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MATHEJWTH^MOOEUWGAHDHÜMERiCALANALYStS
MOOÉUSAT1ON MATHÉMATIQUE ET ANALYSE NUMÉRIQUE

(Vol 21, n° 1, 1987, p. 171 à 191)

HOW TO AVOID THE USE OF GREEN'S THEOREM
IN THE CIARLET-RAVIART THEORY OF VARIATIONAL CRIMES (*)

Alexander ZENISEK (X)

Communicated by R. TEMAM

Abstract. — The paper generalizes the theory developedin [1] and[2, Section 4.4] to the case that
the solution u of the given variational problem belongs to H^(Q) only. Mixed boundary conditions,
approximation of a curved boundary and numerical intégration are taken into account. The consi-
dérations are restricted to the two-dimensional case.

Résumé. — Dans cet article, nous généralisons la théorie développée dans [1] et [2, section 4.4] au
cas où la solution u du problème variationnel se trouve dans Hl(£ï) seulement. Nous considérons des
conditions aux limites mutes, r approximation de la frontière curviligne, et V intégration numérique.
Les considérations sont faites pour les problèmes de deux dimensions.

The foundations of the theory mentioned in the title of this paper are given
in Ciarlet, Raviart [1] and Ciarlet [2, Section 4.4], Some extensions of this
theory (which will be briefly denoted as the CR-theory) to the case of boundary
value problems with various stable and unstable boundary conditions were
done in Zenisek [9], [10]. In all these papers the maximum rate of convergence
is proved ; thus the assumed smoothness of the exact solution u is unrealistic
in the majority of problems appearing in applications. The smoothness of u
allows us to use the Green's theorem in estimating the third term on the right-
hand side of [2, (4.4.21)] — see also the first term on the right-hand side of
(35). This simplifies very much considérations.

In this paper we consider the variational problem corresponding to a gênerai
elliptic boundary value problem with combined Dirichlet's and Neumann's
boundary conditions. We assume only that the solution u of the variational
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172 A. ZENISEK

problem exists, i.e. ue Hi(Q). Thus we cannot transform the term âm(u, w)
(defined by (21)) to the form (50) by means of Green's theorem. Instead of it
our main tool becomes Zlâmal's idéal curved triangular element (see Zlâ-
mal [7]) which is considered simultaneously with the associate curved triangu-
lar element used in applications. As u e H 1(Q) the complete resuit of this paper
will be only the proof of convergence (without any rate of convergence). The
considérations of this paper are based on some results from [9] ; thus we use
some notions and symbols introduced in [9] without any deeper explanation
and with référence to [9] only.

The notation of Sobolev spaces, their norms and seminorms is the same
as in the book [2] and other références of this papen

Let Q be a bounded domain in E2 with a Lipschitz-continuous boundary F.
Let a(v, w) : H1^) x H1(Q) -• R be a bilinear form which is bounded and
F-elliptic,

K r , w ) | ^ A r | M l i l | w | l i Vv,weH\a), • (1)

*\\v\\î^a(v,v) VveV, (2)

where oc, M are positive constants and

V = {ve H\Q) : v = 0 on r l s meSi T1 > 0, r \ c F } , (3)

and let Up) : H 1(Q) -> R be a bounded linear form,

\L(v)\^K\\v\\1 VveH\Q), (4)

where X is a positive constant. (In (l)-(4) and in what follows we write for a
greater simplicity || . || x instead of || . \\un-)

Remark 1 : If mesĵ  I \ < mesL F and Q is a simply connected domain we
consider only the case that Tx consists of a finite number of disjoint arcs. The
end-points of these arcs belong (by définition) to F r Thus F2 = F — T1

consists of a finite number of arcs without end-points. In the case of a multiply
connected domain Q, the situation is similar.

Problem P : Let

W = { v G H\O) : v - S on Tx } , (5)

where w e H 1/2(FX) is a givenfunctioa Finda function ue W such that

a(u, v) = L(v) Vz; e V . (6)

The Lax-Milgram lemma implies that Problem P has just one solution ueW.
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ON THE THEORY OF VARIATIONAL CRIMES 173

In what follows we shall consider a(v, w) and Up) of the forms

Sv ôw , .
d ( 7 )

and

n r f f f fe, (8)Up) = Ln(v) + Lr(v) = f f vf dx + f
J Jn Jr

respectively, where F2 = F — Tv In (7) and in what follows a summation
convection over repeated subscripts is adopted

We assume that the following sufficient conditions for the validity of (1), (2),
(4) hold :

ktj are measurable and bounded fonctions on Q, (9)

- ^ o ^ V ^ - e * VxeQ, (10)

where |a0 is a positive constant,

/ e L 2 ( Q ) , <zeL2(r2). (11)

In the case of the use of numerical intégration we shall have additional requi-
rements concerning the smoothness of the functions k^, ƒ and q.

Similarly as in [1], [2], [10] we shall consider three following variational
crimes (the notion « variational crime » is due to Strang(see [4], [5])) :

1. Approximation of the space V and the manifold W by a fînite dimensional
space Vh and manifold Wh, respectively.

2. Approximation of the domain Q by a domain Qh with a boundary Th

which is simpler than T.

3. Approximation of the forms a(v, w), Up) by forms ah(v, w), Lh(v) which
are obtained by means of numerical intégration.

Combining these three basic variational crimes we can obtain various situa-
tions ; we shall consider the most gênerai case.

Let us choose a séquence { hm } of real numbers with the following proper-
ties :

1 > h m > 0 , h m > - h m + l 9 l i m hm = 0 . (12)
m—• oo

For every m let us construct an idéal triangulation x^ of the domain Q and its
approximation x^ (where n is a given integer) in the following way : Let us
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174 A. ZENISEK

choose a finite number of nodal points on F ; each corner of F (if any) and each
end-point of arcs forming Tx (if F± =£ F — see Remark 1) belong to these
points; the distance between two neighbouring nodal points is not greater
than /zm.The triangulation xjj is chosen in such a way that two différent arcs,
in which the boundary F is divided by the nodal points, are sides of two diffe-
rent boundary triangles. Further, the interior triangles of x^ have only straight
sides. Finally,

* « < * « , hm^ cohm, 9 m > V (13)

where c0, 90
 a r e positive constants and

hm = max hT, h = min hT, Sm = min 9 r . (14)
T e xm T e xm T e TW

In (14) hT a n d S r are the length of the gréa test side of T and the magnitude of the
smallest angle of T, respectively, and xm is the triangulation, which arises from
x1^ if we substitute triangles with one curved side by triangles with straight
sides. (If Q has a polygonal boundary then xm = xjj.)

If Q has not a polygonal boundary we obtain the triangulation xJJ, associated
with xjjj in the following way : Let us choose an integer n ^ 1 and on each curved
side of x^ let us choose n — 1 nodal points with the coordinates

[ # ) , # ) ] (f = l , . . . , » - 1),

where

*i =<P(0, *2 =* (0 (O^t^ 1) (15)

is the local parametric représentation of the considered curved side (in more
detail see [9, eqs. (6)J, where the symbols <p, \|/ are used instead of q>, \|/). The
side (15) is then approximated by the arc

*i =q>*(0, ^2 = r ( 0 , 0 < r < 1, (16)

where cp*(t) and v|/*(t) are the Lagrange interpolation polynomials of degree n
of the functions cp(r) and \|/(r), respectively, uniquely determined by the rela-
tions

The arcs of the type (16) forai curved sides of the boundary triangles of the
triangulation x"w and the union of closed triangles T exn

m forms the approxima-
tion QTm of Q.
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ON THE THEORY OF VARIATIONAL CRIMES 175

Now we choose the remaining nodal points of x", and xj£. If n = 1 then they
are formed by the vertices of the triangles of x£ or x*. If n = 2 then they are
formed by the vertices of the triangles and by the mid-points of the straight
sides. If n = 3 then they are formed by the vertices of the triangles, by the points
dividing the straight sides of the triangles into thirds and by the « centres of
gravity » P® of ail triangles T e i?n (or T e xj£). (In the case of a triangle T with
straight sides the point P? is the center of gravity of T, in the case of a curved
triangle T the point Pj is the image of the point (1/3,1/3) in the transformation
mapping the well-known standard triangle To (see [6]-[l 0]) onto T).

On every triangle with straight sides function values prescribed at the nodal
points détermine uniquely a polynomial of degree n. On every curved triangle
(both an idéal one and an approximating one) function values prescribed at the
nodal points détermine uniquely a function which is on both straight sides a
polynomial of degree n in one variable. (Details are omitted ; they can be found
in [2L [6]-[8].)

Piecing together just mentioned finite éléments we obtain JV-dimensional
spaces Xâ and Y"n of continuous functions on x^ and xjj, respectively, where N
is the number of nodal points in both triangulations xJJ, and x\fv

Let Fml be the approximation of I \ defined by the triangulation x^ ; we set

0,Pkerml}, (17)

where Pk are the nodal points. In order to defme suitably the finite element
approximation Wm of W we shall assume that the function u is so smooth that
there exists a function z e H2(Q) such that z = ûon Tv Then we can set

Wm = {veX»m: v(Pk) = û(Pk), Pk e F m l } . (18)

Remark 2 : In the définitions of Vm and Wm we need the space X^ only. The
space Yn

m will be used in (52)-(54).
In what follows we assume (similarly as in the CR-theory) that there exists

a bounded domain Q such that

Q D ( Q U Q J Vm (19)

and that kip f are continuous and bounded functions on Q having continuous
and bounded extensions kip ƒ onto Ü. As to the functions ktj we further assume
that there exists a constant p0 such that

ku(x) St ^ > Po \{ %, V ^ $JGR VX 6 Û . (20)
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176 A. ZEN1SEK

Thus every bilinear form

has the property

a > , o) > Po I » l ia . VveH\ClJ. (22)

Further we defîne

LJp) - L » + L^) (23)

where

ï [[ j ^ £ [ qmvds (24)

with Tm2 = Fm — rml . The symbol #m dénotes the function which is obtained
by « transferring » the function q from F2 onto Tm2 (see [10]), i.e. if c is a part of
F2 with parametric représentation (15) and cm its approximation with parame-
tric représentation (16) then

, (25)

P*(0 * (26)

[ qvds= [
Je Jo

f qmvds= f

where
2 2112, (27)

P*(0 = [(<P*(0)2 + (r(O)2]1 '2 • (28)

Using quadrature formulas on the triangles with intégration points lying in
Q n Qm we replace the forms #m(u, w) and L^(Ü) by the forms am(v, w) and
L2(y), respectively. (Details can be found in [1], [2] or [8].) Further, Computing
numerically the intégral on the right-hand side of (26) for each cm <= Tm2

(see [10]) we obtain a linear form Um(v). Denoting

L» = I » + Ll(v) (29)

we can formulate the following discrete problem :
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ON THE THEORY OF VARIATIONAL CRIMES 177

Problem Pm : Find a fonction um e Wm such that

am(um, v) = Lm(v) V t>eF m . (30)

First we must prove the existence and uniqueness of the solution um of Pro-
blem Pm. This is solved (besides other problems) in Theorems 1-3.

THEOREM 1 : Let the boundary T of the domain Q bepiecewise of class Cn + 1.
Then

\\v\\lnm<K\v\iam VveVm Vhm < h (31)

where h is suffïciently small fïxednumber and K a positive constant independent
of v and hm.

Theorem 1 is proved in [9] in a more gênerai form.

Remark 3 : If F is piecewise of class Cn+l then it has a finite number of points
of C" + 1-discontinuity. These points are nodal points of all triangulations xJJ,
andx*(m = 1,2,...).

THEOREM 2 : Let fctJ e W^ (Ü) (ij = 1, 2) and let the quadrature formula on
the standard triangle To used for calculation of am(v, w) be of degree of préci-
sion d = max (1, 2 n - 2). Then for all v,weVm we have

K<P, w) - ajp, w) | < CBn hm || v ||lïOm || w \\unm (32)

where C is a positive constant independent of k^, v, w andhm and the constant Bn

is defîned by

$n= t ll*ylL.«.S- (33)

Theorem 2 follows from [8, Theorem 7] (see also [2, Chapter 4]).

THEOREM 3 : Let the assumptions of Theorems 1 and 2 be satisfîed Then for
hm ^ h the bilinear forms am(v9 w) are uniformly Vm-elliptic, le. there exists a
positive constant P independent of Vm such that

*»(»,») V * e F m VA m <Â, (34)

and Problem Pm hasjust one solution um.

Proof : Relations (22) and (31) imply
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178 A. ZENISEK

Theorem 2 gives

ajp, v) - SJp9 v) > - CBn hm || v \\2
unrn VD G Vm .

Adding both inequalities up we obtain (34) with P = po/(2 K) for hm <
Po/(2 CBn K).

Now we prove the existence and uniqueness of the solution of Problem Pm.
As relation (30) represents a System of linear algebraic équations for the
unknowns um(Pk), where Pk $ TmU it is sufficient to prove the uniqueness, Le.
to prove that the problem " find um G Vm such that am{um9 v) = 0 Vu e Vm

 M

has only the trivial solution. This follows immediately from (34) if we set v = um.
Theorem 3 is proved.

Now we are ready to formulate an abstract error theorem which is the start-
ing point of the CR-theory and ail its modifications.

THEOREM 4 : Let the assumptions of Theorem 1 and 2 be satisfied. Then there
exists a positive constant C independent of Vm and Wm such that for ail hm < h
we have

I I ~ it / r i e 1 LnM - 8J& w) 1\\u- um IK o < C< sup Ü—T. 4-

where ü e HX(Ù) is the Calderorfs extension of the solution u e Hi(Q) of Pro-
blem P from the domain Q onto the domain Û.

The proof of Theorem 4 follows the same Unes as the proof of [2, Theo-
rem 4.4.1] and thus it is omitted. (Of course, if w G Hk(Ù\ k > 1, then S e Hk(Ü)
in Theorem 4.)

Before introducing the first application of Theorem 4 we remind two theo-
rems from the theory of numerical intégration in the finite element method and
prove a theorem on approximations of ü in the sets Wm.

THEOREM 5 : Let 1 ^ r ^ «. Let ƒ e W(£(Û) and let the quadrature formula
on the standard triangle To used for calculation of Lfyp) be of degree of préci-
sion d = max (1, r + n - 2). Then for all veVmwe have

| Lg(») - £ » | < CWm II ƒ 11^,6 || v ||linm (36)

where the constant C is independent of hm v and J.

The proof of Theorem 5 is very sùnilar to the proofs of [2, Theorems 4.1.5
and 4.4.5].
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ON THE THEORY OF VARIATIONAL CRIMES 179

THEOREM 6 : Let the part T2 of the boundary Y be piecewise of class Cn + i

and let the function q(xu x2) belong to the space Cn{U\ where U is a domain
containing Y2. Let the quadrature formula used on the segment [0, 1 ] for calcula-
tion of L^v) be of degree of précision d — 2 n — 1. Then for sufficiently small
hm and for all vtVmwe have

|i£(»)-££(«0|<c*;ii»||1.Qm, (37)

where the constant C does not depend on hm and v.

Theorem 6 is proved in the proof of [10, Theorem 5].

THEOREM 7 : Let ü be so smooth that there exists a function z e H2(Q) such
that z = ûonTv Then there exists a séquence { vm }, where vm e Wm, such that

lim | | 2 - t a i l f a i l = 0 . (38)
m-* oo

Proof : According to [3], C°°(Q) n F is dense in V. Let { ek } be an arbitrary
séquence of real numbers with properties

ek > 0 , efe > efc+1, lim ek = 0 . (39)
fc->oo

Let us set

w = M - z . (40)

Then w e V and for every k there exists a function wEk G C°°(Q) n V such that

l l ^ - ^ J | 1 ) n ^ £ f c / ( 3 C ) , (41)

where C is the constant from inequality (42).
Let vbe the Calderon's extension of v e H1(Q) into H1(E2), Then we have

\\v\\ltE2^C\\v\\ltÇl VveH\a), (42)

where the constant C does not depend on v. Similarly, if v* dénotes the Calde-
ron's extension of u e H2(Q) into H2(E2) then

II B* ||2i£2 < C* || H k n Vt;e/J 2(Q), (43)

where the constant C* does not depend on v.
Relations (41), (42) imply

II » ~ K IliS < C (| w - w£h ||1>n ^ £fc/3. (44)
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180 A. ZENISEK

Let Im v e Vm be the interpolate oîv e H2(Q) (Le. the function from Vm which
has the same function values as v at the nodal points of %%). O wing to the défini-
tion of nodal points we have

ImV* =Imv ¥veH2(Q), (45)

Relations (43), (45) and the fînite element interpolation theorems (see [2] or
[8, Theorem 5]) imply

II K ~ 4 ^ IIi,nw < Chm || w* ||2,nw ^ C* Chm || wEk ||2jQ.

Thus, according to (12), there exists ml (depending on k) such that

il K - 4 ^ lix,om < £fc/3 Vm > ml. (46)

Finally, using the relation

lim { mes (Qw - O) } = 0

we find, according to the theorem on the absolute continuity of the Lebesgue
intégral,

il K - K lii,nw = il K - K lli,a»-n < <*/3 Vm > m2, . (47)

Both inequalities (46) and (47) hold for m ^ mk = max (m ,̂ mf). It can be
easily arranged that mk < mk+1(k = 1,2,...).

Now we can construct a séquence { wm }, wm e Vm such that

lim i i w - w m | | l i n m = 0 . (48)

^ m < mk+1 then we set wm = Im w£k e Vm. The inequality

- 4 w€k \\x>am < II * - ^ek lliiOm +

*«î ~ 4 ^
and relations (39), (44), (46), (47) imply then relation (48).

Now let us set
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ON THE THEORY OF VARIATIONAL CRIMES 181

Then, according to (40), (45) and (48),

u-vm \\1Am ̂  || w - wm

+ II 2* - Imz\\1Xim^0 if m^ GO.Imz\\1Xi

Theorem 7 is proved.
In the case of a polygonal domain Q the preceding theorems imply the

following gênerai resuit :

THEOREM 8 : Let Q be a bounded domain with a polygonal boundary F. Let
the assumptions of Theorems 2, 5, 6 and 7 be satisfied, where Ù = Q. Then

lim || u- um \\1Xk = 0 , (49)
m—> oo

where u and um are the solutions of Problems P and Pm, respectively.

Proof : As Q = Q we have S = u and <?m = <?. Thus

3J& w) = fl(w, w) - L V ) + Lr(vw) ^ I2(w) + L^(M;) .

This resuit and Theorems 5, 6 imply

| Lm(w) - SJ& w) | • || w || ̂  = O(tQ + O(hn
m).

Thus the first term on the right-hand side of (35) tends to zero if m -> oo.
As to the second term we have, according to Theorem 7,

inf || w - v\\ua ^ | | M _ t,m \\lja -+0.
veWm

Inspecting the proof of [8, Theorem 7] (and taking into account that we
consider C°-elements only) we see that relation (32) is valid for ail v, w e X^.
Thus we have

inf sup { | âm(v, w) - ajv9 w) | • || w ||~à } <

< inf { CBnhm || v H1>o} ^ CBnhm || vm || l iO = O{hm)
veWm

because the séquence { vm } is boimded, according to Theorem 7. Relation (49)
follows now from Theorem 4. Theorem 8 is proved

In the case of non-polygonal domains the situation is not so straightforward.
Thus the CR-theory and its modifications assume the solution of Problem P
sufïiciently smooth and use the Green's theorem in order to find a more
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182 A. ZENÎSEK

convenient expression for àm(u, w) :

(see [2, p. 268] or [10]). The symbols vml, vm2 dénote the components of the
unit outward normal to Fm. The solution u is so smooth that it satisfies the
équation

-JL(k —\=f in Q

HT1 = F then (50) can be written in the form

where the extension ƒ of ƒ is defmed by the relation

~ O ƒ ç~ OU \

In this case the estimate of the first term on the right-hand side of (35) follows
immediately from Theo rem 5. (As to the case F1 # r see [10].)

Remark 4 : It should be noted that the sufficient smoothness of u enables
the CR-theory to use fmite element interpolation theorems instead of Theo-
rem 7 and to obtain the optimum error estimâtes.

Our assumptions guarantee only u e 7/1(Q) and the use of Green's theorem
is forbidden for us. In order to estimate the first term on the right-hand side
of (35) in the case of w e i/x(Q) let us define first some notions and notation.

The symbols o>+ and co_ have the following meaning :

G)+ = Qm - Q, co_ = Q - Qm . (51)

The symbols a>+ and œ+ dénote the parts of (Ù+ which lie along Fj and F2,
respectively. (In other words, the boundary of co+ is formed by parts of Fx

and Fml ; similarly the boundary of o>+ is formed by parts of F2 and Fm2.)
The symbols œL and œl dénote the parts of o>_ which lie along Fr and F2,
respectively.

The symbol T * will dénote a triangle belonging to xn
m and approximatif

a corresponding idéal curved triangle Tld e xjjj. (In [9] the idéal curved trian-
gles are denoted simply by T.)
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ON THE THEORY OF VARIATIONAL CRIMES 183

The symbol Tld : T1 dénotes an idéal triangle T^ex ' j whose curved side
lies on T1. The symbol T* : F1 dénotes a triangle T* e T," whose one side
approximates a curved part of r \ .

Similarly as in [9], the symbol w dénotes the natural extension of a function
w G Vm from the domain Qm to the domain Qm u œ _. (The définition of « natu-
ral extension » is given in [9, p. 271].)

Finally, the symbol w dénotes a continuous function belonging to V which
corresponds to a function weVm a X^ and is defmed by the following
relations :

vî> = w on

where

— À

A - U Ti

on A, (52)

(53)

and where w* is the function from
values

which is uniquely determined by the

(54)

Ply..., PN being the nodal points of the triangulation T£. (The définition of
the space 7^ is introduced in the text between relations (16) and (17).)

As w e V we can write, according to (6) and (24)2,

f- aju, w) = \ qmwds - L (̂
Jrm2

w) - Jm( . (55)

This relation is the starting point for estimating the first term on the right-
hand side of (35) without using the Green's theorem. Now we express the
terms in brackets in a suitable way. We have

LT(w) = f qwds, (56)
Jr2

LQ(w) = f f fw dx = f f fw dx + f f jwdx -

- j ï fwdx+ I { ff /w^x- f f > & } , (57)
J Joi T*:ri { J JTid J JT* J
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184 A. ZENISEK

= ff fwdx- ff fwdx- ff fïïdx + ff fwdx
J JTld J JT* J Jj>id-T* J JTid~T*n rr rr „ rr

fw dx — Jwdx — fw dx + Jwdx
r»d J Jj-id J jj*-Txd J JTtd_p*

(w — w)fdx — /w Ö6C + /vFrfx . (58)

Similarly

i2_
 v dxt dx3

n ~ èü dw . \-^ { Ç Ç , du d(w ~ w) ,

Relations (55)-(59) together with (24) and with the ïdentities

<ù\ = U (T* - T i d), (o1. = U (Tld - T*)
r* n r* ri

imply the following lemma :

LEMMA 1 : We have

I w) | < | L » - ^ |

(59)

(60)

Lr
m(w) - wds -1
Z ff r /A 3w 0(0 - w)i

- r J J ^ L fei dxj J

dw
5x

(61)
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Now we can prove the main resuit of this paper :

THEOREM 9 : Let the assumptions of Theorems 1,2,5,6 andl be satisfiecL Then

lim | | S - M J | 1 ) f i m = 0 (62)
m-» oo

where ü e if *(Q) is the Calderorfs extension of the solution u e H1(Q) of Pro-
blem P and um is the solution of Problem Pm,

Proof : Using Theorem 7 we fmd

inf || fi - u H i ^ < || fi - um ||1(Qm -> 0 . (63)

Similarly as in the proof of Theorem 8 we have

inf s u p { | a j v , w) - am(v, w ) \ . \ \ w \\^Qrn } = O(hm). (64)

It remains to prove

sup { | LJw) - ajjS, w) | . Il w || r,àm } -» 0 . (65)
V

Assertion (62) follows then from (63)-(65) and Theorem 4. The proof of (65)
is divided into five parts A)-E) :

A) Using Theorems 5 and 6 we obtain

| L » - L » | + | Ll(w) - L » | ^

^ Chr
m || w ||1|Om (1 ^ r ^ n) VweVm, (66)

where the constant C does not depend on hm and w.

B) Let us dénote for the sake of brevity

Using the assumptions ƒ G W£(ü)9 Hi} e W^(ü) and the Cauchy inequalities
we easily find

^ . (68)

According to (52)-(54), the fiinction w is an idéal interpolate of the function w
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on Tid (because w(Pk) = w(Pk)\ Thus using the resuit proved in the proof of
[7, Theorem 2] we obtain

Inequalities (68) and (69) imply

E (l|M;l|n
2

+1)T, + ||ïv \\UI,T"-T*)\ • (70)
*:r, )

(In (69), (70) and in what follows the symbol C dénotes a generic constant, not
necessarily the same in any two places.) Let

*i =x*l{%l,%2), x2 = x j ( ^ 2 ) (71)

be a mapping which maps one-to-one the curved triangle T* onto the Stan-
dard triangle To lying in the £l9 ^2-plane and having the vertices (0, 0), (1, 0),
(0, 1). According to the définition of the function w e l j w e have (see also
[9, p. 269])

w |T* (x*(£l5 £2)Ï x*(£>v £2)) ~ p(£>v ^2) s (72)

where />(Çl5 ^2) is a polynomial of degree «. Using the theorem on transforma-
tion of multiple intégrais and the properties of the mapping (71) (see [9, Lem-
ma 1]) we find (because | p \n+1 T n = 0) :

n + l n

y 1 w i?„ < c^-2" y i/» 12 . (73)
fe=2 fc=l

Using [8, Lemma 5] and the transformation from To on T* we obtain

l ^ i , 2 T 0 ^ C | ^ | ^ 0 ^ C | | M ; | | ^ (k>l). (74)

Relations (73), (74) imply

The second term on the right-hand side of (70) can be estimated by the tech-
nique developed in [9]. Thus the proof is only sketched. Let Nt be the number
of curved triangles along Tv Let us dénote them by the symbols Tf, TJ,..., T ^
and the corresponding ideal curved triangles by the symbols T[d, Tid,..., Tjfv

According to the properties of transformations (71) (see [9, Lemma 1]), we have

\w\ïTid-T* ^ C Y \Pi\2
ahl~2r ( / c > l ) ,

J J r=1 '
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where in accordance with (72) (see also [9, (27)])

and where a is a quadrilatéral lying in the Çl5 Ç2-plane and having vertices
A^l - 5,0), A2(\ + 5,0), A3(0, 1 + 5), A^O, 1 - §); 8 is so small that
(see [9, p. 275])

mes a = O(hnJ . (76)

As pj is a polynomial of degree n the last inequality gives

£ \Pj\lah
2

m-2k\. (77)
«t=i .)

Each polynomial p ^ , ^ 2 ) c a n be written in the form

W , (78)

where 0? = (« + 1) {n + 2)/2, è£(^l9 ^2) are fixed basis functions and a{ = w{P(\
P{ {i = 1,..., d) being the nodal points of Tf in the local notation. Similarly as
[9, (39)] we can prove

\w\lam>Ch2
mA(*{), \w\lam^CB(*b, (79)

where
N* d N* d

A(a{) = X Z (a/)2 > ^ ( a ó = E I (a/ ~~ ao)2 > (80)

AT*(^ ATJ dénotes the total number of curved boundary triangles. (If n = 1
then Af* is the number of boundary triangles lying along the curved part of F.)
As | Pj |fciO = \pj- al |kiO (k > 1) we have, according to (77) and (79),

Ni

E I Pj lo,<

+ c f E ^ I ̂  - aJo IL ̂ "2fc )/5(aÖ • (82)

As b1 + •*• + bd = 1 we can write
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Thus
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| pj (oi0 ^ C max [ ai |2 mes a ,

\Pj-<*3o\h< C max | a / - a i | 2

(83)

(84)

We see from (76), (80), (83) and (84) that the right-hand side of (82) is bounded
by Chl~n. Using this resuit together with (75) and

we obtain from (70) that

C) Similarly as in part B) we have

-. r du dw\
fw — ku ^— -=— dxlJdxt dxjj

du dw x

' f lx, dx, J '

ƒ o,n BH\\u

w

w

C/22 \Pj \l

Relations (76), (79)-(84), (86)-(89) imply

^ r du dw
fw — ki} 3— ^ ~7 IJ ôxj dr-

du dw
OXj ÔX :

T*:T

1 - 1 < rr/»«/2

I hnl2

(85)

, (86)

, (87)

(88)

(89)

(90)

(91)
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D) As w = w on Tf we have, according to (25), (26),

q(xu x2) w(xl5 x2) ds - qm{xly x2) w(xl9 x2) ds =
.'r2 Jrm2

= I { [
J = I ' Jo

where N2 is the number of boundary triangles lying along the curved part of r2 .
Let us set for the sake of brevity

A}1 = 9 / 0 -

We have, according to [9, Lemma 2] :

P/0 = P7(0 [i + O(*Ü] , Py(o =

Using Taylor's theorem we can write

where

Thus Sj e 77 u Tf. Using (72) and (78) we can find

max I w(cpf (*), vj/f (0) I ^ ^m\
*e[0,l]

where

Finally,
Lemma

relations
l]give

m

dw/dxk = (c

max

j =

oxi

max
Ï = 1 d

l « f |

andand (13)2 together with [9,
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Combining ail relations introduced hère with (79)l5 (80)x and taking into
account that N2 = O^"1) we obtain

q w ds - qmw ds

< Chl | N2 § m2 ƒ f f (a/)2 j ^ ^ C*""1/2 . (92)

E) Relations (66), (67), (85), (90), (91) and (92) together with Lemma 1 imply
relation (65). Theorem 9 is proved

Remark 5 : We proved more than relation (65) : Under the assumptions of
Theorem 9 the rate of convergence of the first term on the right-hand side of (35)
is O(hU2) in the case n = 1 and O(hm) in the case n > 2.

Remark 6 : For a greater simplicity we restricted our considérations to the
case of triangular finite éléments of the Lagrange type. Using results of [9] we
can prove theorems analogous to Theorems 7 and 9 also in the case of triangu-
lar finite C°-éléments of the Hermite type. The proofs follows the same lines
as the proofs of Theorems 7 and 9.
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