Finite element methods for coupled thermoelasticity and coupled consolidation of clay
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 18 (1984) no. 2, p. 183-205
@article{M2AN_1984__18_2_183_0,
     author = {\v Zen\'\i \v sek, Alexander},
     title = {Finite element methods for coupled thermoelasticity and coupled consolidation of clay},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     publisher = {Dunod},
     volume = {18},
     number = {2},
     year = {1984},
     pages = {183-205},
     zbl = {0539.73005},
     mrnumber = {743885},
     language = {en},
     url = {http://www.numdam.org/item/M2AN_1984__18_2_183_0}
}
Ženíšek, Alexander. Finite element methods for coupled thermoelasticity and coupled consolidation of clay. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 18 (1984) no. 2, pp. 183-205. http://www.numdam.org/item/M2AN_1984__18_2_183_0/

[1] D. Aubry, J. C. Hujeux, Special algorithms for elastoplastic consolidation with finite elements, Third International Conference on Numerical Methods in Geomechanics (Aachem), 2-6 April 1979.

[2] B. A. Boley, J. H. Weiner, Theory of Thermal Stresses, John Wiley and Sons, New York-London-Sydney, 1960. | MR 112414 | Zbl 0095.18407

[3] J. R. Booker, A numerical method for the solution of Biot's consolidation theory, Quart. J. Mech. Appl. Math. 26, 1973, pp. 457-470. | Zbl 0267.65085

[4] S.-I. Chou, C.-C. Wang, Estimates of error in finite element approximate solutions to problems in linear thermoelasticity, Part I, Computationally coupled numerical schemes. Arch. Rational Mech. Anal. 76, 1981, pp. 263-299. | MR 636964 | Zbl 0494.73071

[5] P. G. Ciarlet, The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam, 1978. | MR 520174 | Zbl 0383.65058

[6] T. Dupont, L2-estimates for Galerkin methods for second order hyperbolic equations, SIAM J. Numer. Anal. 10, 1973, pp. 880-889. | MR 349045 | Zbl 0239.65087

[7] G. Fichera, Uniqueness, existence and estimate of the solution in the dynamical problem of thermodiffusion in an elastic solid, Arch. Mech. (Arch. Mech. Stos.) 26, 1974, pp. 903-920. | MR 369959 | Zbl 0297.35015

[8] C. Johnson, A finite element method for consolidation of clay, Research Report 77.05 R, Chalmers University of Technology, Göteborg, 1977. | Zbl 0392.73091

[9] J. Nedoma, F. Leitner, Solution of problems of streess and strain of fully saturated porous media (In Czech.) Staveb, Cas. 27, 1979, pp. 23-27.

[10] J. Nedoma, The finite element solution of parabolic equations, Apl. Mat. 23, 1978, pp. 408-438. | MR 508545 | Zbl 0427.65075

[11] J. Nedoma, The finite element solution of elliptic and parabolic equations using simplical isoparametric elements, RAIRO Anal. Numér. 13, 1979, pp. 257-289. | Numdam | MR 543935 | Zbl 0413.65080

[12] M. Zlamal, The finite element method in domains with curved boundaries, Internat. J. Numer. Methods Engrg. 5, 1973, pp. 367-373. | MR 395262 | Zbl 0254.65073

[13] M. Zlamal, Curved elements in the finite element method, II. SIAM J. Numer. Anal. 11, 1974, pp. 347-362. | MR 343660 | Zbl 0277.65064

[14] M. Zlamal, Finite element methods for nonlinear parabolic equations, RAIRO Anal. Numér. 11, 1977, No. 1, pp. 93-107. | Numdam | MR 502073 | Zbl 0385.65049

[15] A. Zenisek, Curved triangular finite Cm-elements, Apl. Mat. 23, 1978, pp. 346-377. | MR 502072 | Zbl 0403.65045 | Zbl 0404.35041

[16] A. Zenisek, The existence and uniqueness theorem in Biot's consolidation theory. (To appear in Apl. Mat. 29, 1984.) | MR 747212 | Zbl 0557.35005