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MODÉLISATION MATHÉMATIQUE ET AHA1ÏSE NUMÉRIQUE

(Vol 21, n° 1, 1987, p 63 à 92)

SHAPE OPTIMIZATION IN TWO-DIMENSIONAL ELASTICITY
BY THE DUAL FINITE ELEMENT METHOD (*)

I. HLAVAÖEK O

Commumcated by P G CIARLET

Resumé — On considère deux problèmes de mimmisation de fonction coût par rapport à la partie
de la frontière, où un corps élastique est fixé Le critère correspond à (î) la fonction de Mises ou
Tresca, (n) une norme des forces de réaction sur la partie inconnue de la frontière Le problème élasto-
statique e±t résolu par le principe de CaMgliano et par des élémentsfinis équilibre On démontre l'exis-
tence d'une frontière optimale et la convergence des approximations dans un certain sens

Abstract — Twoproblems of mimmization of a cost functional with respect to apart of the boun-
dary, where the elastic body is jïxea\ are considered The cntenon corresponds with (î) von Mises
or Tresca yield functwn, (n) a norm of reaction forces on the unknown part of the boundary The
elastostatic problem is solved by means of Castigliano principle and equihbnum finite element model
The existence of an optimal boundary andsome convergence results are proven

INTRODUCTION

If a part of the boundary of a two-dimensional elastic body is to be deter-
mined in such a way that a cost functional of stresses attains its minimum,
one can employ the principle of Castigliano (minimum of complementary
energy). Thus the approximate cost functional is evaluated directly by means
of a piecewise hnear stress field, if e.g. the equilibrium finite element model
of Watwood and Hartz [12] is used We consider the case, when zero displace-
ments are prescribed on the part of the boundary, which plays the rôle of the
design variable.

(*) Received on April 1985, revised on November 1985
C) Mathemaücal Institute of the Czechoslovak Academy of Sciences, Zitnâ 25, 115 67 Praha 1,

Czechoslovakia
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64 I. HLAVÂCEK

A convergence of approximations will be studied for two optimization pro-
blems, the cost functional of which represents :

(i) a generalization of the well-known Mises or Tresca criterion,
(ii) a suitable norm of the reaction forces on the unknown part of the boun-

dary.

In Section 1 we formulate the two optimization problems. Section 2 contains
an equivalent reformulation of the state problem in terms of stresses. We prove
the existence of an optimal solution in Section 3. Finite element approximations
of the dual state problem are introduced in Section 4 and a continuo us depen-
dence of the approximate stress functions on the approximate control is proved
In Sections 5 and 6 we prove that a subsequence of approximate controls exists,
which converges to an optimal control function of the first and second optimi-
zation problem, respectively.

1. FORMULATION OF THE OPTIMIZATION PROBLEMS

First let us recall the basic relations of linear two-dimensional elastostatics
and defîne a mixed boundary value problem.

Let a body occupy a bounded domain Q <= R 2 with a Lipschitz boundary
<X2. Assume that

ÔQ = T uf,, rnr , = 0,

each of the parts F and Tg being open in ÔLÏ.
Henceforth Hk(Q) dénotes the Sobolev space W£k)(Q), k = 0,1, ...,(H° = L2\

with the norm ]| . ||fcn and the inner product (., .)kÇï. For vector and tensor
functions, the Euclidean norm is used with the same symbol for norms and
inner products, respectively. We also use the summation convention : a repeated
Latin index implies summation over the range 1, 2. The « dot product » of
two vectors ue R2, v e R2 is defmed as follows : u.v = ut vt.

We introducé the subspace of virtual displacements

= { u e [H\Q)Y : yu = 0 on F }, (1)

where y dénotes the trace operator, strain-displacement relations

etjiu) = \{duijdxj + dUj/dXi), (2)

stress-strain relations

°ij = Cijkm Chm y (3)
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SHAPE OPTIMIZATION IN TWO-DIMENSIONAL ELASTICITY 65

where
Cijkm E L^ifl) , Cijkm = Ckmij = Cjikm , (4)

Cijkm hj hm ^ ^0 hj *ij (5)

holds for aimost all x e Q, all symmetrie 2 x 2 matrices and some positive

constant c0.

We define the following bilinear form

a(y, w) = [ ciJkm ei}{y) ekm(w) dx Vy,we [ ^ ( O ) ] 2 (6)

and the functional

f f (7)= f F.wdx+ f P.ywds Vwe [ i / '

where F e [L2(Q)]2 and P e [L2(r f f)]2 are given body and surface forces, res-
pectively.

A fonction y e V(Q) will be called a weak solution of the primai state problern,
if

a(y, W) = ^(w) Vw e V(fï). (8)

Using (5) and the Korn's ineqnniily (MT V L' [I U), 111111 rnn proyf thf existence
and uniqueness of the weak solution.

From (4), (5) we deduce that an inverse matrix b exists such that

where bijkm e L°°(Q) satisfy the same symmetry and uniform positive defini-
teness conditions as cijkm do. Consequently, the bilinear form

Ja
= bijkm °ij

represents an inner product in the space of symmetrie stress tensors

S(Q) = { a = (CT^fj,! e[L2(Qfl*, a12 = o2 1 }

and the associated norm || a ||B n = (a, a)^n is equivalent with the norm in
[L2(Q)]4. Note that a(y, w) = \a(y), a{w))Bja.

vol. 21, n" 1, 1987



66 I. HLAVAÖEK

We shall consider a class of domains Q = Q(u) cz i?2 (see fig. 1), where

O ( ) = { (xu x2) : 0 < Xl < v{x2\ 0 < x2 < 1 } ,

v e <%ad = i v e C(0)tl([0, 1]) (Le. Lipschitz fonctions),

0 < a ^ i; S P, I dv/dx2 | ^ Ci a.e, v dx2 = C2 l
Jo *

with given constants a, (3, Cl9 C2. _
For any v e %aài the graph T(v) of y wiil coincide with the part F of the boun-

dary, where the body is fixed.
The function v e %ad has to be determined from one of the following two

optimization problems

= m i n (9)

over the set of v e %d, i = 1,2.
Hère y(v) is the weak solution of the primai state problem (8) on the domain

JQ(V)

Figure 1.
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SHAPE OPTIMIZATION IN TWO-DIMENSIONAL ELASTICITY 67

ƒ- are the stress tensor invariants

h = a l l + a22 > h = V\l ~ a i l CT22 ,

ai} = a£j(ƒ(«)) are related to y(v) by means of (3) and (2), where Q = Q(v\

f(Iu I2) = a r l\ + a2 /2 , Ö1S a2 e i?.

Setting öfx = 1, a2 = 3, we obtain a correspondence with the Mises criterion;
the choice a1 — 1, a2 = 4 corresponds to the Tresca's criterion (see e.g. [2],
chap. 4).

The second cost functional should express a minimization of reaction forces
on the unknown part T(v). The reaction forces belong to the surface tractions,
so that we have first of all to establish a suitable définition of surface tractions
on a part Fo c <3ft, extending the well-known formula

which is valid for smooth stress tensor components otj and the unit outward
normal v to Fo.

DÉFINITION 1 . 1 : Let Fo <= dQ, be a subset of positive length. We introducé
a subspace of " complementary " test functions

Fc(r0 , Q) = { w e [HX(Q)Y : yw = 0 on d£l - To } .

'Dénote fut u, i re [/T^O)]2 -

[w, w]n = (eo<M), e i /w)) o n + (u, w)Oin

H1/2(r0) -

We introducé the following norm of <p G H1 / 2(ro)

119 111/2X0= i ï l f !" U Hl « ( 1 0 )
ueKc(r0,fi)

T/ie 5/?ace of linear continuous functionals on H1 / 2(ro) will be denoted by

H-1/2(r0).
For a subset of S(Û) we introducé the operator div (in the sensé of distribu-

tions) as follows, We say that a G S(fi) belongs to the subspace i/(div, £2), if a
fonction \|/ e [L2(Q)]2 exists such that

(o, e(w))Ota = - (i|r, w)0fO Vw G [CO°°(Q)]
 2 . (11)

voL21,n° 1, 1987



68 i. HLAVÂCEK

Then we set

\|/ = div a .

For a smooth enough, we have

div a = (d<Jlj/dxjida2k/dxk) .

For a G if (div, Q) the " norm of graph " is introduced

II <T llH(div,n) = (II v llo.n + l | d i v a | ! 0 V / 2 -

A Green's formula holds for any x e //(div, Q) and w e VC(TO, Q) (see e.g. [1]).
Namely, there exists a unique mapping

such that

(t, e(w))o,n + (div x, w)0>a = < Tro(x), yw >H -1/2(Fo)) Hl/2(Fo). (12)

If T e [ / / ' (Q)] 4 , x12 = x21î then

and < ., . > coïncides with the scalar product in [L 2 ( r o ) ] 2 .

1.1 : T r o maps //(div, Q) onto H " 1 /2(F0).

Proof : Let a g s M ~ 1 /2(F0) be given. Then the problem : find u e Vc(TOi Q)
such that

.[U,w] a = <flf,yw> VweF c (F 0 5 Q) (13)

has precisely one solution u — u(g) (cf. e.g. [11]). It is easy to see that
a = e(u(g)) e //(div, Q). By comparison of (11) and (13) we obtain g = Tro(o).

Q.RD.
Let us recall the standard norm in H ~ 1/2(F0) :

*P Hi/2,ro

LEMMA 1.2 : For any g e H " 1 / 2 ( r o ) it holds

\\9 l l - i / 2 , ro= lll«(#)| | |n-

where u(g) is the solution of the problem (13).
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SHAPE OPTIMIZATION IN TWO-DIMENSIONAL ELASTICITY 69

Proof : Let a = e{u(g)\ Then TTQ(O) = g and for every zeU 1 / 2 (T 0 ) we have

by the formula (12)

< g, z > = < T r o ( a ) , z > = (a, e(w))OiQ + (div a , w) O Î Î

Vw e F c ( r 0 , Q), yw = z.

Hence we may write

< g, z > è l l f l c d w » III w Ulo yw = z,

so that

9 11-1/2X0 = II G llH(div.n)

holds by virtue of (10) and (14).
Obviously, we have

II a llff(div,n) =

Inserting w = u in(13) andusing(16), (10), we obtain

< 9, yu(g) > = Hl u(g) l a = || a \\H(div>a) ||| M ( 0 ) |||n

^ II ^ llH(div41) \\J<9) lllZ2.ro •

Hence

(15)

(16)

-iZ2.ro ^ llH(div,a)-

Combining this result with (15), (16), the assertion follows. Q.E.D.
From (6), (7), (8) and (11) we conclude that the stress tensor o(y) (calculated

from the solution y of (8) on the basis of the relations (3) and (2)) belongs to
#(div,Q), diva(j) = - F. The functional Tro(a(y)) e (HT1/2(ro) is defined
for any part Fo c 5Q of positive length and Lemma 1.2 enables us to calculate
the norm of TrQ(o(y)).

If we choose S2(
a(>')) to be the norm of Tr(a(y)\ where T = T(v), the

" values of surface tractions at the end-points of F(v) " would not be taken into
account. This fact would be more apparent if we introducé the fmite element
approximations (cf Sections 4 and 6). To remove this deficiency, we choose To

to be an extension of T(v\ i.e.

vol. 21, n° 1, 1987



70 I. HLAVÂCEK

Obviously, Fo dépends on the control variable v. For simplicity, ho wever, the
set

ÔQ(v) - I » = I \

will be chosen independent ofv.
Then we set

In the next Section, we shall employ Lemma 1.2 to the évaluation of the second
cost functional.

2. DUAL VARIATIONAL FORMULATION OF THE STATE PROBLEM

Since both the cost functionals are expressed in terms of the stress tensor
a(y) and not of the displacement vector y, it seems to be advantageous to
employ a suitable dual variational formulation. Thus the stress tensor can be
calculated directly on the basis of the principle of minimum complementary
energy (Castigliano-Menabrea, see e.g. [11], [5]). To this end we introducé the
space of selfequilibriated tensor functions

Q0(fl) - { T e i7(div, O) : div x = 0 in Q , TTg(x) = 0 } .

Using the Green's formula (12), we find that

Ö0(Q) = { x e S(Q) : (x, e(w))0>n = 0 Vw € V(fï) } .

Assume that a particular tensor field a° e S(fl) is available such that

« (17)

For the construction of cr°-see Remark 4.1 in Section 4.
Then a suitable dual formulation of the state problem is : find a e Q0(Q)

such that

(18)

where

5 , . (19)
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SHAPE OPTIMIZATÏON IN TWODIMENSIONAL ELASTICITY 71

One easily obtains an equivalent formulation, which yields the following

Dual state problems : Find a € ôo(^) s u c n t n a t

to TW = ~ « *Vn v* e Qo(«) • (20)

There exists a unique solution a of (20) and

a0 + o = a(j>) (21)

hol ds, where j is the solution of the primai problem (8).
The first cost functional is expressed directly by means of the stress tensor

o{y\ so that we may write

To simplify the second cost functional, in accordance with Lemma 1.2 we
introducé the following auxiliary problem : find u e Vc(ro, O) such that

[u, w]Q = (o° + a, e(w))OiQ - (F, w)oxt Vw e VC(TO, Q). (22)

In fact, we have

< TTo(a(y)\ yw > = {a{y\ e{w))0^ - (F, w)o n , (23)

where the formula (12) has been used together with the relation

div o(y) = - F in Q . (24)

Then substituting from (21) leads to the right-hand side of (22). Note that the
problem (22) has a unique solution u = u(a(y)). Making use of Lemma 1.2,
we may write

Uy(P)) = f T r o (a ( j<»)) ) | |2-1/2,ro = III «C<*0<»))) Hint»

= (a° + a(»X e(u(v)))0Wv) - (F, u(v))0Mv)

= V2Wv\ «(»)), (25)

where o(v) and u(v) is the solution of (20) and (22) on the domain Q(v\ respec-
tively.

Hence we are led to the optimization problems

7ii(o(v)) = min , (26)

3r5(a(ü), u(v)) = min (27)

over the set of v e *„,. (Here we set ï*(a° + a(ü)) = 3ï(a(ü)).)

vol 21, n° 1, 1987



72 I. HLAVÂCEK

Assume that the body forces Ft are constant everywhere, being représentée!
by the gravitational forces only. Moreover, denoting

1*5= (0,8) x ( 0 , l ) ,

where 8 > (3, 5 = Cte, F s = {(xl9 x2) : xx = 8, 0 < x2 < 1 }, assume that
the prescribed surface loading P is defined on the whole âQ5 — F6 and P is
pieeewise linear, being independent of v.

Finally, assume that a constant b0 > 0 exists such that

bijkm hj hm £ b0 tiS tis (28)

holds for almost ail x e Q5 and all symmetrie (2 x 2) matrices r, bijkm e L°°(Q&).

3. EXISTENCE OF AN OPTIMAL BOUNDARY

We shall prove that at least one solution of the optimization problem (26)
or (27) exists. The proof will be based (i) on the compaetness of the set %ad

and (ii) on the continuity of the cost functionals with respect to the control
fonction v. To prove (ii), we fîrst verify the continuity of the solution a of the
dual state problem (Proposition 1) and then the continuity of the solution u of
the auxiliary problem (Proposition 2).

PROPOSITION 1 : Let a séquence { vn }, vn e %d, converge to a function v in
C([0, 1]). Then

a O g - > &(i>) in [L2(Q5)]4 for n -> oo ,

where à(vn) is the solution of (20) on £î(vn\ extended by zero to Q6 — Q(vn)
andà(v) is the solution of (20) on Çl(v)9 extended by zero toQb - Q(v),

Proof :

1° Henceforth we shall dénote

o(vn) = a n , Q(vn) =QnJ Q(v) - Q .

It follows from (20) and (28)

Thus we obtain

llo,n„ ^ II °n llB,n„ ^ II ° I I M .
M2 AN Modélisation mathématique et Analyse numérique
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SHAPE OPTIMIZATION IN TWO-DIMENSIONAL ELASTICITY 73

and

II » . llo,n5 = II °n llo,n„ ^ C V/i. (29)

Therefore a function a e [L2(fi5)]4 and a subsequence of { ön } (which will be
denoted by the same symbol) exist such that

àn^à (weakly) in [L2(fiô)]4 . (30)

2° We can show that

(31)

In fact, let us consider an arbitrary w e V(Q) and dénote its extension to Q s by
means of zero by w. A séquence { wK }, K -> 0, exists such that

w K e [C œ (Q 6 ) ] 2 , wK = 0 on Q5 - fi,

supp wK n r(ü) = 0 ,

wK-+w in [ ^ H ^ Ô ) ] 2 - (32)

There exists a «0(K) such that wK vanishes on T(vn) for n > HO(K\ SO that
wK | ö i i G F(QJ for n > /IO(K).

Since a„ e Q0(f2n), we have

K> KwJ)o,nB = 0 .

Using (30), we obtain for n -> oo

0 = (a„, e(vwK))0)ng ^ (a, e(wK))Ojn5.

Passing to the limit with K -> 0 and using (32), we arrive at

Consequently, (31) holds.

3° Next we show that

G = 0 a.e. in Q s - Q . (33)

In fact, let a 7e 0 on a set E c Q5 - Q, mes £ > 0. Let %E be the characteristic
function of the set E We deduce from (30) that

(°n> XE 9)o.né "• ( ^ X£ S) II II U °

vol. 21, n° 1, 1987



74 I. HLAVÂCEK

On the other hand, we may write

è II *B llo,n8 II » llo.£na. - 0

by virtue of (29) and of the fact that

mes (E n Q„) -• 0 .

Thus we corne to a contradiction.

4° Let us show that the restriction of ö to Q solves the dual problem (20) on Q.
Let us consider a x e öo(P)- From Theo rem 4.3 of the paper [4] and from its

proof we deduce that a séquence { xK }, K -> 0, exists such that

(34)

supp TK n (aQ - r(i>)) = 0 , (36)

II T " " T IIO.Q -> 0 for K ^ O . (37)

In fact, we may fîrst extend x to a x e Q0(Q5), where

6o(^s) = { T e S(QS) : div t = 0 in Q8, 7Fg(x) = 0 } ,

where

and then apply the proof of Theorem 4.3 (Case I).
From (36) we easily deduce that

Vrc^«0(K). (38)

By définition, we have

K>*KVnn= - ( ° ° ; ^ K W (39)

From the weak convergence (30) and (33) we conclude that

( a * tK)BtQs -* (a , xK)B(üs = (a, x K ) B n .

Consequently,

K , T K ) B , n „ - ( c r , T K ) B , n - (40)

M2 AN Modélisation mathématique et Analyse numérique
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SHAPE OPTÏMIZATION IN TWO-DIMENSIONAL ELASTICITY 75

On the other hand, we obviously have

(°V^n„-(<^)BiQ.

Combining this with (39), (40), we obtain

Passing to the limit with K -• 0 and using (37), we are led to the équation (20).
Since the solution of (20) is unique,

s In = <y(v)

follows and the weak convergence (30) holds for the whole séquence { àn}.

5° To prove the strong convergence, we first deduce from (30), (20) and (33)
that

»)B.n = II » |||,Q = II O

Combining the weak convergence with the convergence of norms, we obtain
the strong convergence

II àn - à \\BtÇih -> 0 .

Since the norms || . ||0tQ& and || . ||B n § are equivalent, the assertion of the Pro-
position 1 follows. Q.E.D.

PROPOSITION 2 : Let a séquence { vn}, vn e <Wad, converge to a function v in

the right-hand side.
Then

u(vn) - u(v) (weakly) in [ # ' ( G J ] 2 Vm,

' m is a positive integer and

Gm = {(xu x2) • 0 < x1 < v(x2) — 1/m, 0 < x2 < 1 } ,

u(v) is the solution of (22) on Si(v).

Proof :

1° Dénote Q(v) = Q, w(ytt) = w„, a(ün) = an in what follows. Inserting
w = un in (22) and using (29), we obtain

I K III a. ^ II a ° + a n llo.a. Il *«O Ho.0. + II f 110,0. Il «» II 0.0. ^

vol. 21 , rf> 1, 1987



76 I. HLAVÂCEK

Consequently,

Let us consider a fixed domain Gm. There exists n0 (m) such that

Gm c Qn V/i > no(m).

Then

III «„ lllGm ^ III wn Illa, ^ C VK > no(m). (41)

Consequently, a subsequence { wBl } exists such that

uni - « w (weakly) in [ / ^ ( G J ] 2 , ^ -> oo , (42)

For Gm+1 we obtain a similar assertion, if we choose a proper subsequence
{ un2 } of the séquence { uni }, converging to u(m+1\ etc. Let us consider the
diagonal subsequence { unD } of ail subsequences { uni }, { uni },...

We can prove that a function ue [/f1(Q)]2 exists such that

" n D - " k , (weakly) in {H\Gm)f (43)

holds for any m if nD -> oo.
First we show that

«<"•-*> |Gm = uim) a.e. in Gm (44)

for any positive integer k. In fact, let us dénote

u(m+k) \Gm - u(m) = \|/

and let \|/ be an extension of \|/ by zero to Gm+k — Gm. Consider the équation

and pass to the limit with nD -» oo on both sides. Then (42) implies

so that

and (44) is proved.
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SHAPE OPTIMIZATÏON IN TWO-DIMENSIONAL ELASTICITY 77

Consequently, we may define

u \Gm = u{m) V m . (45)

Since any closed convex set in [ / / ' ( G J ] 2 is weakly dosed, (41) and (42) imply

||| w(m) |||Gm ^ C Vm, (46)

so that

III u |||â = H m Hl «<"> Hm ^ C

follows from (45) and (46). Hence u defined by (45) belongs to [ t f ^ Q ) ] 2 and
(43) holds.

2° Let us show that u — u(o{v% ie. u is a solution of the problem (22).
Let a weVc(T0, Q) be given. There exists a séquence {n>K}, K -> O,
wKe[Ccc(n6)']

2 such that

x n supp wK = 0 {Tx = ean - rOn, rOn = extension of T(vn)) (47)
2 (48)

From (47) we deduce that wK \Qn e Vc(TOn3 Qn\ for all n, K.
Substituting into (22), we obtain

[«w ^JnMD = (o° + anz)5 e(wK))0)Q^ - (F, w j o ^ • (49)

Leï K be fixed For the Urne "befng. Tbr simpïïaly, we sEUl wfîle n mstead of
nD in what follows. We have

Jn„ - [«, wJGm | ^ | [«„ - M» wJGm | H- | [MB, v^K]nri_Gw | = Ix + 72 •

From (43) we obtain / r -> O for any fixed m and n ^ oo. From (41) we deduce
that

holds for n > no(m). Therefore, we may write

I [««» WJ Q B - [u, w j n | ^ | [u„, w j ^ - [M, wK]Gm | + | [«, wJ n_G m | S

S h + C | | W K | | 1 A I _ G M + C | | i ^ K | | l i n _ G w

and conclude that

k » wJn„ ^ [«» w j n for « -• oo . (50)

vol. 21, n° 1, 1987



78 I. HLAVAÖEK

Furthermore, we have

I (a0 + o „ e(wK))Otiln - (a0 + a(»), eK)) 0 , n | g

^ | (a 0 + an) e(wK))0>nn_Gm | + | (a0 + a,, e(wK))0,Gm -

- (a0 + a(v), e(wK))0,n | = 73 + V (51)

Using (29), we obtain

h ^ (II CT° llo.fi, + II O, IloflJ II * K ) Io,fi„-Gm - » (52)

for m -* oo, n > no(m), n -* oo.
Making use of Proposition 1, we may write

74 g | (CT° + a. , e(wK))0,Gm - ( a 0 + a(v), e(wK))0,Gra | +

= | (a , - a(v), e(wK))0Mm \ + | (a 0 + o(»), e(wK))0,n.G>>i | - 0 (53)

for m -• oo, n > njjri), n -* oo.
Combining (50)-(5 3), we conclude that

(a0 -h a„, e(wK))Oinn -> (a0 + a(t>), e(wK))Ojn , « - co . (54)

It is readily seen that

-> (F, wK)Ojî2. (55)

Passing to the limit with n -+ oo in (49) and using (50), (54)> (55), we arrive at

[w, WJQ - (a 0 + a(ü), e(wK))0>n - (F, wJO i n .

Passing to the limit with K -• 0 and using (48), we obtain (22) with a = o(v)
in the right-hand side.

3° It remains to verify that yw = 0 on I \ . Since Fx and T(v) are disjoint
by assumption for any v e %d> there exists m0 such that r \ cz ÔG^. The
subspace

V<mo = {we[H\GmQ)]2:yw = 0 on r , }

is weakly closed in [ ^ ^ G J ] 2 . Consequently, using (43), we conclude that
the weak limit

and therefore yu = 0 on T l5 we Kc(ro, fi).
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4° By virtue of the uniqueness of the solution of the problem (22), we obtain
u — u(v) and the whole séquence { un } converges in the sense mentioned in
Proposition 2.

PROPOSITION 3 : Let a séquence { vn }, vn e \ d , converge to a function v in
C([0, 1]). Let G(V„) andu(vn) be the solutions of the problem (20) and (22) on the
domain Q(vn\ respectively. Then

rMvn))^rMv))> (56)

#(<*>„), «OÜ) - 3?(<T(IO, «00) (57)

holdsfor n -> oo.

: Case i' = 1 is easy, since the function ƒ is a quadratic homogeneous
form of the stress tensor components with constant coefficients. In fact, it
suffices to verify that

(Oij(vn\ okm(vn))oaiVn) - i&i/vj, àkm(vn))0Çîd -*

ij(v), àkm(v))OiÇÎ& = (ay(i?), okm(v)

for any two couples (ij\ (km) and « -^ oo. The latter convergence, ho wever,
follows immediately from Proposition 1.

Case i = 2. Let us dénote again u(vn) = un, v(vn) = aM, Q(vn) = Qn, Q(v) — Q,
u(v) = w, a(r) = a.

On the basis of (25), we may write

7Ü(°» «n) = III un 111̂  = ( a ° + <7„, e(Wn))0>nM - (F , W n ) 0 ( n n . (58)

Firs t we have

°, e(«,,))o,n„-Gm

Proposition 2 implies that It tends to zero for n ->• oo. Making use of (41),
we may write

'2 ^ II <T° I I0A-6. III «. IBo. - 0

for m - • 00, n > no(m), n - • oo.
Obviously, /3 -• 0 for m -> oo. Altogether, we obtain

( ^ ^ U - * K « ( « ) ) o 4 i for n - o o . (59)
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By a parallel way, we deduce

Next we can estimate

| (G„, e(un))OiÇln - (CT, e(«))o,a

By virtue of Proposition 1 and (41), we may write

h é II 9, - 0 llo,ns lll«„Hln„->0.

For 75 we apply (59), repladng only a° by a, so that I5 -> 0, as well. Thus we
obtain

- (a, M |

(a, e(w„))o,n ~ (<*> e(«))o,n | = h + *5

Passing to the limit with n -> oo in (58) and using (59), (60) and (61), we arrive
at

, «O - K + o, e(M))Ojn - (F, ii)0>n = J*(o(t;), M(I;)) . Q.E.D.

THEOREM 1 : There exists at least one solution of the first or second optimi-
zation problem (26) and (27), respectively.

Proof: Using Arzelà theorem, we can easily prove that the set °Uad is compact
in C([0, 1]). Then the existence of a minimizer of the function i? i-> <JÎ(<*0>))
o r i ) K J*(a(üX "00! follows immediately from its continuity, which has been
verified in Proposition 3. Q.E.D.

4. APPROXIMATIONS OF THE DUAL STATE PROBLEM

We introducé a discretization of the interval [0, 1] in the x2-coordinate,
approximate piecewise linear boundaries and moving meshes of the variable
domain. For the solution of approximate dual state problem we shall employ
piecewise linear finite element subspaces of the space Q0(Clh) of self-equili-
briated stress fields. Finally, an analogue of Proposition 1 will be proved for
the approximate solutions of the dual state problem.

Let AT be a positive integer and h = l/N. We dénote by A,., j = 1, 2,..., JV,
the subintervals [(ƒ - 1) h, jh~\ of the interval [0, 1] on the x2-axis and intro-
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duce the set

) Y / } ,

where Px dénotes the set of linear polynomials. Let Qh dénote the domain
Cï(vh), bounded by the graph Th of the function vh e %h

ad. The domain Q.h will
be carved into triangles by the following way (see fig. 2).

We choose oc0 e (0, a) and introducé a uniform triangulation of the rectangle
M = (0, a0) x (0, 1), independent of vh, if h is fixed.

In the remaining part Qh — M let the nodal points divide the intervals
[oc0, vh(jhy] into M equal segments, where

M = 1 + [(P - a0) iV]

and the square brackets dénote the integer part of the number inside. One
can fïnd easily, that the segments parallel with the ;q-axis are not longer than h
and shorter than h(a — ao)/(P — a0). One also deduces the following estimate
for the interior angles of the triangulation

tg co ^
P - o c 0

Consequently, one obtains a regular family { T5h(^) }s h -* 0, vh e %h
ad^ of

triangulations.
Note that for any vh e °llh

aà we construct a unique triangulation ¥>h(vh).

a0 a

FigureX
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We shall employ the spaces Jft£lh) of piecewise linear triangular block-
elements, which have been proposed by Watwood and Hartz [12]. Each
triangle K e TSh(i;J is divided into 3 subtriangles Kh i = 1, 2, 3, by Connecting
the vertices a{ with the center of gravity O. We defme the following subspaces

t) = {xe S(Kd n [ i \ ( / Q ] 4 , div T = 0 } .

Then the set

JfiK) = { x = (t1, x2, x3), x |Kt. = xl' e J?(Kt),

where TOi = Oah x° = x 3 ,

consists of three linear divergence-free tensor fields x\ the surface tractions of
which are continuous when crossing the common boundary of any two
subtriangles. Let us defme

jrh(Çlh) = { x € S(Q„) : x \K e MK) VK € Kh(vh),

TKnK>(ï I J + TKnK(x \K) = 0 VK, X' e *üh(vh) } .

Thus ^(O A ) is the space composed of tensor fields from ,MXK\ the surface
tractions of which are continuous on any interelement boundary.

Finally, we define

Qh(Qh) = Jfh{flh) n 00(0») =

= { o» e ^(Q„) : r r 9 h(a") = 0 } , Tgh = Xlh - T , .

In pro ving the following analogue of Proposition 1, we shall apply a density
result concerning the space Qo(^) a n d some approximability properties of the
spaces J^h(Qh\ which were proved in the paper [4].

Remark 4 . 1 : Now we are able to suggest a construction of a particular
field a 0 G S(QbX which satisfies the condition (17) on any domain Q(vh\ where

Assume for simplicity that the gravitational forces act in the direction of
x2-axis. Then Fx = 0, F 2 — — pg = Cte and the function

x° =
ro, oi
LO, pgxj

M2 AN Modélisation mathématique et Analyse numérique
Mathernatical Modelling and Numerical Analysis



SHAPE OPTIMIZATION IN TWO-DIMENSIONAL ELASTICITY 83

satisfies the homogeneous equilibrium équations in Qs. Setting

a° = x° + X,

we are led to the following problem : fmd X G i/(div, Qs) such that

d i v X = 0 i n Q ô , TTo&(X) = P t - xfj Vj = P ? ,

where F o s = dQ& — Fô. Since Pt are piecewise linear by assumption and the
term x°- v. is linear on every side of 3Q6, P? is piecewise linear. Consequently,
a suitable fixed triangulation *Gho of Q s exists such that X can be found in the
space ^ 0 ( f i s ) . One easily vérifies that a° satisfies (17) for any Q(u) with
v e %d.

Instead of the problem (20) we shall solve the following approximate state
problem : find ah e Qh(Qh) such that

(62)

There exists a unique solution of the problem (62) for any h and vh e %%d.
Moreover, one can prove the following.

LEMMA 4 . 1 : Let { vh}, h -* 0, be a séquence of vh e ^ d , converging uni-
formly to a fonction v, Then

ah -> ö(v) in [L2(Q6)]4 for h -> 0 ,

where àh is the solution of (62), extended by zero to the domain Q s — £lh and
a(v) is the solution of (20) on the domain £l(v\ extended by zero to Q6 — Q(t>).

Proof : Following the argument used in the proof of Proposition 1, we
show that a subsequence of { öh} exists such that

öh —a(weakly) in [L2(fi6)]4 , (63)

à \aiv) e Qo(n(tO), (64)

a = 0 a.e. in Q6 - Q(v). (65)

Given any x e Q0(Q(v)), we consider a séquence { xK }, K -*• 0, satisfying (34),
(35), (36), (37) and such that xK e öo(P*) h o l d s f o r a11 h < hi(K)-

In the paper [4] a projection operator

rh : [C»(Q8)]4 n Q0(Qh) -
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has been introduced. The properties of TK and rh imply that

(cf. the proof of Theorem 3.1 in [4]), and the following estimate holds (cf. [4],
Theorem 2.5)

(66)

with C independent of h, Q.h and xK.
By virtue of (62) we have

= - (a0, rh

Let us extend rh x
K to Qô - Qh by zero and dénote the extension by the same

symbol We may write

^ | (ô*. rh T* - x«)Bai | + | (S* - d, x«)BXl& | . (68)

The last term tends to zero if h -> 0, by virtue of (63). The first term can be
estimated as follows

, rh t
K - T % a 6 | ^ C || d* ||0.as II h T* - xK ||Oiflh - 0 ,

where (66) and the boundedness of { oh } has been used
Consequently, using also (65), we arrive at

(<A rh x
K)B>Qh = (v\ rh x*)BiO - (a, x * ) ^ (69)

for h -> 0. Furthermore, we may write

g | (a0 , r» T* - xK)B>nh | + | (a0 , T*)B,nh - (a0, x%,niv) | -> 0 (70)

if we use (66) and the convergence of vh to v.
Passing to the limit with h -> 0 in the équation (67) and using (69), (70),

we arrive at
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Passing to the limit with K -> 0 and using (37), we obtain the équation (20)
on Q(v). Since the solution of the problem (20) is unique, a = a(v) follows
and the weak convergence (63) holds for the whole séquence { àh}.

The strong convergence can be proved by a way parallel to that of proof of
Proposition 1 (5°).

5. APPROXIMATIONS OF THE FIRST OPTIMIZATÏON PROBLEM

First we shall prove the continuity of the cost functional with respect to the
control function. Then a convergence of approximate solutions can be proven
by a standard way.

LEMMA 5 . 1 : Let { vh}, h —• 0, be a séquence of vh e ^Jjd, converging uni-

formly to a function v. Let oh(vh) be the solutions of the approximate state pro-
blems (62). Then

3 î K K ) ) - ^ ( ^ ) ) , * ->0,

where a(v) is the solution of (20) on the domain Q(v).

Proof : is analogous to that of Proposition 3, i = 1.

THEOREM 5 . 1 : Let { (ùh}, h -> 0, (£>h e °Uh
a^ be a séquence of solutions of

the following approximate problem

V ^ e ^ . (71)

Then a subsequence { o>£} exists such that

<ÙK^(Ù in C([0, 1]),

&*(©£)->ö(©) in [L2(Q5)]4 (72)

holds for îi->Q, where o* is the solution of the approximate state problem (62)
on the domain Q^ = £2(CÛ*), extended by zero, CT(<Ö) is the solution of (20) on
Q((ö), extended by zero and œ is a solution ofthefirst optimization problem (26).

Any uniformly convergent subsequence of { (ùh} tends to a solution of (26)
and (72) holds.

Proof : Let us consider a f e %d. There exists a séquence { vh}, h -• 0,
such that vh e ^h

ad, vh -> v in C([0, 1]) (see [3], Lemma 7.1).
Since °Uaà is compact in C([0, 1]), a subsequence { (*)£-} and iùs°Uaà exist

such that cojr -> © in C([0, 1]) for ^ -• 0.
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By définition (71) we have

Applying Lemma 5.1 to both the séquences { co^} and { i ç } , we obtain

3Î(CT(<O)) ^ »î(a(u)).

Consequently, œ is a solution of the optimization problem (26). The conver-
gence (72) follows from Lemma 4.1 and the rest of the assertion is obvious.

LEMMA 5.2 : The problem (71) has at least one solution for any h.

Proof : Denoting by a e RN + 1 the vector of nodal values

vh(ih) =0» ï = 0 , 1,.... JV,

one can prove that

(i) vh e %h
aà o a e sé

where sé is compact and
(ii) the function a h-• ̂ (<Jh(a)) is continuous on sé. Consequently, a mini-

mizing vector exists.

6. APPROXIMATIONS OF THE SECOND OPTIMIZATION PROBLEM

As we have seen in Section 2, the second cost functional can be written in
terms of the solution u of the auxiliary problem (22). Instead of the latter,
however, we shall solve an approximate problem, using the subspace

of standard piecewise linear finite éléments on the triangulation ^(üh). Let
us choose

rt = d£lh - roh = d<%nô£lh (73)

so that I \ is independent of h and vh.
We define the following problem : find uh e Vc

h such that

[«*- " * k = f (a° + o*). vwhds+ f P.wh ds Vwft e VI. (74)
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Note that replacing Q(v) by Qh, o(v) by ah e Qh(Qh) and w by wh e Vc
h, the

right-hand side of (22) can be transformed into that of (74) by means of inté-
gration by parts. In fact, making use of Remark 4.1, we may write

(ao + a \ e(wh))OtQh - (F, wh)0,nh =

(a° + ah).vwh ds +

Jroh-n
• f f P.whds. (75)

By means of (74) we can define the approximate second cost functional

(vh\ uh) = III uh | | |âh =

r
(76)

where w,, = wh(uft) and oh(vh) is the solution of (74) and (62), respectively. Then
the second optimization problem (27) can be replaced by the following appro-
ximate problem

Jh
2(vh) - min , vh e %\à . (77)

LEMMA 6 . 1 : The problem (77) has at least one solution for any h.

Proof : Is analogous to that of Lemma 5.2.

LEMMA 6.2 : Let { vh }, h -+ 0, be a séquence of vh G °Uh
aà, converging uni-

formly to afunction v. Let uh be the solution of il A), Then

W„-W(weakly) in \H\GJ\2 Vm,

and u = u(<y(v)) is the solution of (22) on Q(t>).

Proof : Following the argument used in the proof of Proposition 2, we
show that a function u e \_H1(Q(v))']2 exists such that a diagonal subsequence

« /u , - "k , in [H\Gm)y (weakly).

Given any w e VC(TO, Q), we consider a séquence { wK }, K -• 0, wK e [CGO(Q5)]2
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such that

r \ n supp wK = 0 , (78)

wK->w in [H1(Q)']2. (79)

From (78) wK |ft G F c(ro , ^ ) follows.
Let nh wK dénote the Lagrange linear interpolate of wK on the triangulation

^h(vh). Consequently,

nhwKeVc
h VA, VK .

Let K be fixed for the time being. Obviously, we may insert nh wK into (74)
and use (75) to obtain

K nh wK]ah = (a 0 + a \ e(nh wK))0>nh - (F, nh wK ) o n h . (80)

We shall consider (80) for the subsequence { hD } and pass to the limit with
hD - • 0. For simplicity, however, we shall write indeces h instead of hD. Thus
we may write

S | [wfc - w, ̂ K ] G m | + | [uh9 n h wK - w J G m | + | [uhi nh w K ]n h _ G m |

- ƒ, + /2 + / 3 . (81)

Consider a positive e. From the weak convergence of { uh } in [^H^m)]2

we conclude that

/ : < 8/6 VA < Aife m) . (82)

To estimate 72, we employ the well-known resuit

II "K - ^ ™K II 1,0, ^ CA || wK ||2>nh g CA || wK ||2)fi8. (83)

Combining this with the boundedness of the norms ||| uh |||Gm, we obtain

h S \\\uh\\\Gm \ \ \ n h w K - w K \ \ \ G m S C h \ \ w K \ \ 2 ^ < e / 6 , h < h 2 . ( 8 4 )

It remains to estimate I3. For ail triangles K e ̂ h(vh) and A we have

I I ^WKI I^^CHWJI^ . (85)
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Let G£ be the smallest union U of triangles K e ^h(vh) such that U =>£lh - Gm.
Obviously, we may write

meas(G*) ^ m"1 + 2 h + || vh - v \\n (86)

where the last terms stands for the norm in C([0, 1]).
Consequently, (85) yields

II % "« \\linh_Gm g || nh wK ||liCfc ïC\\wK ||2>CK • (87)

Making use of the boundedness of norms ||| uh |||Qh and of (87), we obtain

h S III «» IIIa,, III «* wK |||nh_Gm g C || wK ||2)Gfe . ( 8 8 )

Combining (81), (82) and (88), we arrive at

| [«»» n* wJQh - [u, w j n | g | [uh, nh wK]nh - [u, wK]Gm | + | [«, wK]n_Gm | S

^ e/3 + C || wK ||2iGfti + III u Ulo,,, III wK Illn„)-Gm •

By virtue of (86) we conclude that

K> t h wJnh -•• [M, WJQ ( 0 ) , A ^ 0 .

Furthermore, we have

| (CT° + ah, e(nh vt;K))0>nh - (o° + o(o

= | (a° + o*, e(n» w j - e(wj)0i0h + (CJ° + a*, e(wK)

^ | (a° + ah,e(7th wK - wK))OiQh +

+ | (a° + ah, e(wK))0,nh_Gm | + | (a° + ah, e(wK))0,Gm

- (o° + a(«X e(H-K))0,n | = 7lfc + /2h + /3fc • (90)

Using the boundedness of norms of a* and (83), we may write

hn S (II CT° Ho.nn + II o* Ho,nh) II «* vvK - wK | | 1 A -* 0 , A - 0 , (91)

lik ^ (II ^° llo.o, + II ^ HOA) II e K ) Ilo,nh-G„ - 0 (92)

for m - • oo, /Ï < A0(m), A -> 0.
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Finally, making use of Lemma 4.1, we obtain

I3h ^ | (CJ° + a\ e(wK))0>Gm - (o° + cr(t>), e(wK))0,Gm | +

+ | (a° + a(v), e(wK))Oin_Gm | = | (o* - a(i>), e(wK))0,Gm |

( W l t ) ) o f l - G m | - » 0 (93)

for m -> oo, /* < /^(m), h -• 0.
Combining(90)-(93), we deduce that

(a° + a \ e(7th wJ)O t n h - (a° + a(i>), eW) 0 )n ( , ) ' * - ° • (94)

We also have

lio,nh + i ( ^ "Jo,A(nh,n) I - 0 (95)

by virtue of (83). (Here A(Qfc, Q) = (Qh - Q) u (Q - Qh))
Passing to the limit with h -»- 0 and using (89), (94), (95), we arrive at the

équation

[M, WJO = (a° + CT(Ü)S e(wK))0?n - (F, wK)0 n .

The rest of the proof is parallel to that of Proposition 2 (cf. points 3° and 4°).

LEMMA 6 . 3 : Let the assumptions of Lemma 6.2 be satisfied Then

r2(<y(v\ u(v)), * -> o .

Proof : The argument is parallel to that of Proposition 3, Case z = 2, where
we replace wn by uh, Q„ by Qh, Proposition 2 by Lemma 6.2 and Proposition 1
by Lemma 4 .1 .

THEOREM 6 . 1 : Let { vh }, h -> 0, èe a séquence of solutions of the approxi-
mate problems (77).

Then a subsequence { v% }, h -> 0, exz^^ JWC/Î ?/IÛ?

^ - ^ I Î w C([0,l])f

where v is a solution of the second optimization problem (27). The solutions
°h(vh) °f the approximate state problem (62) and the solutions u^ of the auxiliary
problem (74) converge in the sense of Lemma 4.1 and Lemma 6.2, respectively.
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Any uniformly convergent subsequence of {vh} has the properties mentioned

above.

Proof is parallel to that of Theorem 5.1. Instead of Lemma 5.1 we employ

Lemma 6.3.

List of notations

%ad : set of admissible functions

a, P : bounds of the admissible functions

T(v) = F : unknown part of the boundary

a(v) : solution of the dual state problem (20)

u(v) = u(o(v)) : solution oftheauxiliary problem (22)

ah = ah(vh) : solution of the problem (62)

uh = uh(vh) : solution ofthe problem (74)

$ = [0, oc0] x [0, 1] : fïxed rectangle

r \ = âQ(y) — Fo : part ofthe boundary, independent of v

Q.h = Q(vh) : domain bounded by the graph of vh

-^fc(ï2fc) : space of piecewise linear self-equilibriated t r iangular

block-elements

Q0(Q) : space of self-equilibriated stress tensor functions

Fc(ro, Q) : space of « complementary test functions ».
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