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AN UP-WIND FINITE ELEMENT METHOD
FOR A FILTRATION PROBLEM (*)

by P. PIETRA C1)

Communiqué par F BREZZI

Resumé — « Une méthode d'éléments finis décentrée pour un problème de filtration» On considère
un schema d'éléments finis décentré applique a un problème de frontière libre hé à Vécoulement à
travers une digue, on démontre Vexistence d'une solution discrète et des résultats de convergence
En ce qui concerne la variété des problèmes résolubles, cette formulation est moins générale qu'un
précédent schéma de Alt Par contre, on obtient plus de généralité sur le choix de la triangulation,, ce qui
permet F utilisation de techniques de décomposition automatique du domaine

Abstract — We prove existence of a discrete solution and convergence results for an up-wind
fimte element scheme appheâ to afree boundary problems in porous media. Application wise, the
present study is less gênerai than a previous scheme by Alt On the other hand, we allow more generahty
on the triangulation, so that automatic décomposition techniques may be used

INTRODUCTION

It is well known (see e.g. [9]) that the study of the flow of an incompressible
fluid through a porous medium leads to free boundary problems for elliptic
équations. These problems were initially studied with heuristic methods,
applying a fixed point procedure for a séquence of problems, each of which
solved on a different fixed domain (see e.g. [14], [17]). A great improvement to the
theory was introduced by Baiocchi (see e.g. [4]), who formulated the problem,
in the special case of a rectangular domain, on a rigorous mathematical basis,
transforming it into a variational inequality of obstacle type. This idea was then
generalized (see e.g. [8], [5]) for the treatment of more gênerai domains. Accord-
ing to necessary, the free boundary problem was transformed into a variational
inequality depending on one or more additional parameters or into a quasi
variational inequality. These formulations, if applicable, are very good and give

(*) Received in december 1981
O Istituto di Analisi Numenca del C N R corso Carlo Alberto 5, 27100 Pavia, Italie.
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464 P PIETRA

rise to efficient numerical algonthms However their application requires some
restriction on the geometry of the domain Also, different geometry and boun-
dary conditions may lead to different formulations

Later on new formulations were given by Brezis-Kmderleherer-Stam-
pacchia [10] and Alt [1] This new framework is somehow more comphcated,
the solution is less regular, but allows a more genera! treatment, in particular
with respect to the geometry of the domain The more gênerai formulation by
Alt [1] was also treated from the numerical point of view In [2], Alt proves,
under suitable assumptions on the discretization, the existence of a discrete
solution and the strong convergence of a subsequence of them to a solution of
the continuous problem The abstract framework consists of conforming finite
element methods and no " approximation " is done for the differential
operators This fact somehow restncts the choice of the " available " types
of triangulation and all the given examples (see [2]) require décompositions of
uniform type Hence we are back to some kind of finite différences framework
and the treatment of the fixed boundanes requires some adjustment, even
in the case of a rectangular domain

In this paper we deal with Brezis-Kinderleherer-Stampacchia's formulation,
which is similar to but shghtly more restrictive than Alt's one (e g, capillarity
effects are neglected) We remain, essentially, within the framework of confor-
ming finite éléments, but we introducé some up-wmd techniques into the
discretization In order to justify this idea, we note that the pressure u vérifies
an équation of type

- Au - DyH(u) = 0 m Q, (0)

where H(x) is the Heaviside function, so that H(u) is the charactenstic function
of the set { u > 0 }

Equation (0) can be mterpreted as a diffusion-convection problem, where the
coefficient of the convection term may be infinité It is well known that usual
finite element methods are not suitable for this kind of problems In fact, these
methods are unstable, when the ratio between the diffusion coefficient and the
convection coefficient is « too small » Therefore some special « up-wind treat-
ment of the convection term (essentially, of the Dy operator) has to be used
in order to recover stabihty Many of these up-wmd techniques are known in
the hterature for finite element methods (see e g [18] and the références therein
contained) Here we choose a scheme introduced by Tabata [19]

With respect to Alt's scheme, our approximation has the disadvantages that
the formulation (as previous stated) is more restrictive Moreover only a weak
convergence can be proved On the other hand, many arguments are much
simpler (also because the problem is not considered m an abstract setting)
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AN UP-WIND METHOD FOR A FILTRATION PROBLEM 465

Nevertheless the treatments are similar enough, so that many crucial Alt's
arguments may be used. The present formulation allows much more gênerai
décompositions, so that we are truiy in the framework of finite element methods,
and therefore the fixed boundary is " followed " much more neatly. For instance
each polygon can be treated without approximation of the domain and auto-
matic décomposition routines can be used. Hence the formulation is more
suitable for entering a finite element code.

What follows is an outline of the paper : in paragraphs 1 and 2 we state
respectively the continuous and the approximate problem; in paragraph 3
we prove the existence of a discrete solution and in paragraph 4 we prove that
a subsequence of discrete solutions converges to a solution of the continuous
problem ; paragraph 5 reports some numerical results arJd finally paragraph 6
contains some concluding remarks.

In this paper we will use the classical Sobolev spaces with the following
notations :

n W=fc

1. THE CONTINUOUS PROBLEM

Let Q be the section of a porous medium. For simplicity's sake, it is assumed
to be a polygon. We remark that with similar arguments it is possible to consider
problems where Q is a bounded, connected open set of U2, with a Lipschitz
boundary dû.

We dénote by S+ the part of the boundary in contact with the reservoirs,
and by S0 the part in contact with the air. The third part, dQ\(S+ u S0),
is the impervious part of the dam. Moreover S0 and S+ are measurable and
disjoint sets, and the measure of S + is positive. The medium is assumed to be
inhomogeneous and anisotropic. The permeability is given by a symmetrie
tensor K, such that

Ke(C°-W,. ^ K . ^ a l ^ C ) V̂ eR
2 (1.1)

where C° l(Q) is the space of the Lipschitz continuous functions.
Let e = (0. 1) be the vertical unit vector.

(l) The convention of summation of repeated indices is assumed, and | | dénotes hère the
euchdean norm.

vol. 16, n° 4, 1982



466 P PIETRA

We suppose that the atmosphenc pressure is zero, and we neglect the
capillanty and evaporation effects.

The function u0 e C°(S° u S + ) dénotes the boundary value of the pressure,
ie u0 is the hydrostatic pressure on S +(u0 > OonS+) , and it is zero on S°
We consider the following continuous problem :

Probleml : Find a pair (uty)eHx(Q) x L°°(Q) such that
u > 0 a e. in Q, u = u0 on S+ u 5°

0 ^ y ^ la.e in Q, y = 1 a e. on { u > 0 }

\/veW={weH1 | w = 0onS + ,w ^ OonS0} .

(1 2)

For a theoretical study of problem (1 2) we refer to the works by Brézis-Kinder-
leherer-Stampacchia [10] (existence results) ; Alt [l| (existence and regulanty
results for a more gênerai problem that, for a suitable choice of test functions,
reduces to problem 1), Alt-Gilardi [3] and Chipot [12] (umqueness results,
and charactenzations of non-umqueness situations)

In case of more restrictive assumptions on the geometry of the domain Q,
other formulations of the problem are known : see, for instance, Baiocchi [4]
(transformation of the problem in a vanational mequahty), Baiocchi [5]
(transformation in a quasi-vanational mequahty) and Baiocchi-Capelo [6]
(for complete références about these probiems). These formulations are the
starting point for a numerical study of the problem, see for instance [7] and [6]
(for the further références)

2. THE DISCRETE PROBLEM

Let { TSh }h be a family of triangulations of Q, depending on a parameter
h > 0. For each triangulation "gh = { Tt }^± ^ and for each Tt e 1^, we set the
following notations :

h(Tt) = the diameter of Tt,

\) = the supremum of the diameters of the balls contained m Tt,

We suppose that the triangulation Vh is regular and of (weakly) acute type,
ï.e. there exists a constant a < 1, independent of the triangulation, such that

VT.e-E,, (2 1)

R A I R O Analyse numerique/Numencal Analysis
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and every angle 8 of the triangles of TSh vérifies

467

(2.2)

Let { Pt }ieNh be the set of the nodal points of the triangulation and let us
consider some subsets of the index set Nh :

Nh
+ = { Z G N J P I G S + } ; Atf = {ieN^P.eS0};

Nh = Nh\Nh ; Nh = { i e Nh\ PJ dQ. or K(Pt) e applied at Pt intersects Q }.

We also introducé a dual décomposition of the domain Q :

n=~üTDl9 (2.3)

where Dt is the barycentric domain associated with Pl9 i.e.

Di = \J{D^\Tke ^h s.t. Pt is a vertex of Tk } , (2.4)

where

and Xl7 \ï, Xf are the barycentric coordinates with respect to the vertices of

Figure 1.

Moreover let Çïh be defined as :

Qh =

We choose

P?

(2.5)

where Pr dénotes the space of polynomials of degree ^ 1 ; we call ^ the basis
function of Vh associated with the nodal point Pl9 i.e. such that $l

h(Pj) = btJ

vol 16, n° 4, 1982



468 P. PIETRA

Let xît be the characteristic function of the domain Dti and let x¥h be the linear
spacespannedby %l

h, ie Nh; î.e.

¥fc = { ̂  G L2(Q) | \|/fc(x) = E VH XiM } - (2.6)

Finally, we introducé the up-wind triangle associated with the nodal point
P,(see[19]).

A triangle % e ̂ h is called the up-wind triangle of the nodal point Pt if :

(i) Ptïs a vertexof^;,
(n) %t\Pt intersects the oriented half-hne with end point Pt and direction

K(Ft)e(see/ïg. 2 for K = kl).

e direction

Figure 2.

We remark that all the nodal points Pl9 with i e Nh, have an up-wind element.
If there exist two up-wind éléments at the note Pti we call ûkl one of them ai bi-
trarily chosen.

We now define a linear operator Eh from Vh into x¥h in the following way :

Eh wh = X (Efh wh) x
l
h, for each vv, e Vh, (2.7)

where
E^w^KiPJeffnw), (2.8)

i.e. Eh wh is a function of x¥h such that Eh wh(P() is the value of the denvative in
the K(Pl)£ direction of the function wh on the triangle %. We remark that this
derivative is a constant in % and, if there are two up-wmd éléments, Ehi wh is
independent of the choice of %, since xvh e Vh.

We dénote by ul
0 the value of uö at Pr

R A I R O Analyse numénque/Numencal Analysis



AN UP-WIND METHOD FOR A FILTRATION PROBLEM 469

The following discretized problem can now be introduced :

P r o b l e m 2 : F m d a p a i r (uh9 y h ) € V h x x¥h s u c h t h a t

(i) uh ^ 0 in Q and u\ = ul
0 if i e Nh

+ \ JV °

(h) 0 < yh^ 1 in Q and yl
h = 1 if ul

h > 0 > (2.9)

(in) ah(uh9 vh) + (Eh vh, yh)h > 0

V«fc e PFft - { w, e F J ŵ  = 0 if i e Nh
+, wj < 0 if i e

where ( . , . )h dénotes the scalar product in L2(Qh) and

ah(uh> vh) = Vuh Kh Vvh dx ,

with Kh constant on each triangle, defined by Kh(x) = K(bT) Vx e T, where
bT is the barycentre.

3. EXISTENCE RESULTS

In order to prove the existence of a solution of the discrete problem (2.9), a
different form is adapted.

Defining atJ and etJ as follows

ïh <t>L, li)u if / G Ni,
h Yft, KH>h J h _ n ^

0

we can verify that the mequality (2.9) is equivalent to

' = 0 if i e J1
)

i f , e N o (3-3)

i4 = wl
0 and Yi = 1 if i e iVft

+ .

A theorem, the proof of which can be found in Alt [2] (theorem 2.4), is stated
hereafter.

THEORFM 3 1 : Let atJ and eXJ be defined as in (3.1) and (3.2). If

aH>0; atJ^0 ij j ^ i (3.4)

en ^ 0 ; etJ ^ 0 ij j # », (3.5)

then there exists a pair (uh, yh) e Vh x Tft, solution of problem (2.9).

vol 16, n°4, 1982



470 P. PIETRA

Hence it is sufficient to show that the hypotheses (3.4) and (3.5) are verified
in our case.

LEMMA 3.1 : Let atJ and el} be defined by (3.1) and (3.2).
Let <fyT(K)be defined by

2
cos 4>T = - , 0 ^ <|> ^ n/2,

Jl + X + 1/X

where X = || i C ^ ) " 1 || || K(bT)\\.

/ƒ TSfc is such that for each triangle T e^&h and for each angle QinTwe have

8^7u/2-c|>T , (3.6)

then the following inequalities hold :

(i) au > 0 ; a y < 0 if j * i

(ii) eu > 0 ; e v < 0 if j / i.

Proof : In the isotropic case (X = 1), it is well known (see e.g. [13]) that the
assumptions on the décomposition (2.1), (2.2), and the property (1.1) on K
imply (i). By analogous arguments we can show that (3.6) implies (i). We
remark that it is possible to consider problems with weak anisotropy. In
particular 0 is equal to n/3 if X = 3.

The proof of (ii) is contained in Tabata [19] (lemma 3), but we recall it for
reader's convenience.

Let Pp PJlS PJ2 be the vertices of% and Xp XJl9 XJ2 its barycentric coordinates.
We remark that

„ _Uxlii)K(Pj)eVK if ie{j,h,j2}
l 0 otherwise.

Let pk be the vector ^PJk, k = 1,2.
A short calculation shows that

VXjrpk - 5lk for /, k = 1,2 (3.7)

VXj.pk - - 1 for k = 1,2. (3.8)

By the définition of up-wind triangle, it follows that there exist non-negative
numbers c{,k=l,2, such that

K(Pt)e= - c i ^ - c ^ . (3.9)

From (3.7), (3.8) and (3.9), (ii) can be obtained.

R A I R O Analyse numénque/Numencal Analysis



AN UP-WIND METHOD FOR A FILTRATION PROBLEM 471

Remark 3 1 We note exphcitly that in the isotropic case (K = kl) one has
4>r = 0 and condition (3 6) reduces to (2 2)

Remark 3 2 For the actual computation of a solution (uh9 yh) of a problem
of this type, we refer to [2]

4 CONVERGENCE RESULTS

In this section ît wiU be proved that ît is possible to extract a subsequence that
converges to a solution of the continuous problem, from each family of discrete
solutions More precisely we will prove the following resuit

THEOREM 4 1 For each family {(uh, yh) }h of solutions of problem (2 9),
there exists a subsequence { (uhh, yhk) }£°=0, and there exists a pair

such that

uhk -" u weakly in H1(Ç1)

yhk -^ y weakly star in L°°(Q)

The pair (u, y) is a solution of problem (1 2)
If (u, y) is the unique solution of problem (1 2), the whole séquence { (uh, yh) }h

converges to (u, y)

In order to prove theorem 4 1, some lemmas are needed
We defïne for each veHx(Q)

Ehv= £ XM+ (K(Pt)eVv)dx), (4 1)

where
C 1 f

fax-f fax = -I— !

We remark that if v e Vh, the définition (4 1) coïncides with the previous
définition (2 7)

LEMMA 4 1 There exists a constant c independent ofh, such that

| (Eh V, T[)h\ ^ C II V II ! n || Tl 1| o Q > ( 4 2 )

for each v e H1(Q) and for each rj e L2(Q)

Proof From Holder's înequahty ît follows that

\ ( E h v 9 - r \ ) h \ ^ c \ \ E h v | | O n h || Ti | | o n

vol 16, XP 4, 1982
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Moreover

II £* « IISA. = f
Jnh

P. PIETRA

£ f K(Pt) e Vv dx ) xL
2

X X(P,)gVoix

On the other hand

K(Pt) e Vv dx K(Pt)e Vv \\l^

because of the previous assumption of regular triangulation.
Therefore we have

0,Dt

and (4.2) is proved.

LEMMA 4.2 : For each v e H1(Q.),for each r\ e L2(Q)

| (Eh v9r\)h — (Ev, r|) | -> 0 for h vanishing ,

where (Ev, r\) = \ {Ke Vv) r\ dx.
Jn

Proof :

'n\nh

(4.3)

Ke VVT] dx(Eh v, r | ) , - {Ev, Tl) | < | (Eh v, T])h - {Ev, Tl), I

The second term goes to zero since

w(Q\Qh) -• 0 when h -> 0 .

In order to prove that also the first term vanishes, a first step is to show that
for each weC^iQ) and for each i\ e L2(Q)

\{Ehw9i\)h - ch (4.4)

holds.
We have

\{Ehw,r\)h-{Ew,j])h w, - {Ih w,

R A I R O Analyse numérique/Numencal Analysis



AN UP-WIND METHOD FOR A FILTRATION PROBLEM 473

where

h w = E iK w) ^ > w i t h '*. w = K(Pt) e_ Vw .
isNh

By Hölder's inequality and by assumption (1.1) on K, we obtain

| (Eh w, TI), - (Ew, Ti)fc | < II Eh w - Ih w \\OfÇlh || n ||0.Q, +

+ ch\ w l i ,n h II T1 llOfnh-

Moreover

\\Ehw-IhW | | 2 A = I II £A, w - ƒ,, w | |g 1 ( i .

Now the problem is to obtain an uniform estimate of || Ehi w — Ihiw \\ Q>IV

w G C ̂ (Q), then there exists a point ^ e ^ such that

X(P() e Vw(^) = 4- X(P,) eVwdx.

From this remark and recalling in particular that Vw is a Lipschitz continuous
function, we obtain

II £ ^ w - 4 . w II o,!/, = . g _ Y ,2 I ̂ - * I dx

^ ch2 m{Dg).

Therefore

(Eh^r\)h ~ (/*w,ii)h| < ch

holds, and (4.4) follows.
In order to complete the proof, we recall that C °°(Q) c ƒ/x (Q) with density ;
so for each v G H l(Q), there exists a séquence { wn } of functions wn G C°°(Q)
such that vvn -• w strongly in iî 1(Q). Then by (4.2) and (4.4), applied to
wn G C°°(fi), (4.3) easily follows.

LEMMA 4.3 : If the triangulation ^h vérifies (2.1), (2.2), and aip etJ are defined
as in (3.1) and (3.2), then thefollowing properties hold ;

(i) there exists a constant P : > 0, such that

en ^ Pi naufor eacn i e Nft> Px independent of^h

(ii) if Pk and P} are nodal points such that there exists a constant (32 with

akk ^ - P 2
 ak3,

vol 16,110 4, 1982
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then

where p = max (P2, Px p2).

Proof : Property (i) easily follows by assumptions (3.1) and (3.2).
Since y£ < 1, from the inequality (3.3)

ft j / " _l_ o "> /7 liJ
KK n KK — Kj n

follows, hence

By assumptions

ükk ^ "" P2 akj •>

moreover

ekk < Pi H * ,
then

where p = max (P2, ^1 p2).

LEMMA 4.4 : Let i e Nh be an index such that yl
h < i.

Then there exists a constant C, independent of the triangulation T5ft, such that

uh ^ Ch on Dt (4.6)

holds.

Proof : Let Jl
h be the set of indices j such that the node P3 is adjacent to JPr

We have to show that

for each j e Jl
h.

The condition yl
h < 1 together with (2.9) (ii) implies

(4.7)

(4.8)

hence (4.7) holds trivially for y = i.
The proof of (4.7) will be carried out using (4.8) and lemma 4.3(ii). The

difficulty is that (4.5) is not verified for each; e Jl
h with P2 independent of lSh.

R A I R O Analyse numenque/Numencal Analysis
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We now consider a triangle T that contains Pv We dénote by PJi9 PJ2, PJ3

the vertices of T and introducé the 3 x 3 matrix

a?s = ! VXr Kh VXS dx r, s = 1, 3

where Xk is the barycentric coordinate with Xk{Pn) =_5feï.
It is necessary to show that there exists a constant J32 > 0, independent of T

and lSft, such that

sup al < - (32 ajs ]
(4.9)

for at least two off diagonal éléments ajs. J

3

Since £ Xr = 1, we get
r = i

3

I ajs = 0 , 5 = 1, 3. (4.10)

On the other hand, with our assumptions we have

ajr > 0 and ajs ^ 0 r # s (see lemma 3. l(i)). (4.11)

Moreover the triangulation is regular, hence

Ci < a l / a l ^ c 2 r 9 s = 1 , 3 . (4.12)

Then (4.10) together with (4.11 ) and (4.12) implies (4.9).
Now it is easy to see, using (4.9) and the fact that the décomposition is

regular, that there exists a constant (32, independent of h, such that for any
node Pl and any j G Jft

l, at least one of the following two properties holds :

(a) a^-laiJ = = |
(b) 3k G Jl

h s.t. au ^ - p 2 alk and akk ^ - p 2 akj. ]

We can now conclude the proof. Let Pt again be such that y|, < 1 (and
hence ul

h = 0) and let j G Jl
h. If (4.13) (a) holds, then u{ ^ C(MJ, + h) thanks

to lemma 4.3(ii). If (4.13) (b) holds, then u\ < C(i*i + h) and uj; ^ C(ŵ  + h)
using twice 4.3(ii). Hence (4.7) is proved.

vol 16, n°4, 1982



476 P. PIETRA

Proof of theorem 4.1 : By lemma 4.1 and the fact that 0 ^ ŷ  ^ 1 for each i,
we obtain

where C is independent of h,
Then there exist y e L ^ Q ) , ueHv{Q) and there exist a subsequence of

{ yh} and a*subsequence of { uh }, that is still denoted by {(uh, yh)}, such that

YA ̂  y weakly star in L°°(Q) (4.14)

uh-^u weakly in Hx (Q). (4.15)

Moreover 0 < y < 1 and u ^ 0 almost everywhere, and M = w0 on
S ° u S + .

Now it is necessary to prove that this pair (u, y) is a solution of probiem
(1.2). It is well known (see [16]) that for each v e W it is possible to choose a
séquence of vh e Wh such that

vh^v strongly in H1 (Q). (4.16)

Letting h -> 0 in the inequality (2.9) (ni), by (4.14), (4.15), (4.16) and
lemma 4.2. we obtain

ƒ
Ja

VvK(Vu + ye) dx ^ 0 VveW . (4.17)

In order to conclude that the pair (w, y) is a solution of problem (1.2), we
have to show that there exists a set N ç Q of measure zero, such that

{y < l } \ A T ç {w = 0 } \ N . (4.18)

The property (4.18) is proved in [2] (theorem 3.4), but for completeness
we shall give the proof below.

Let e > 0 and x be a point such that the set {y ^ 1 - 8 } has density 1
at x, Le.

x({ Y < 1 - e }) ^ 1 - Hr) > with X,(r) -> 0 when r -> 0 ,

where Br(x) dénotes the bail of radius r and centre x, and % the characteristic
function.

R A I R O Analyse numérique/Numencal Analvsis
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The property (4.18) is proved when we show that the set { u = 0 } has
lower density positive at x.

Since y ̂  1,

{ y < 1 - e + f x ( ( Y > l - e } ) ^ l - £ + X(r) ̂  1 - 3/4 e
JBr(x) JBr(x)

holds, for r small enough.
As yh -^ y weakly in L*(Q), for fîxed r and h small enough, we have

1
and

( f ( ) f y„> e/2. (4.19)-f x({y* < i » = i - -f

Therefore, there exists i e Nh such that

ŷ  < 1 and Dt n Br(x) =£ 0 . (4.20)

By lemma 4.4

uft ^ Ch in Dt (4.21)

holds.
Since (4.21) is true for each i e Nh with property (4.20), we conclude that

and, by (4.19), that

| X({ Y,
JBr(x)

For S > Owith/i < 5/C, we introducé the function

^ - max(min(2- uJ89 l),0

Hence

and

s/2

vol 16,n°43 1982
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Since uh -> u strongly in Ll(Q)

X ^h -> X max (min (2 - u/5, 1), 0) < X x({ u < 2 5 }).
JfirU) JflrU) JBr{x)

For Beppo Levi's theorem, letting /î->0we obtain

6/2i x({ « = o ;

for r small enough, i.e. the lower density of the set { u = 0 } at point x is positive.
In this way, property (4.18) is proved.

5. NUMERICÂL RESULTS

In order to obtain information on the accuracy of the proposed method,
we tested the discrete scheme in a simple case and we compared the obtained
results with the " exact solution ".

The dam was supposed to be rectangular, the medium homogeneous and
isotropic. We choose as " exact solution " the solution of the same problem
computed via Baiocchi's transform (see [4]) with a mesh size h = 1/60. The
transformation leads to the resolution of a variational inequality in the new
unknown w, with — wy = u. If the space H1(Q) is approximated by piecewise
linear finite elements3 it csn be proved (see [11], [15]) that the following error
estimate

II W - Wh Hl,Q ^ ch

holds. Hence the choice of - wh y as " exact solution " is reasonable. We
computed the relative error in L2 and Hx norm :

Il wh,y lU,n

The obtained results are as follows :

h = 1/10 ERR0(h) = 0.001 9 ERRx(h) = 0.071

h = 1/15 ERR0(h) = 0.001 2 ERR^h) = 0.053

h = 1/20 ERR0(h) - 0.000 9 ERR^h) = 0.047 .

Via least squares, we computed the convergence rate in both cases, i.e. the
numbers a; such that

ERRt{h) ^ chai i = 0, 1
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and we obtained

a0 = 1.08 a2 = 0.59 .

In figure 3 we reported the free boundary of the " exact solution " and
the characteristic functions of the set { uh > 0 } (2) for h = 1/10, h = 1/15,
h = 1/20.

The numerical computations were carried out on the Honeywell 6040
System of the Centro di Calcoli Numerici of the University of Pavia.

6. CONCLUDING REMARKS

We summarize hère, for simplicity's sake, the results obtained in the case of
isotropic homogeneous materials (i.e. K = I ) for the problem (1.2). If : a) the
triangulation is of weakly acute type (see condition (2.2)) ; b) uh is assumed to be
piecewise linear; c) yh piecewise constant on the dual décomposition (2.3),
and d) the up-wind scheme (2.7) is chosen for the discretization of the Dy

operator, then for each h > 0 the discrete problem (2.9) has at least one solu-
tion ; moreover from each family { (uh, yh) } h > 0 of solutions we can ex tract a
subsequence which converges weakly to a solution («, y) of (1.2). Obviously
if problem (1.2) is known to have a unique solution, then the whole séquence
{(uh> Jh)} converges weakly to it. The method adapts immediately to any
polygonal domain Q with no changes in the geometry. The implementation
is reasonably simple and proved to give satisfactory numerical results.

(2) Even if m the contmuous problem y = %({u > 0 }), yh is not a characteristic fonction, but
thereexistsastnpof/iwidth, withO < yj < 1.
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