A time-discretization procedure for a mixed finite element approximation of miscible displacement in porous media
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 17 (1983) no. 3, p. 249-265
@article{M2AN_1983__17_3_249_0,
     author = {Douglas, Jim Jr. and Ewing, Richard E. and Wheeler, Mary Fanett},
     title = {A time-discretization procedure for a mixed finite element approximation of miscible displacement in porous media},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     publisher = {Dunod},
     volume = {17},
     number = {3},
     year = {1983},
     pages = {249-265},
     zbl = {0526.76094},
     mrnumber = {702137},
     language = {en},
     url = {http://www.numdam.org/item/M2AN_1983__17_3_249_0}
}
Douglas, Jim Jr.; Ewing, Richard E.; Wheeler, Mary Fanett. A time-discretization procedure for a mixed finite element approximation of miscible displacement in porous media. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 17 (1983) no. 3, pp. 249-265. http://www.numdam.org/item/M2AN_1983__17_3_249_0/

1. J. Douglas, Jr., Effective time-stepping methods for the numerical solution of nonlinear parabolic problems, The Mathematics of Finite Eléments and Applications III, MAFELAP 1978, J. R. Whiteman (éd.), Academic Press, 1979. | MR 559305 | Zbl 0435.65095

2. J. Douglas, T. Dupont and P. Percell, A time-stepping method for Galerkin approximations for nonlinear parabolic équations, Numerical Analysis, Dundee 1977, Lecture Notes in Mathematics 630, Springer, 1978. | MR 483542 | Zbl 0381.65058

3. J. Douglas, T. Dupont and R. E. Ewing, Incomplete itération for time-stepping a nonlinear parabolic Galerkin method, SIAM J. Numer. Anal., 16, 1979, pp. 503-522. | MR 530483 | Zbl 0411.65064

4. J. Douglas, R. E. Ewing and M. F. Wheeler, The approximation of the pressure by a mixed method in the simulation of miscible displacement, RAIRO Analyse numérique, 17, 1983, pp. 17-33. | Numdam | MR 695450 | Zbl 0516.76094

5. J. Douglas, M. F. Wheeler, B. L. Darlow and R. P. Kendall, Self-adaptive finite element simulation of miscible displacement, to appear in SIAM J. Scientific and Statistical Computing.

6. R. E. Ewing and T. F. Russell, Efficient time-stepping methods for miscible displacement problems in porous media, SIAM J. Numer. Anal., 19, 1982, pp. 1-67. | MR 646594 | Zbl 0498.76084

7. R. E. Ewing and M. F. Wheeler, Galerkin methods for miscible displacement problems in porous media, SIAM J. Numer. Anal., 17, 1980, pp. 351-365. | MR 581482 | Zbl 0458.76092

8. C. Johnson and V. Thomée, Error estimates for some mixed finite element methods for parabolic problems, RAIRO Analyse numérique, 15, 1981, pp.41-78. | Numdam | MR 610597 | Zbl 0476.65074

9. D. W. Peaceman, Improved treatment of dispersion in numerical calculation of multidimensional miscible displacement, oc. Pet. Eng. J. (1966), pp. 213-216.

10. D. W. Peaceman, Fundamentals of Numerical Reservoir Simulation, Elsevier, 1977

11. P. A. Raviart and J. M. Thomas, A mixed finite element method for 2nd order elliptic problems, Mathematical Aspects of the Finite Element Method, Lecture Notes in Mathematics 606, Springer, 1977. | MR 483555 | Zbl 0362.65089

12. T. F. Russell, An incompletely iterated characteristic finite element method for a miscible displacement problem, Thesis, University of Chicago, June 1980.

13. A. H. Schatz, V. Thomée and L. Wahlbin, Maximum norm stability and error estimates in parabolic finite element équations, Comm. Pure Appl. Math., 33, 1980, pp. 265-304. | MR 562737 | Zbl 0414.65066

14. R. Scholz, L -convergence of saddle-point approximations for second order problems, RAIRO Analyse numérique, 11, 1977, pp. 209-216. | Numdam | MR 448942 | Zbl 0356.35026