Phi_{k}\right) \\
& \quad-F_{N}^{(k)}\left(\lambda, \mathscr{P}_{N} \Phi\right)\left(\lambda_{1}, \mathscr{P}_{N} \Phi_{1}, \ldots, \lambda_{k}, \mathscr{P}_{N} \Phi_{k}\right) \|_{V}=0 \tag{A.3}
\end{align*}
$$

(iii) there exist positive constants $\eta, C_{1}, \ldots, C_{p}$ such that $\forall N \in \mathbb{N}$,

$$
\begin{gather*}
\forall k \in\{1, \ldots, p\}, \forall(\lambda, \Phi) \in \mathbb{R} \times V_{N} \text { with }\left(\left|\lambda-\lambda_{0}\right|+\left\|\Phi-\mathscr{P}_{N} \Phi\right\|_{V}\right) \leqslant \eta, \\
\left\|F_{N}^{(k)}(\lambda, \Phi)\right\|_{\mathscr{L}\left(\left(\mathbb{R} \times V_{N}\right)^{k}, V_{N}\right)} \leqslant C_{k} . \tag{A.4}
\end{gather*}
$$

(iv)

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \operatorname{Sup}_{\substack{(\lambda, \Phi) \in \mathbb{R} \times V_{N} \\ \lambda \mid+\|\Phi\| \\ V=1}}\left\|F^{(1)}\left(\lambda_{0}, \Phi_{0}\right)(\lambda, \Phi)-F^{(1)}\left(\lambda_{0}, \mathscr{P}_{N} \Phi_{0}\right)(\lambda, \Phi)\right\|_{V}=0 . \tag{A.5}
\end{equation*}
$$

Then there exist $N_{0} \in N^{*}$, positive constants $\bar{\lambda}_{0}, \alpha^{\prime}, \beta$ and for $N \geqslant N_{0}$, a unique mapping $\left.\Psi_{N}: \lambda \in\right] \lambda_{0}-\bar{\lambda}_{0}^{\prime}, \lambda_{0}+\bar{\lambda}_{0}^{\prime}\left[\rightarrow \Psi_{N}(\lambda) \in V_{N}\right.$ satisfying the conditions : $\forall \lambda \in] \lambda_{0}-\bar{\lambda}_{0}^{\prime}, \lambda_{0}+\bar{\lambda}_{0}^{\prime}\left[, \quad F_{N}\left(\lambda, \Psi_{N}(\lambda)\right)=0 \quad\right.$ and $\left\|\Psi_{N}(\lambda)-\mathscr{P}_{N} \Psi_{0}\right\|_{V} \leqslant \alpha^{\prime}$ Ψ_{N} is of class C^{p} with bounded derivatives uniformly with respect to λ and N.

Furthermore, $\bar{\lambda}_{0}^{\prime} \leqslant \bar{\lambda}_{0}$ and we have :

$$
\begin{array}{r}
\left\|\psi(\lambda)-\psi_{N}(\lambda)\right\|_{V} \leqslant \beta\left(\left\|F_{N}\left(\lambda, \mathscr{P}_{N} \psi(\lambda)\right)\right\|_{V}+\left\|\psi(\lambda)-\mathscr{P}_{N} \psi(\lambda)\right\|_{V}\right) \\
\forall \lambda \in] \lambda_{0}-\bar{\lambda}_{0}^{\prime}, \lambda_{0}+\bar{\lambda}_{0}^{\prime}[
\end{array}
$$

REFERENCES

R. A., Adams, [1] Sobolev spaces; Academic Press (New York, San Francisco, London) 1975.
C. Basdevant, [1] Le modèle de simulation numérique de turbulence bidimensionnelle du L.M.D. ; Note interne du L.M.D. ${ }^{0} 114$ (juin 1982).
J. Bergh, J. Lofstrom, [1] Interpolation spaces - an introduction; Springer-Verlag (Berlin, Heidelberg, New York) 1976.
C. Bernardi, C. Canuto, Y. Maday, [1] Generalized inf.-sup. condition for Chebyshev approximation of the Navier-Stokes equations ; ICASE report 1986-63.
C. Bernardi, Y. Maday, B. Métivet, [1] Spectral approximation of periodic/non periodic Navier-Stokes equations; to appear, in Numer. Math.
[2] Calcul de la pression dans la résolution spectrale du problème de Stokes. A paraître dans la «Recherche aérospatiale», 1986.
C. Bernardi, G. Raugel, [1] Méthodes d'éléments finis mixtes pour les équations de Stokes et de Navier-Stokes dans un polygone convexe ; Calcolo 18-3(1981).
C. Canuto, Y. Maday, A. Quarteroni, [1] Combined finite element and spectral approximation of the Navier-Stokes equations ; Numer. Math. 44, 201-217 (1984).
C. Canuto, A. Quarteroni, [1] Approximation Results for Orthogonal Polynomials in Sobolev Spaces, Math. of Comp. 38, (1981), 67-86.
J. Descloux, J. Rappaz, [1] On numerical approximation of solution branches of non linear equations ; R.A.I.R.O. Numer. Anal. 16-4, 319-350 (1982).
M. Deville, L. Kleiser, F. Montigny, [1] Pressure and time treatment of a Stokes problem, Int. Journal for Num. Methods in Fluids, 1984.
V. Girault, P. A. Raviart, [1] Finite Element Approximation of the Navier-Stokes equations. Theorie and Algorithms; Springer-Verlag (1986). New York (1979).
D. Gottlieb, S. A. Orszag, [1] Numerical analysis of spectral methods: Theory and applications ; CBMS - NS F Regional Conference Series in Applied Mathematics, SIAM, Philadelphia, 1977.
P. Grisvard, [1] Espaces intermédiaires entre espaces de Sobolev avec Poids; Ann. Scuola Norm. Sup. Pisa, 17, 1963.
L. Kleiser, U. Schumann, [1] Treatment of Incompressibility and Boundary Conditions in 3-D Numerical Spectral Simulations of Plane Channel Flows, proceedings of the Third GAMM Conference on Numerical Methods in Fluid Mechanics, Viewig-Verlag, Braunschweig (1980), 165-173.
P. Le Quere, T. Alziary de Roquefort, [1] Sur une méthode spectrale semi implicite pour la résolution des équations de Navier-Stokes d'un écoulement bidimensionnel visqueux incompressible ; C.R. Acad. Sc. Paris, 294 (3 mai 1982), Série II, p. 941944.
J. L. Lions, [1] Quelques méthodes de résolution de problèmes aux limites non linéaires, Dunod, 1969.
Y. Maday, [1] Analysis of spectral operators in one dimensional domain; ICASE report 1985, 17.
[2] Some spectral methods concerning a 4th order 1-D problem ; to appear.
[3] Pseudo-spectral operators in multi-dimensional domains-application to NavierStokes problem; to appear.
Y. Maday, B. Métivet, [1] Estimations d'erreur pour l'approximation des équations de Stokes par une méthode spectrale ; la «Recherche aérospatiale», 4, (1983), p. 237 à 244.
Y. Maday, A. Quarteroni, [1] Spectral and pseudo-spectral approximations of NavierStokes equations ; S.I.A.M. J. Numer. Anal. 19 (1982).
[2] Legendre and Chebyshev spectral approximation of Burger's equations ; Numer. Math., 37 (1981).
[3] Approximation of Burger's equations by pseudo-spectral methods; R.A.I.R.O. An. Num. 16-4 (1982).
M. R. Malik, T. A. Zang, M. Y. Hussaini, [1] A spectral collocation method for the Navier-Stokes equations, «ICASE Report» n ${ }^{0}$ 84-19.
B. Métivet, [1] Résolution des équations de Navier-Stokes par méthodes spectrales. Thèse, Université P. \& M. Curie (1987).
B. Métivet, Y. Morchoisne, [1] Multy domain spectral technique for viscous flow calculations. «ONERA» T. P. n° 1981-134.
Y. Morchoisne, [1] Résolution des équations de Navier-Stokes par méthode pseudospectrale en espace-temps; la «Recherche Aérospatiale» 5, (1979), pp. 293-306.
R. D. Moser, P. Moin, A. Leonard, [1] A spectral numerical method for the NavierStokes equations with application to Tavlor Couette flow ; JCP - 52 (1983), pp. 524544.
S. A. Orszag, [1] Spectral methods for problems in complex geometries ; J.C.P. 37 (1980), pp. $70-92$.
S. A. Orszag, M. Israeli, M. Deville, [1] Boundary Conditions for Incompressible Flows; to appear.
S. A. Orszag, A. T. Patera, [1] Secondary instability of wall-bounded shear flows; J. Fluid Mech., 128 (1983).
R. Voigt, D. Gottlieb, M. Y. Hussaini, [1] Proc. of Symposium on Spectral methods for Partial Differential Equations, SIAM Philadelphia (1984).
vol. $21, \mathrm{n}^{0} 1,1987$

[^0]: (${ }^{1}$) Unıversité de Parıs XII, Laboratorre d'Analyse Numénque de l'Unıversité P et M Curie, Tour 55/65, 5 e Et , 4, Place Jussieu, 75252 Paris Cedex 05 (France) et Consultant ONERA
 $\left({ }^{2}\right)$ Travall effectué à l'ONERA, 29, Avenue de la Division Leclerc 92320 Châtıllon (France). Adresse actuelle EDF/DER/IMA/MMN, 1, Avenue du Général de Gaulle, 92141 Clamart (France)
 M^{2} AN Modélisatıon mathématıque et Analyse numérıque 0399-0516/87/01/93/31/\$5 10
 Mathematical Modelling and Numerical Analysis
 (C) ArCET Gauther-Villars

