RAIRO. Analyse numérique

Y. MADAY

A. QUATERONI
 Approximation of Burgers' equation by pseudo-spectral methods

RAIRO. Analyse numérique, tome 16, no 4 (1982), p. 375-404
http://www.numdam.org/item?id=M2AN_1982_16_4_375_0
© AFCET, 1982, tous droits réservés.
L'accès aux archives de la revue «RAIRO. Analyse numérique » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/ conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

$\mathcal{N u m d a m}^{\prime}$

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques
http://www.numdam.org/

APPROXIMATION OF BURGERS' EQUATION BY PSEUDO-SPECTRAL METHODS (*) (**)

by Y. Maday (${ }^{1}$) and A. Quarteroni (${ }^{2}$)
Communicated by P G Ciarlet

Abstract

Résume - On applıque des méthodes pseudo-spectrales de collocatıon basées sur des développements polynomiaux de Chebyshev et de Legendre à l'équatıon de Burgers stationnaıre monodimenslonnelle L'analyse numérıque est construite à partır de théorèmes abstraits concernant l'approximatıon en dimension finie d'une classe de problèmes non lineaires.

Abstract - Pseudo-spectral (collocation) methods for the statıonary one dimensional Burgers' equation based on Chebyshev and Legendre polynomial expansions are considered The numerical analysis is developed by means of some abstract theorems concerning finite dimensional approximations of a class of nonlinear problems.

INTRODUCTION.

The advection-diffusion equation :

$$
\begin{equation*}
-u_{x x}+\lambda\left(u u_{x}-f\right)=0, \quad \lambda \in \mathbb{R}^{+} \tag{0.1}
\end{equation*}
$$

known as steady-state Burgers' equation, is commonly used in many applications, since it describes numerous transport phenomena of interest to engineers and scientists. Even, (0.1) is an elliptic regularization of the hyperbolic Burgers' equation relative to nonlinear evolution transport.

In recent years a considerable number of numerical finite difference and finite element methods have been proposed in this field, particularly when λ is large and advection is dominating. We refer for instance to the "upwind " finite differences, first considered by Courant, Isaacson and Rees in 1952, and to

[^0]the extension of the upwinding technique to finite elements first used by Zienkiewicz and his school in 1977. Spectral and pseudo-spectral methods for the linearized Burgers' equation were proposed by Gottlieb and Orszag [8], Kreiss and Oliger [9] and by other authors more recently. In [13] Nickell, Gartling and Strang analyze a spectral decomposition coupled with finite element methods to solve numerically (0.1).

In [11] the analysis of an approximation to (0.1) by spectral methods based on Legendre and Chebyshev polynomials is given by the authors. Homogeneous boundary conditions on the interval $I=(-1,1)$ are taken into account. For the same problem, in this paper we analyze pseudo-spectral methods using the same orthogonal polynomials. Stability and convergence analysis is more complicate than in [11] since the effects of the errors arising from numerical integrations have to be considered here. However, pseudo-spectral numerical schemes are more convenient for their computational aspects (indeed, the FFT algorithm can be successfully used in general). Furthermore, as Gottlieb and Orszag emphasized in [8], Chebyshev polynomials have high resolution power for thin boundary layers (which may occur when λ is large).

Problem (0.1) may be written equivalently in the abstract form :

$$
\begin{equation*}
\{\lambda, u\} \in \mathbb{R}^{+} \times V, \quad u+T G(\lambda, u)=0 \tag{0.2}
\end{equation*}
$$

where V and W are two Banach spaces with $W \subset V^{\prime}, G$ is a differentiable mapping from $\mathbb{R} \times V$ into $W, T \in \mathscr{L}\left(V^{\prime} ; V\right)$ and T is compact from W into V.

In Section 1 we present some general stability and convergence results relative to the approximation of problem (0.2) by discrete problems which may be written as follows

$$
\begin{equation*}
\left\{\lambda, u_{N}\right\} \in \mathbb{R}^{+} \times V_{N}, \quad u_{N}+T_{N} G_{N}\left(\lambda, u_{N}\right)=0 \tag{0.3}
\end{equation*}
$$

In (0.3) V_{N} is a finite dimensional subspace of V for any $N \in \mathbb{N}$, while T_{N} and G_{N} are some approximations of the operators T and G. The formulation (0.3) looks to be particularly adapted to describe approximations of problems like (0.2) by pseudo-spectral methods (in [12], for instance, the authors carry out the analysis of a pseudo-spectral method to approximate the three dimensional, periodic, Navier-Stokes equations). Also, (0.3) is the typical form of finite element approximations to (0.2) which make use of numerical integration. Due to this generality, it is an authors' opinion that Section 1 has an interest in itself, independently of its application to problem (0.1) which is developed in next Sections. Results of Section 1 generalize those by Brezzi, Rappaz and Raviart [4] which are confined to the case $G_{N} \equiv G$. Relatively to the nonsingular solutions of (0.2) we provide abstract bounds for the error norms $\left\|u-u_{N}\right\|_{V}$
and $\left\|u-u_{N}\right\|_{H}$, for any Hilbert space H which contains algebraically and topologically V. In addition we state sufficient conditions to have quadratic convergence of a Newton iterative method to solve (0.3).

In Section 2 the Burgers problem (0.1) is written in the form (0.2).
Let Λ be any compact subset of \mathbb{R}^{+}and assume that the mapping

$$
\lambda \in \Lambda \rightarrow u(\lambda) \in H_{\omega}^{\sigma}(I)
$$

is continuous for some $\sigma \geqslant 1(\omega$ is equal to 1 for the Legendre approximation, and $\omega(x)=\left(1-x^{2}\right)^{-1 / 2}$ for the Chebyshev approximation). In Section 3 we establish the following error estimate between u and its pseudo-spectral approximation u_{N} :
$\forall \lambda \in \Lambda\left\|u_{N}(\lambda)-u(\lambda)\right\|_{H_{\omega}^{1}(I)}+N^{1-e(\omega)}\left\|u_{N}(\lambda)-u(\lambda)\right\|_{L_{\omega}^{2}(I)}=0\left(N^{1-\sigma}\right)$
where $e(\omega)=0$ for the Chebyshev weight and $e(\omega)=1 / 2$ for the Legendre weight.

The estimate (0.4) is established using the abstract results of Section 1.
Throughout this paper C will denote a generic positive constant, independent of the discretization parameter N, not necessarily the same in different contexts. An outline of the paper is a follows :

1. ABSTRACT RESULTS : APPROXIMATIONS OF BRANCHES OF NON SINGULAR SOLUTIONS.

1.1. Approximation in the energy norm.
1.2. Error estimates in lower order norms.
1.3. The Newton method to solve the discrete problem.
2. THE BURGERS' EQUATION : PRELIMINARIES.
3. APPROXIMATION BY PSEUDO-SPECTRAL METHODS : STABILITY AND CONVERGENCE.

1. ABSTRACT RESULTS : APPROXIMATIONS OF BRANCHES OF NON SINGULAR SOLUTIONS.

1.1. Approximation in the energy norm.

Let Λ be a compact interval of the real line, V and W be two Banach spaces, and assume that W is contained into V^{\prime} (dual space of V) with continuous imbedding. Let $T \in \mathscr{L}\left(V^{\prime} ; V\right)$ and assume that T is compact from W into V; finally, let $G: \Lambda \times V \rightarrow W$ be a C^{1} mapping. We set

$$
\begin{equation*}
\forall\{\lambda, u\} \in \Lambda \times V \quad F(\lambda, u)=u+T G(\lambda, u), \tag{1.1}
\end{equation*}
$$

and we consider the problem find $(\lambda, u) \in \Lambda \times V$ such that

$$
\begin{equation*}
F(\lambda, u)=0 \tag{array}
\end{equation*}
$$

Throughout this section we make the following assumption
$\left.\begin{array}{l}\text { there exists a branch }\{(\lambda, u(\lambda)), \lambda \in \Lambda ; \text { of non singular solutions } \\ \text { of (1 } 2), \text { in the sense that there exists a constant } \alpha>0 \text { such that } \\ \forall \lambda \in \Lambda, \quad \forall v \in V,\left\|\left(\mathrm{Id}+T D_{u} G[\lambda, u(\lambda)]\right) v\right\|_{V} \geqslant \alpha\|v\|_{V}\end{array}\right\}$
The symbol $D_{u} G\left[\lambda_{0}, u_{0}\right]$ (resp $\left.D_{\lambda} G\left[\lambda_{0}, u_{0}\right]\right)$ denotes the Frechet derivative, with respect to u (resp to λ) of $G(\lambda, u)$, computed at the point $\left(\lambda_{0}, \mathrm{u}_{0}\right)$ Id is the identity operator

Let N be a parameter which will tend to infinity in the applications In order to approximate the branch $\{(\lambda, u(\lambda)), \lambda \in \Lambda\}$ we introduce a famıly $\left\{V_{N}\right\}_{N}$ of finite dimensional subspaces of V, and a famıly $\left\{T_{N}\right\}_{N}$ of operators belonging to $\mathscr{L}\left(V^{\prime}, V_{N}\right)$ If not otherwise specified, for any N the space V_{N} is equipped by the norm of V

Let us now introduce the mapping $F_{N} \quad \Lambda \times V \rightarrow V$ defined by

$$
\begin{equation*}
F_{\mathrm{v}}(\lambda, u)=u+T_{\vee} G(\lambda, u) \tag{array}
\end{equation*}
$$

and consider the approximate problem find $\left\{\lambda, u_{N}\right\} \in \Lambda \times V_{N}$ such that

$$
\begin{equation*}
F_{N}\left(\lambda, u_{N}\right)=0 \tag{array}
\end{equation*}
$$

The following result is due to Brezzı, Rappaz and Raviart (see [4, theorem 6] and replace suitably h by N)

ThEORFM 11 Let $m \geqslant 1$ be an integer, assume that G is a C^{m+1} mapping from $\Lambda \times V$ into W, and that $D^{m+1} G$ is bounded over any bounded subset of $\Lambda \times V$ Let $\Pi_{N} \quad V \rightarrow V_{N}$ be contmuous operator satisfying

$$
\begin{equation*}
\forall v \in V \quad \lim _{N \rightarrow \infty}\left\|\Pi_{N} v-v\right\|_{V}=0 \tag{array}
\end{equation*}
$$

moreover assume that

$$
\begin{equation*}
\lim _{N \rightarrow \infty}\left\|T_{N}-T\right\|_{\mathscr{L}(W V)}=0 \tag{array}
\end{equation*}
$$

Then there exist a netghborhood θ of the origin in V and, for $N \geqslant N_{0}$ large enough, a unique C^{m+1} mapping $\lambda \in \Lambda \rightarrow u_{N}(\lambda) \in V_{N}$, such that

$$
\begin{equation*}
\forall \lambda \in \Lambda, \quad F_{N}\left(\lambda, u_{N}(\lambda)\right)=0, \quad u_{N}(\lambda)-u(\lambda) \in \theta \tag{17}
\end{equation*}
$$

Furthermore, there exist some positve constants $K_{l}(0 \leqslant l \leqslant m)$ independent of λ and N such that the following estimates hold

$$
\begin{align*}
\forall \lambda \in \Lambda, \quad \forall l=0, & , m\left\|u_{N}^{(l)}(\lambda)-u^{(l)}(\lambda)\right\|_{V} \leqslant \\
& \leqslant K_{l} \sum_{k=0}^{l}\left\{\left\|u^{(k)}(\lambda)-\Pi_{N} u^{(k)}(\lambda)\right\|_{V}\right. \tag{array}\\
& \left.+\left\|\left(T_{N}-T\right) G^{(k)}\left(\lambda, u(\lambda), \quad, u^{(k)}(\lambda)\right)\right\|_{V}\right\}
\end{align*}
$$

In the estimates (18) we use the notation $\phi^{(0)}=\phi$ for any function ϕ Moreover, denoting by $\mathscr{L}_{k}(X, Y)$ the space of all contınuous k-linear mapping of X^{k} into Y, the operators

$$
G^{(k)} \Lambda \times V \times \mathscr{L}_{1}(\Lambda, V) \times \quad \times \mathscr{L}_{k}(\Lambda, V) \rightarrow \mathscr{L}_{k}\left(\Lambda, V^{\prime}\right)
$$

are defined by the recurrence formula

$$
\begin{aligned}
G^{(k)}\left(\lambda, \quad, u^{(k)}\right)=D_{\lambda} G^{(k-1)}\left(\lambda, \quad, u^{(k-1)}\right) & +D_{u} G^{(k-1)}\left(\lambda, \quad, u^{(k-1)}\right) u^{(1)}+ \\
& +\sum_{j=1}^{k-1} D_{u^{(j)}} G^{(k-1)}\left(\lambda,, u^{(k-1)}\right) u^{(J+1)}
\end{aligned}
$$

Let us now define a more general class of problems which approximate (12) To this end, let Z be a Banach space such that $V_{N} \subset Z \subset V$, the later mbeddıng benng contınuous We assume that there exists a real number $r \geqslant 0$ such that

$$
\begin{equation*}
\forall v \in V_{N} \quad\|v\|_{Z} \leqslant C N^{r}\|v\|_{V} \tag{array}
\end{equation*}
$$

For any N let $G_{N} \mathbb{R} \times V_{N} \rightarrow V^{\prime}$ be a mapping, which will "approximate" G in the applications, and define $F_{N}^{*} \Lambda \times V_{N} \rightarrow V_{N}$ by

$$
\begin{equation*}
F_{N}^{*}\left(\lambda, u_{N}\right)=u_{N}+T_{N} G_{N}\left(\lambda, u_{N}\right) \tag{array}
\end{equation*}
$$

For the approximate problem find $u_{N} \in V_{N}$ such that

$$
\begin{equation*}
F_{N}^{*}\left(\lambda, u_{N}\right)=0, \tag{array}
\end{equation*}
$$

the following theorem holds
Theorem 12 Assume that the hypotheses of Theorem 11 hold Moreover assume that for any $\lambda \in \Lambda, u(\lambda)$ belong to Z Let $G_{N} \quad \Lambda \times V_{N} \rightarrow V^{\prime}$ be a C^{m+1} vol $16, n^{\circ} 4,1982$
mapping, and assume that there exists a positive increasing function $K: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$ such that

$$
\begin{equation*}
\left\|D^{l} G_{N}[\lambda, v]\right\|_{\left.\left.\mathscr{L}_{l([\mathbb{R}} \times Z\right]^{l-1}, \mathbb{R} \times V ; W\right)} \leqslant K\left(|\lambda|+\|v\|_{Z}\right)(1 \leqslant l \leqslant m+1) \tag{}
\end{equation*}
$$

Furthermore we assume that :

$$
\begin{align*}
\lim _{N \rightarrow \infty} \operatorname{Sup}_{\lambda \in \Lambda} \| D_{u} G[\lambda, & \left.\Pi_{N} u(\lambda)\right]-D_{u} G_{N}\left[\lambda, \Pi_{N} u(\lambda)\right] \|_{\mathscr{L}\left(V_{N}, V^{\prime}\right)}=0 \tag{1.13}\\
& \lim _{N \rightarrow \infty} \operatorname{Sup}_{\lambda \in \Lambda} N^{r}\left\|F_{N}^{*}\left(\lambda, \Pi_{N} u(\lambda)\right)\right\|_{V}=0 \tag{1.14}\\
& \lim _{N \rightarrow \infty} \operatorname{Sup}_{\lambda \in \Lambda}\left\|u(\lambda)-\Pi_{N} u(\lambda)\right\|_{Z}=0 \tag{1.15}
\end{align*}
$$

Then, for $N \geqslant N_{0}$ large enough and for any $\lambda \in \Lambda$ there exist a positive constant \bar{K} independent of N and λ and a unique C^{m+1} mapping $\lambda \in \Lambda \rightarrow u_{N}(\lambda) \in V_{N}$, such that

$$
\begin{equation*}
F_{N}^{*}\left(\lambda, u_{N}(\lambda)\right)=0, \quad\left\|u_{N}(\lambda)-\Pi_{N} u(\lambda)\right\|_{V} \leqslant \bar{K} N^{-r} \tag{1.16}
\end{equation*}
$$

Moreover there exists a positive constant K_{0} independent of N and λ such that

$$
\begin{align*}
\left\|u_{N}(\lambda)-u(\lambda)\right\|_{V} \leqslant K_{0}\{\| u(\lambda) & -\Pi_{N} u(\lambda)\left\|_{V}+\right\|\left(T_{N}-T\right) G(\lambda, u(\lambda)) \|_{V}+ \\
& \left.+\left\|T_{N}\left(G_{N}-G\right)\left(\lambda, \Pi_{N} u(\lambda)\right)\right\|_{V}\right\} . \tag{1.17}
\end{align*}
$$

If, in addition, we assume that

$$
\begin{gather*}
\lim _{N \rightarrow \infty} \operatorname{Sup}_{\lambda \in \Lambda}\left\|u^{(l)}(\lambda)-\Pi_{N} u^{(l)}(\lambda)\right\|_{Z}=0, \quad(1 \leqslant l \leqslant m) \tag{1.18}\\
\lim _{N \rightarrow \infty} \operatorname{Sup}_{\lambda \in \Lambda}\left\|u^{(m+1)}(\lambda)-\Pi_{N} u^{(m+1)}(\lambda)\right\|_{V}=0 \tag{1.19}
\end{gather*}
$$

then for any $\lambda \in \Lambda$ there exist some positive constants $K_{l}, 1 \leqslant l \leqslant m$, independent of N and λ, such that

$$
\begin{align*}
\left\|u_{N}^{(l)}(\lambda)-u^{(l)}(\lambda)\right\|_{V} & \leqslant K_{l} \sum_{k=0}^{l} N^{(l-k) r}\left\{\left\|u^{(k)}(\lambda)-\Pi_{N} u^{(k)}(\lambda)\right\|_{V}+\right. \\
& +\left\|\left(T_{N}-T\right) G^{(k)}\left(\lambda, u(\lambda), \ldots, u^{(k)}(\lambda)\right)\right\|_{V} \\
& \left.+\left\|T_{N}\left(G^{(k)}-G_{N}^{(k)}\right)\left(\lambda, \Pi_{N} u(\lambda), \ldots, \Pi_{N} u^{(k)}(\lambda)\right)\right\|_{V}\right\} . \tag{1.20}
\end{align*}
$$

[^1]Proof: Under the hypotheses of Theorem 1.1 the implicit function theorem allows to state that $\lambda \rightarrow u(\lambda)$ is a C^{1} mapping. Moreover, thanks to (1.5) the operator Π_{N} is uniformely bounded in N, so we get

$$
\begin{equation*}
\forall \lambda, \mu \in \Lambda \quad\left\|\Pi_{N}(u(\lambda)-u(\mu))\right\|_{V} \leqslant C|\lambda-\mu| . \tag{1.21}
\end{equation*}
$$

To complete the proof we need the following two lemmas.
Lemma $1.1:$ If (1.12), ... (1.15) and the hypotheses of Theorem 1.1 hold, then for $N \geqslant N_{0}$ large enough $D_{u} F_{N}^{*}\left[\lambda, \Pi_{N} u(\lambda)\right]$ is an isomorphism of V_{N} which satisfies

$$
\begin{equation*}
\left\|\left(\mathrm{Id}+T_{N} D_{u} G_{N}\left[\lambda, \Pi_{N} u(\lambda)\right]\right) v\right\|_{V} \geqslant \frac{\alpha}{2}\|v\|_{V} \quad \forall v \in V_{N} \tag{1.22}
\end{equation*}
$$

(α is the constant defined by the assumption ($H 1$)).
Proof : Since Λ is compact, using (H1) and the continuity of the operators $D_{u} G: \Lambda \times V \rightarrow \mathscr{L}(V ; W)$ and $T: W \rightarrow V$, we get that there exists $\eta_{0}>0$ such that for any $w \in V$ which verifies $\|w-u(\lambda)\|_{V} \leqslant \eta_{0}$ it follows

$$
\begin{equation*}
\left\|\left(\mathrm{Id}+T D_{u} G[\lambda, w]\right) v\right\|_{V} \geqslant \frac{3 \alpha}{4}\|v\|_{V} \quad \forall v \in V . \tag{1.23}
\end{equation*}
$$

Moreover, using the continuity of $\lambda \rightarrow u(\lambda)$ we have that there exists $M_{0}>0$ such that for any $N \geqslant M_{0}$ and any $\lambda \in \Lambda$ we have

$$
\begin{equation*}
\left\|\Pi_{N} u(\lambda)-u(\lambda)\right\|_{V} \leqslant \eta_{0} . \tag{1.24}
\end{equation*}
$$

We use the inequality

$$
\begin{align*}
&\left\|\left(\operatorname{Id}+T_{N} D_{u} G_{N}\left[\lambda, \Pi_{N} u(\lambda)\right]\right) v\right\|_{V} \geqslant\left\|\left(\operatorname{Id}+T D_{u} G\left[\lambda, \Pi_{N} u(\lambda)\right]\right) v\right\|_{V}- \\
&-\left\|\left(T-T_{N}\right)\left(D_{u} G_{N}\left[\lambda, \Pi_{N} u(\lambda)\right] v\right)\right\|_{V}- \\
&-\| T\left(D_{u}\left(G-G_{N}\right)\left[\lambda, \Pi_{N} u(\lambda)\right] v\right) \| \tag{1.25}
\end{align*}
$$

Thanks to (1.23) and (1.24) we get

$$
\begin{equation*}
\left\|\left(\operatorname{Id}+T D_{u} G\left[\lambda, \Pi_{N} u(\lambda)\right]\right) v\right\|_{V} \geqslant \frac{3 \alpha}{4}\|v\|_{V} \quad \forall N \geqslant M_{0} . \tag{1.26}
\end{equation*}
$$

On the other hand, using (1.6), (1.12) for $l=1$, and (1.15) it follows that there exists $M_{1}>0$ such that for any $N \geqslant M_{1}$ and any $\lambda \in \Lambda$ we have

$$
\begin{equation*}
\left\|\left(T-T_{N}\right)\left(D_{u} G_{N}\left[\lambda, \Pi_{N} u(\lambda)\right] v\right)\right\|_{V} \leqslant \frac{\alpha}{8}\|v\|_{V} \tag{1.27}
\end{equation*}
$$

vol. $16, \mathrm{n}^{\circ} 4,1982$
finally, using (1.13) and the continuity of T we get that there exists $M_{2}>0$ such that for any $N \geqslant M_{2}$ and any $\lambda \in \Lambda$ we have

$$
\begin{equation*}
\left\|T\left(D_{u}\left(G-G_{N}\right)\left[\lambda, \Pi_{N} u(\lambda)\right] v\right)\right\|_{V} \leqslant \frac{\alpha}{8}\|v\|_{V} \tag{1.28}
\end{equation*}
$$

Now we obtain (1.22) from (1.25), ... (128). Now the proof is complete since V_{N} is finite dimensional.

Lemma 1.2 : If (1.12), .., (1.15) and the hypotheses of theorem 1.1 hold, we get

$$
\begin{equation*}
\sup _{\lambda \in \Lambda}\left\|D_{\lambda} F_{N}^{*}\left[\lambda, \Pi_{N} u(\lambda)\right]\right\|_{\mathscr{L}\left(\mathbb{B} \times V_{N}, V_{N}\right)} \leqslant C \tag{1.29}
\end{equation*}
$$

(V_{N} is equipped with the norm of V). Moreover, there exists an increasing function $K_{1}: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$such that, if

$$
\begin{equation*}
\{\mu, v\} \in \Lambda \times V_{N} \quad \text { and } \quad N^{r}\left(|\lambda-\mu|+\left\|\Pi_{N} u(\lambda)-v\right\|_{V}\right) \leqslant \xi \tag{1.30}
\end{equation*}
$$

then

$$
\begin{align*}
\left\|D G_{N}\left[\lambda, \Pi_{N} u(\lambda)\right]-D G_{N}[\mu, v]\right\|_{\mathscr{L}(\mathbb{R} \times v, W)} \leqslant & K_{1}(\xi)(|\lambda-\mu|+ \\
& \left.+\left\|\Pi_{N} u(\lambda)-v\right\|_{Z}\right) \tag{1.31}
\end{align*}
$$

Furthermore, if (1.18) and (1.19) are satisfied, there exists an increasing function $K_{2}: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$such that, if (1.30) holds, we get

$$
\begin{align*}
& \left\|D^{l} G_{N}\left[\lambda, \Pi_{N} u(\lambda)\right]-D^{l} G_{N}[\mu, v]\right\|_{\mathscr{L}_{1\left((\mathbb{R} \times Z)^{l-1}, \mathbb{R} \times V, W\right)}} \leqslant \\
& \quad \leqslant K_{2}(\xi)\left(|\lambda-\mu|+\left\|\Pi_{N} u(\lambda)-v\right\|_{V}\right) \quad(2 \leqslant l \leqslant m) \tag{1.32}
\end{align*}
$$

Proof : Using (1 15), (1.6) and (1.12) with $l=1$ we get immediately (1 29)
Next from (1.12) it follows that

$$
\begin{equation*}
\forall\{\mu, v\} \in \Lambda \times V_{N}\left\|D^{2} G_{N}[\mu, v]\right\|_{\mathscr{L}_{2}(\mathbb{R} \times Z, \mathbb{R} \times V, W)} \leqslant K\left(|\mu|+\|v\|_{Z}\right) \tag{1.33}
\end{equation*}
$$

Since

$$
\begin{aligned}
& \frac{d}{d t}\left(D G_{N}\left[\lambda+t(\mu-\lambda), \Pi_{N} u(\lambda)+t\left(v-\Pi_{N} u(\lambda)\right)\right]\right)\left(t_{0}\right)= \\
& \quad=D_{\lambda} D G_{N}\left[\left(1-t_{0}\right) \lambda+t_{0} \mu,\left(1-t_{0}\right) \Pi_{N} u(\lambda)+t_{0} v\right] \cdot(\mu-\lambda)+ \\
& +D_{u} D G_{N}\left[\left(1-t_{0}\right) \lambda+t_{0} \mu,\left(1-t_{0}\right) \Pi_{N} u(\lambda)+t_{0} v\right] \cdot\left(v-\Pi_{N} u(\lambda)\right) \\
& \forall t_{0} \in \mathbb{R}
\end{aligned}
$$

Applying the mean value theorem to

$$
D G_{\vee}\left[\lambda+t(\mu-\lambda), \quad \Pi_{N} u(\lambda)+t\left(v-\Pi_{N} u(\lambda)\right)\right]
$$

and using (1 9), (1 30) and (133) we have

$$
\begin{align*}
& \left\|D G_{N}\left[\lambda, \Pi_{N} u(\lambda)\right]-D G_{N}[\mu, v]\right\|_{\mathscr{L}(\mathbb{R} \times V W)} \leqslant \\
& \quad \leqslant K\left(|\lambda|+\left\|\Pi_{N} u(\lambda)\right\|_{z}+\xi\right)|\lambda-\mu|+\left\|\Pi_{N} u(\lambda)-v\right\|_{z} \tag{array}
\end{align*}
$$

Therefore (1 31) holds takıng $K_{1}(\xi)=K\left(|\lambda|+\left\|\Pi_{N} u(\lambda)\right\|_{Z}+\xi\right)$
Finally, arguing in a similar way and using (1 12) with $l=3, \quad, m+1$ the property (132) can be proved

Let us go back to the proof of Theorem 12 Due to (121), (122), (129) and (131), we can apply Theorem 1 of [4] to the mapping F_{\wedge}^{*} in the following situation
the space X of the theorem is \mathbb{R} provided with the norm $N^{r}|\lambda|$, the space Y, Z of the theorem are V_{N} provided with the norm $N^{r}\|v\|_{V}$, finally $y(\lambda)$ becomes $\Pi_{N} u(\lambda)$

We note that for all mapping $A_{N} \in \mathscr{L}\left(\mathbb{R} \times V_{N}, V_{N}\right)$, we have

$$
\left\|A_{N}\right\|_{\mathscr{L}_{(X \times Y Z)}}=\left\|A_{N}\right\|_{\mathscr{L}\left(\mathbb{R} \times V_{N} V_{N}\right)}
$$

Then by the above mentioned result, for $N \geqslant N_{0}$ large enough there exists a constant $\bar{K}>0$, independent of N, and a unıque C^{1} mapping $\lambda \in \Lambda \rightarrow u_{N}(\lambda) \in V_{N}$ such that (116) holds, together with the inequality

$$
\begin{equation*}
\left\|u_{N}(\lambda)-\Pi_{N} u(\lambda)\right\|_{V} \leqslant C\left\|F_{N}^{*}\left(\lambda, \Pi_{N} u(\lambda)\right)\right\|_{V}, \quad \forall \lambda \in \Lambda \tag{array}
\end{equation*}
$$

Using (1 1), (1 2) and (1 10), we have

$$
\begin{align*}
& \left\|F_{N}^{*}\left(\lambda, \Pi_{N} u(\lambda)\right)\right\|_{V}=\left\|F_{N}^{*}\left(\lambda, \Pi_{N} u(\lambda)\right)-F(\lambda, u(\lambda))\right\|_{V} \leqslant \\
& \quad \leqslant\left\|\Pi_{N} u(\lambda)-u(\lambda)\right\|_{V}+\left\|\left(T_{N}-T\right) G(\lambda, u(\lambda))\right\|_{V}+ \\
& \quad+\left\|T_{N}\left(G_{N}-G\right)\left(\lambda, \Pi_{N} u(\lambda)\right)\right\|_{V}+\left\|T_{N}\left(G\left(\lambda, \Pi_{N} u(\lambda)\right)-G(\lambda, u(\lambda))\right)\right\|_{V}, \tag{array}
\end{align*}
$$

using (1 6), (1 5) and the differentiability of G we obtain

$$
\begin{array}{r}
\left\|T_{N}\left(G\left(\lambda, \Pi_{N} u(\lambda)\right)-G(\lambda, u(\lambda))\right)\right\|_{V} \leqslant C\left\|G\left(\lambda, \Pi_{N} u(\lambda)\right)-G(\lambda, u(\lambda))\right\|_{W} \leqslant \\
\leqslant C\left\|\Pi_{N} u(\lambda)-u(\lambda)\right\|_{V} \quad(137 \tag{array}
\end{array}
$$

Now (1 17) is a consequence of (1 35$)$, (1 36) and (1 37)

In order to prove (120) we apply the theorem 2 of [4] to F_{N}^{*}, indeed, from (19) we have

$$
\forall A_{N} \in \mathscr{L}_{l}\left(\mathbb{R} \times V_{N} ; V_{N}\right) \quad\left\|A_{N}\right\|_{\mathscr{L}_{l}(X \times Y, Z)} \leqslant C\left\|A_{N}\right\|_{\mathscr{L}_{l}\left((\mathbb{R} \times Z)^{l-1}, \mathbb{R} \times V, W\right)},
$$

and

$$
\forall v \in V_{N} \quad\|v\|_{\mathscr{L}_{1}(X, Y)} \equiv\|v\|_{\mathscr{L}_{l}(X, Z)} \leqslant C N^{(1-l) r}\|v\|_{V}
$$

Due to (1-18) and (1 19), using the above mentioned theorem we get the inequality

$$
\begin{equation*}
\left\|u_{N}^{(l)}(\lambda)-u^{(l)}(\lambda)\right\|_{V} \leqslant C \sum_{k=0}^{l} N^{(l-k) r}\left\|F_{N}^{*(k)}\left(\lambda, \Pi_{N} u(\lambda), \ldots, \Pi_{N} u^{(k)}(\lambda)\right)\right\|_{v} \tag{1.38}
\end{equation*}
$$

for $l=1, \ldots, m$ and for any $\lambda \in \Lambda$. Finally we can obtain (1.20) from (1.38), using (1.6), (1.15), (1.18), (1.19), the hypotheses that G is a C^{m+1} mapping, and the identities

$$
F^{(k)}\left(\lambda, u(\lambda), \ldots, u^{(k)}(\lambda)\right) \equiv 0 \quad \text { for } \quad k=0, \ldots, m
$$

1.2. Eitor estimates in lower order norms

Let Y, H, K be three Bąnach spaces, equipped with the norms $\|\cdot\|_{Y},\|\cdot\|_{H}$ and $\|\cdot\|_{K}$ respectively, such that the following imbeddings hold

$$
K \hookrightarrow V \hookrightarrow H \hookrightarrow Y
$$

Moreover, assume that T can be extended to a compact operator from Y into H, and that $D_{u} G[\lambda, v]$ can be extended to $D_{u} G[\lambda, v] \in \mathscr{L}(H ; Y)$.

Theorem 1.3: Let the hypotheses of Theorem 1.2 hold, and let u_{N} be the solution of (1.11). Assume that for any λ in Λ :

$$
\begin{equation*}
\text { the mapping } v \in K \rightarrow D_{u} G[\lambda, v] \in \mathscr{L}(H ; Y) \text { is continuous ; } \tag{1.39}
\end{equation*}
$$

the mapping $D_{u} F[\lambda, u(\lambda)]$ is an isomorphism of H;

$$
\begin{equation*}
\lim _{N \rightarrow \infty}\left\|T-T_{N}\right\|_{\mathscr{L}(Y, H)}=0 \tag{1.40}
\end{equation*}
$$

$u(\lambda)$ and $u_{N}(\lambda)$ belong to K and $\left\|u_{N}(\lambda)-u(\lambda)\right\|_{K}$ tends to zero with $1 / N$.

Then, for N large enough the following estimate holds

$$
\begin{align*}
& \forall \lambda \in \Lambda \quad\left\|u(\lambda)-u_{N}(\lambda)\right\|_{H} \leqslant C\left\{\left\|F_{N}(\lambda, u(\lambda))\right\|_{H}+\right. \\
& \left.\quad+\left\|T_{N}\left(G-G_{N}\right)\left(\lambda, u_{N}(\lambda)\right)\right\|_{H}\right\} \tag{1.43}
\end{align*}
$$

Remark 1.1: From (1.43) we derive also that

$$
\begin{aligned}
\forall \lambda \in \Lambda \quad\left\|u(\lambda)-u_{N}(\lambda)\right\|_{H} \leqslant C\left\{\|\left(T_{N}\right.\right. & -T) G(\lambda, u(\lambda)) \|_{H}+ \\
& \left.+\left\|\left(G-G_{N}\right)\left(\lambda, u_{N}(\lambda)\right)\right\|_{Y}\right\} .
\end{aligned}
$$

Proof : Since $F_{N}^{*}\left(\lambda, u_{N}(\lambda)\right)=0$, we have

$$
\begin{align*}
& F_{N}(\lambda, u(\lambda))=F_{N}(\lambda, u(\lambda))-F_{N}^{*}\left(\lambda, u_{N}(\lambda)\right) \\
& \quad=D_{u} F[\lambda, u(\lambda)]\left(u(\lambda)-u_{N}(\lambda)\right)+ \\
& \quad+\left(T_{N}-T\right) D_{u} G[\lambda, u(\lambda)]\left(u(\lambda)-u_{N}(\lambda)\right)+T_{N}(G(\lambda, u(\lambda)) \\
&\left.\quad-G\left(\lambda, u_{N}(\lambda)\right)-D_{u} G[\lambda, u(\lambda)]\left(u(\lambda)-u_{N}(\lambda)\right)\right) \\
&+ T_{N}\left(G\left(\lambda, u_{N}(\lambda)\right)-G_{N}\left(\lambda, u_{N}(\lambda)\right)\right) . \tag{1.44}
\end{align*}
$$

Let us examine each term of the right hand side.
First, using (1.40) we deduce that there exists a positive constant β such that

$$
\begin{equation*}
\left\|D_{u} F[\lambda, u(\lambda)]\left(u(\lambda)-u_{N}(\lambda)\right)\right\|_{H} \geqslant \beta\left\|u(\lambda)-u_{N}(\lambda)\right\|_{H} . \tag{1.45}
\end{equation*}
$$

Next, thanks to (1.39) and (1.41) we get

$$
\begin{equation*}
\left\|\left(T_{N}-T\right)\left(D_{u} G[\lambda, u(\lambda)]\right)\left(u(\lambda)-u_{N}(\lambda)\right)\right\|_{H} \leqslant \varepsilon(N)\left\|u(\lambda)-u_{N}(\lambda)\right\|_{H} \tag{1.46}
\end{equation*}
$$

where $\varepsilon(N)$ tends to 0 with $1 / N$.
On the other hand, setting $u_{\theta}(\lambda)=\theta u_{N}(\lambda)+(1-\theta) u(\lambda)$, for any $\theta \in[0,1]$, and for any $\lambda \in \Lambda$, we have

$$
\begin{aligned}
& G(\lambda, u(\lambda))-G\left(\lambda, u_{N}(\lambda)\right)-D_{u} G[\lambda, u(\lambda)]\left(u(\lambda)-u_{N}(\lambda)\right)= \\
& \quad=\int_{0}^{1}\left(D_{u} G\left[\lambda, u_{\theta}(\lambda)\right]-D_{u} G\left[\lambda, u_{\theta}(\lambda)\right]\right) d \theta\left(u(\lambda)-u_{N}(\lambda)\right)
\end{aligned}
$$

Then by (1 39) and (141) it follows

$$
\begin{array}{r}
\left\|T_{N}\left\{G(\lambda, u(\lambda))-G\left(\lambda, u_{N}(\lambda)\right)-D_{u} G[\lambda, u(\lambda)]\left(u(\lambda)-u_{N}(\lambda)\right)\right\}\right\|_{H} \leqslant \\
\leqslant C \varepsilon(N)\left\|u(\lambda)-u_{N}(\lambda)\right\|_{H} \tag{array}
\end{array}
$$

where

$$
\varepsilon^{\prime}(N)=\|\left.\int_{0}^{1}\left(D_{u} G\left[\lambda, u_{\theta}(\lambda)\right]-D_{u} G[\lambda, u]\right) d \theta\right|_{\mathscr{L}(H Y)}
$$

tends to zero with $1 / N$ due to (139) and to (142) Finally (143) holds from $(144), \quad,(147)$ taking $C=\left(\beta-\varepsilon(N)-\varepsilon^{\prime}(N)\right)^{-1}$

Corollary 11 Assume that (139), (141), (142) hold, together with the hvpotheses of Theorem 12 and with the following regularity assumption

$$
\begin{equation*}
\text { if } v \in H \text { verifies } v+T D_{u} G[\lambda, u(\lambda)] v=0 \text { then } v \in V \tag{array}
\end{equation*}
$$

Then (143) holds
Proof To check that (140) holds let us note that $D_{u} F[\lambda, u(\lambda)]$ is a compact operator of $\mathscr{L}(H, H)$ Then by the Fredholm alternative we only need to check that

$$
\begin{equation*}
\text { if } D_{u} F[\lambda, u(\lambda)] v=0 \text { then } \quad \imath=0 \tag{array}
\end{equation*}
$$

Besıdes that (149) follows easıly from (148) and hypothesis (H1)

1.3. The Newton method to solve the approximate problem

In this section λ is considered to be fixed
We assume that $G_{N} \Lambda \times V_{N} \rightarrow V$ is a C^{2} mapping, and that there exists a positive constant δ independent of N such that for any $\lambda \in \Lambda$

$$
\begin{equation*}
\left\|T_{N} D_{u}^{2} G_{N}\left[\lambda, u_{N}(\lambda)\right]\right\|_{\mathscr{L}_{2}\left(V_{N} v_{\mathrm{v})}\right.} \leqslant \delta \tag{150}
\end{equation*}
$$

There exists a mapping $\varepsilon \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$such that $\varepsilon(x) / x$ vanıshes when x tends to zero, and for any $\lambda \in \Lambda$, for any $v \in \mathrm{~V}_{N}$ the following estimates hold

$$
\begin{align*}
& \left\|T_{N}\left(D_{u} G_{N}[\lambda, v]-D_{u} G_{N}\left[\lambda, u_{N}(\lambda)\right]-D_{u}^{2} G_{N}\left[\lambda, u_{N}(\lambda)\right]\left(v-u_{N}(\lambda)\right)\right)\right\|_{\left.\mathscr{L}_{(V} V\right)} \leqslant \\
& \leqslant \varepsilon\left(\left\|v-u_{N}(\lambda)\right\|_{V}\right), \quad(151) \\
& \| T_{\mathrm{V}}\left(G_{N}(\lambda, v)-G_{N}\left(\lambda, u_{N}(\lambda)\right)-D_{u} G_{\mathrm{V}}\left[\lambda, u_{N}(\lambda)\right]\left(v-u_{\mathrm{V}}(\lambda)\right)-\right. \tag{array}\\
& \left.-D_{u}^{2} G_{N}\left[\lambda, u_{N}(\lambda)\right]\left(v-u_{N}(\lambda)\right)^{2}\right) \|_{V} \leqslant \varepsilon\left(\mid v-u_{N}(\lambda) \|_{V}^{2}\right) \quad(152) \\
& \text { RAIRO Analyse numerique/Numerical Analysis }
\end{align*}
$$

Arguing as in the proof of Lemma 11 we can establish the following result
Lemma 13 Assume that the hypotheses (112), , (1-15), (148) and those of Theorem 11 hold Let α be the constant defined by the property (H1) There exists a constant $\eta>0$ such that for $N \geqslant N_{2}$ large enough, and for any $v \in V_{N}$ which satusfies $\left\|v-\Pi_{N} u(\lambda)\right\|_{V} \leqslant \eta$, the mapping $D_{u} F_{N}[\lambda, v]$ is an isomorphism of V_{N}, thus

$$
\begin{equation*}
\left\|D_{u} F_{N}[\lambda, v] w\right\|_{V} \geqslant \frac{\alpha}{4}\|w\|_{V} \quad \forall w \in V_{N} \tag{array}
\end{equation*}
$$

Moreover it follows that

$$
\begin{equation*}
\varepsilon(x) / x \leqslant 1 \quad \forall x \leqslant \eta \tag{154}
\end{equation*}
$$

Let $v^{0} \in V_{N}$ be given and consider the following Newton scheme find $v^{n+1} \in V_{N}(n \geqslant 0)$ by solving

$$
\begin{equation*}
D_{u} F_{N}\left[\lambda, v^{n}\right] v^{n+1}=D_{u} F_{N}\left[\lambda, v^{n}\right] v^{n}-F_{N}\left(\lambda, v^{n}\right) \tag{array}
\end{equation*}
$$

Theorem 14 Assume that the hypotheses of the previous lemma hold Moreover, assume that if $N \geqslant N_{3}$

$$
\begin{equation*}
\left\|u_{N}(\lambda)-\Pi_{N} u(\lambda)\right\|_{V}<\eta / 2 \tag{array}
\end{equation*}
$$

Then, there exists $\rho>0$ such that, if v^{0} satısfies

$$
\begin{equation*}
\left\|v^{0}-u_{N}(\lambda)\right\|_{V} \leqslant \rho \tag{array}
\end{equation*}
$$

the Newton iterates $\left(v^{n}\right)$ are univocally defined by $\left(\begin{array}{ll}1 & 55\end{array}\right)$ and converge quadratically to the solution $u_{N}(\lambda)$ of $\left(\begin{array}{ll}1 & 11\end{array}\right)$

Proof As λ is fixed we shall drop any dependence on it along this proof Dunoting by ρ the mınımum between $\eta / 2$ and $\alpha /(4(\delta+2)$), from (1 56) and (1 57) it follows that $\left\|v^{0}-\Pi_{N} u\right\|_{V} \leqslant \eta$

Then by Lemma 13 the first iterate v^{1} of (155) is unıvocally defined By induction on n we shall prove that for any $n\left\|v^{n+1}-u_{N}\right\|_{V} \leqslant \rho$ As a matter of fact, assume that $\left\|v^{n}-u_{N}\right\|_{V} \leqslant \rho$ By (1 56) we get that $\left\|\Pi_{N} u-v^{n}\right\|_{V} \leqslant \eta$ Takıng $v=v^{n}$ and $w=v^{n+1}-u_{N}$ in (1 53) gives

$$
\begin{equation*}
\left\|\left(\operatorname{Id}+T_{N} D_{u} G_{N}\left[v^{n}\right]\right)\left(v^{n+1}-u_{N}\right)\right\|_{V} \geqslant \frac{\alpha}{4}\left\|v^{n+1}-u_{N}\right\|_{V} \tag{array}
\end{equation*}
$$

On the other hand, from (1.55), (1.11), (1.51), (1.52) and (1.54) we get

$$
\begin{aligned}
& \left\|\left(\mathrm{Id}+T_{N} D_{u} G_{N}\left[v^{n}\right]\right)\left(v^{n+1}-u_{N}\right)\right\|_{V}=\| T_{N}\left(D_{u} G_{N}\left[v^{n}\right] v^{n}\right)- \\
& -T_{N} G_{N}\left(v^{n}\right)-D_{u} F_{N}^{*}\left[v^{n}\right] u_{N} \|_{V} \leqslant \\
& \quad \leqslant\left\|T_{N} D_{u}^{2} G_{N}\left[u_{N}\right]\left(v^{n}-u_{N}\right)^{2}\right\|_{V}+2\left\|v^{n}-u_{N}\right\|_{V}^{2} .
\end{aligned}
$$

Finally, by (1.50) and (1.58) it follows that

$$
\begin{equation*}
\left\|v^{n+1}-u_{N}\right\|_{V} \leqslant \frac{4(\delta+2)}{\alpha}\left\|v^{n}-u_{N}\right\|_{V}^{2} \tag{1.59}
\end{equation*}
$$

and therefore $\left\|v^{n+1}-u_{N}\right\|_{V} \leqslant \rho$. Then all the Newton iterates are univocally defined by (1.55), and, due to (1.59), they converge quadratically to u_{N}.

2. THE BURGERS' EQUATION : PRELIMINARIES

We denote by I the interval $(-1,1)$ and by x the current variable of I. We consider two weight functions : $\omega(x) \equiv 1$ (Legendre weight), and

$$
\omega(x)=\left(1-x^{2}\right)^{-1 / 2}
$$

(Chebyshev weight). We make use in this paper of the weighted Sobolev spaces $H_{\omega}^{s}(\bar{I})$. They are defined as follows : for $s=0$ we set
$H_{\omega}^{0}(I) \equiv L_{\omega}^{2}(I)=\left\{\phi: I \rightarrow \mathbb{R} \mid \phi\right.$ is measurable and $\left.(\phi, \phi)_{\omega}<+\infty\right\}$
where $(\phi, \psi)_{\omega}=\int_{I} \phi(x) \psi(x) \omega(x) d x$ denotes the inner product of $L_{\omega}^{2}(I)$. For any integer $s>0$, we set

$$
\begin{equation*}
H_{\omega}^{s}(I)=\left\{\phi \in L_{\omega}^{2}(I) \mid D^{k} \phi \in L_{\omega}^{2}(I), \quad 0 \leqslant k \leqslant s\right\}, \tag{2.2}
\end{equation*}
$$

where $D=d / d x ; H_{\omega}^{s}(I)$ is equipped with the following norm

$$
\|\phi\|_{s, \omega}^{2}=\sum_{k=0}^{s} \int_{I}\left(D^{k} \phi\right)^{2}(x) \omega(x) d x
$$

For any real, non integral s, the space $H_{\omega}^{s}(I)$ is defined by the complex interpolation method (see e.g. [3, Ch. 4]). For any integer $s>0$ we denote by $H_{0, \omega}^{s}(I)$ the closure of $\mathscr{D}(I)$ into $H_{\omega}^{s}(I)$; finally for non integer $s>0$ we define $H_{0}^{s}(I)$ by interpolation. If $\omega \cong 1$ the spaces $H_{\omega}^{s}(I)$ and $H_{0, \omega}^{s}(I)$ coin-
cide with the classical Sobolev spaces $H^{s}(I)$ and $H_{0}^{s}(I)$ respectively, provided $s \notin \mathbb{N}+\frac{1}{2}$ (see eg. [3, 10]]. For $\omega(x)=\left(1-x^{2}\right)^{-1 / 2}$ some properties of spaces $H_{\omega}^{s}(I)$ have been given in [11], we shall constantly refer to them along this paper The same results for the weight $\omega \equiv 1$ are well known, and we still refer to $[1,10]$ for the proofs

Let ε be a positive real number, and f be a given function of $L_{\omega}^{2}(I)$.
We consider the following problem : find $u \in H_{0, \omega}^{1}(I)$ solution of

$$
\begin{equation*}
-\varepsilon u_{x x}+u u_{x}=f \text { in } I . \tag{2.3}
\end{equation*}
$$

Correspondingly to Legendre's and Chebyshev's weight ω we set

$$
\begin{equation*}
V=H_{0, \omega}^{1}(I), \quad W=\text { dual space of } H_{0, \omega}^{3 / 4}(I), \tag{2.4}
\end{equation*}
$$

and we introduce the billnear form $c: V \times V \rightarrow \mathbb{R}$ defined by

$$
\begin{equation*}
c(u, v)=\int_{I} u_{x}(v \omega)_{x} d x \tag{array}
\end{equation*}
$$

Lemma 21 : There exist three positive constants α, β, γ such that for any $u \in H_{\omega}^{1}(I)$ and $v \in V$ we have

$$
\begin{align*}
& \|v\|_{0, \omega} \leqslant \alpha\left\|v_{x}\right\|_{0, \omega} \quad \text { (Porncare's inequality) } \tag{array}\\
& c(v \imath) \geqslant \beta\|v\|_{1, \omega}^{2} \tag{2.7}\\
& |c(u, \imath)| \leqslant \gamma\left\|u_{x}\right\|_{0, \omega}\left\|v_{x}\right\|_{0, \omega} . \quad \square \tag{2.8}
\end{align*}
$$

If $\omega \equiv 1$ the above results are well known : note that $c(.$, .) is the classical H_{0}^{1} inner product. For $\omega(x)=\left(1-x^{2}\right)^{-1 / 2},(2.6),(27)$ and (28) have been proved in [5] Thanks to this lemma, the norm defined by $c(v, v)^{1 / 2}, \forall v \in V$, is equivalent to $\|v\|_{1 \omega}$ (we note that if ω is not constant $c(.$, .) is not an inner product since it is not symmetric).

Let us define the linear operator $T: V^{\prime} \rightarrow V$ by

$$
\begin{equation*}
c(T g, \phi)=\langle g, \phi\rangle \quad \forall \phi \in V ; \tag{2.9}
\end{equation*}
$$

we recall that (see [11, Remark 1.2 and Theorem 24$]$) for all $s \in[-1,0[$

$$
\begin{equation*}
T \text { is continuous from } H_{0, \omega}^{-s}(I)^{\prime} \text { into } V \cap H_{\omega}^{2+s}(I) . \tag{2.10}
\end{equation*}
$$

We define also the mapping $G: \mathbb{R} \times V \rightarrow W$ by

$$
\begin{equation*}
G(\lambda, u)=\lambda\left(u u_{x}-f\right) ; \tag{array}
\end{equation*}
$$

vol $16, n^{\circ} 4,1982$
we note that G is a C^{∞} mapping, and for any $k \in \mathbb{N}, D^{k} G$ is bounded over any bounded subset of $\mathbb{R} \times V$. Moreover, since W is obtained by interpolation between V^{\prime} and $L_{\omega}^{2}(I)$, it contains topologically $L_{\omega}^{2}(I)$, so we have

$$
\|G(\lambda, u)\|_{W} \leqslant\|G(\lambda, u)\|_{0, \omega}
$$

then, since $V \subset L^{x}(I)$ (see [11, Theorem 2.2]) we get $\|G(\lambda, u)\|_{W} \leqslant|\lambda|\left\|u u_{x}-f\right\|_{0, \omega} \leqslant C_{1}|\lambda|\left(\|u\|_{L \infty(I)}\|u\|_{1, \omega}+\|f\|_{0, \omega}\right) \leqslant$

$$
\begin{equation*}
\leqslant C|\lambda|\left(\|u\|_{1, \omega}^{2}+\|f\|_{0, \omega}\right) \tag{2.12}
\end{equation*}
$$

In addition we get that

$$
\begin{equation*}
T \text { is a compact operator from } W \text { into } V \tag{2.13}
\end{equation*}
$$

This property follows easily from (2.10) ; indeed, T maps continuously W into $H_{\omega}^{5 / 4}(I) \cap V$, which in turn is compactly imbedded into V (see [11, Theorem 2.1]) so (2.13) holds.

Let us set $F: \mathbb{R} \times V \rightarrow V$,

$$
\begin{equation*}
F(\lambda, u)=u+T G(\lambda, u) \tag{2.14}
\end{equation*}
$$

the problem (2.3) can be equivalently written as follows : find $u \in V$ such that

$$
\begin{equation*}
F(\lambda, u)=0 \tag{2.15}
\end{equation*}
$$

where $\lambda=1 / \varepsilon$.
It can be easily seen that problem (2.3) admits a unique solution. Thus for any compact subset Λ of \mathbb{R}^{+}the branch $\{\{\lambda, u(\lambda)\}, \lambda \subseteq \Lambda\}$ is non singular, i.e. it satisfies condition $(H 1)$. So in this paper Λ will denote a generic compact interval of \mathbb{R}^{+}.

3. APPROXIMATIONS BY PSEUDO-SPECTRAL METHODS : STABILITY AND CONVERGENCE

Let us denote by $\left\{p_{n}\right\}_{n=0}^{\infty}$ the family of polynomials which are orthogonal with respect to the $L_{\omega}^{2}(I)$ inner product (., . $)_{\omega}$. It is well known (see e.g. [14]) that if $\omega \equiv 1$ we have $p_{n}=\lambda_{n} L_{n}$, where $\lambda_{n}=((2 n+1) / 2)^{1 / 2}$ and L_{n} is the n-th degree Legendre polynomial. If $\omega(x)=\left(1-x^{2}\right)^{-1 / 2}$ then $p_{n}=\tau_{n} T_{n}$, with $\tau_{0}=(1 / \pi)^{1 / 2}, \tau_{n}=\sqrt{2} \tau_{0}$ if $n \geqslant 1$, and T_{n} is the n-th degree Chebyshev polynomial of the first kind.

We denote by $\left.F_{\omega, N}^{G L}=\left\{\left(x_{j}, \omega_{j}\right)\right\} \mid 0 \leqslant j \leqslant N\right\}$ the Gauss-Lobatto integration formula relatively to the weight ω, with nodes

$$
-1=x_{0}<x_{1}<\cdots<x_{N}=1
$$

and weights $\omega_{j}>0$ (see e.g. [7]). Then we have

$$
\begin{equation*}
\forall g \in \mathbb{P}_{2 N-1}(I) \quad \int_{I} g(x) \omega(x) d x=\sum_{J=0}^{N} g\left(x_{J}\right) \omega_{J} \tag{3.1}
\end{equation*}
$$

where $\mathbb{P}_{m}(I)$ denotes the space of polynomials of degree $\leqslant m$ over I.
We introduce a bilinear form over $C^{0}(I)$ by setting

$$
\begin{equation*}
(\phi, \psi)_{N, \omega}=\sum_{J=0}^{N} \phi\left(x_{j}\right) \psi\left(x_{j}\right) \omega_{J}, \tag{3.2}
\end{equation*}
$$

and an interpolation operator $P_{c}: C^{0}(\bar{I}) \rightarrow \mathbb{P}_{N}(I)$ defined by

$$
\begin{equation*}
\left(P_{c} u\right)\left(x_{\jmath}\right)=u\left(x_{\jmath}\right), \quad 0 \leqslant j \leqslant N . \tag{3.3}
\end{equation*}
$$

It is easy to check that for any $u \in C^{0}(\bar{I})$, we have

$$
\begin{equation*}
P_{c} u=\sum_{k=0}^{N} \tilde{u}_{k} p_{k}, \quad \tilde{u}_{N}=\frac{\left(u, p_{N}\right)_{N, \omega}}{\left(p_{N}, p_{N}\right)_{N, \omega}}, \quad \tilde{u}_{k}=\left(u, p_{k}\right)_{N, \omega}, \quad k \leqslant N-1 . \tag{3.4}
\end{equation*}
$$

Using (3.2) and (3.3) we also have that

$$
\begin{gather*}
\forall u, \phi \in C^{0}(\bar{I}) \quad\left(P_{c} u, \phi\right)_{N, \omega}=(u, \phi)_{N, \omega} \tag{3.5}\\
\forall \phi \in \mathbb{P}_{N}(I), \quad \forall \psi \in \mathbb{P}_{N-1}(I) \quad(\phi, \psi)_{N, \omega}=(\phi, \psi)_{\omega} . \tag{3.6}
\end{gather*}
$$

Following [6], the triple ($I, F_{\omega, N}^{G L}, P_{c}$) is called a Legendre (or Chebyshev) spectral interpolation system, according that $\omega \equiv 1$ (or $\omega(x)=\left(1-x^{2}\right)^{-1 / 2}$, respectively).

To approximate (2.3) we introduce the following pseudo-spectral problem : find $u_{N} \in V_{N}$ such that

$$
\begin{equation*}
\forall \phi \in V_{N}-\left(u_{N_{x x}}, \phi\right)_{N, \omega}+\frac{\lambda}{2}\left(\left[P_{c} u_{N}^{2}\right]_{x}, \phi\right)_{N, \omega}=\lambda(f, \phi)_{N, \omega} \tag{3.7}
\end{equation*}
$$

where $V_{N}=\left\{\phi \in \mathbb{P}_{N}(I) \mid \phi(-1)=\phi(1)=0\right\}$.
Remark 3.1: For any $j=1, \ldots, N-1$ let ϕ_{J} denote the function of V_{N} defined by : $\phi_{J}\left(x_{k}\right)=\delta_{j k}, k=0, \ldots, N$. Then from (3.7) we get

$$
\left\{\begin{array}{l}
-u_{N_{x x}}\left(x_{j}\right)+\frac{\lambda}{2}\left[P_{c} u_{N}^{2}\right]_{x}\left(x_{j}\right)=\lambda f\left(x_{j}\right), \quad 1 \leqslant j \leqslant N-1 \tag{3.8}\\
u_{N}\left(x_{0}\right)=u_{N}\left(x_{N}\right)=0
\end{array}\right.
$$

vol $16, \mathrm{n}^{0} 4,1982$

Conversely, multiplying the first equation of (38) by $\phi\left(x_{J}\right) \omega_{j}\left(\phi \in V_{N}\right)$ and adding over \jmath from 0 up to N we get that u_{N} satisfies (3 7) Hence (37) and (3 8) are equivalent

Since $\frac{1}{2}\left(u_{N}^{2}\right)_{x}=u_{N} u_{N_{x}}$, (38) should be a standard collocation method for (2 3) at the nodes $x_{j}, 1 \leqslant J \leqslant N-1$, if $\left(u_{N}^{2}\right)_{x}$ was used instead of $\left[P_{c} u_{N}^{2}\right]_{x}$ On the other hand, to interpolate before making derivatives is one of the features of pseudo-spectral methods since it is quite easy to implement successfully this process (see eg [8, 9]) Finally, we note that for defining correctly (3 7), f must be contınuous, and for that it is enough to require that $f \in H_{\omega}^{s}(I)$, for some $s>\frac{1}{2}$ ([11, Theorem 2 2 $]$) For ease of exposition only, we shall assume that f belongs to $H_{\omega}^{1}(I)$

We want to develop the analysis of the pseudo-spectral problem (37) in the abstract framework of Section 1 For that we define the operator $T_{N} \quad V^{\prime} \rightarrow V_{N}$ by

$$
\begin{equation*}
\forall \phi \in V_{N} \quad c\left(T_{N} g, \phi\right)=\langle g, \phi\rangle, \tag{array}
\end{equation*}
$$

moreover we define $\Pi_{N} \quad V \rightarrow V_{N}$ by

$$
\begin{equation*}
\forall \phi \in V_{N} \quad c\left(\Pi_{N} v, \phi\right)=c(v, \phi) \tag{array}
\end{equation*}
$$

Using (2 9) we get immediately

$$
\begin{equation*}
T_{N}=\Pi_{N} \circ T \tag{array}
\end{equation*}
$$

Let us recall the following result which holds for both Legendre and Chebyshev werghts (see [11], Theorems 11 and 1 4])

$$
\begin{equation*}
\forall u \in H_{\omega}^{\sigma}(I) \cap V, \sigma \geqslant 1, \quad\left\|u-\Pi_{N} u\right\|_{\mu \omega} \leqslant C N^{\mu-\sigma}\|u\|_{\sigma \omega} \quad 0 \leqslant \mu \leqslant 1 \tag{array}
\end{equation*}
$$

Thanks to (312) and using density arguments we can show that

$$
\begin{equation*}
\forall v \in V \lim _{N \rightarrow \infty}\left\|v-\Pi_{N} v\right\|_{1 \omega}=0 \tag{array}
\end{equation*}
$$

Moreover it can be proved that

$$
\begin{equation*}
\lim _{N \rightarrow \infty}\left\|T-T_{N}\right\|_{\mathscr{L}(W V)}=0 \tag{array}
\end{equation*}
$$

From (2.4), (2.10), (3.11) and (3.12) we have

$$
\begin{array}{r}
\forall g \in W, \quad\left\|\left(T-T_{N}\right) g\right\|_{1, \omega}=\left\|\left(\mathrm{Id}-\Pi_{N}\right) T g\right\|_{1, \omega} \leqslant C N^{-1 / 4}\|T g\|_{5 / 4, \omega} \leqslant \\
\leqslant C N^{-1 / 4}\|g\|_{W}
\end{array}
$$

so that $\left\|T-T_{N}\right\|_{\mathscr{L}(W, V)} \leqslant C N^{-1 / 4}$ and (3.14) follows. Finally for any $\lambda \in \Lambda$ we set

$$
\begin{equation*}
\forall v \in V_{N}, \forall \phi \in V\left\langle G_{N}(\lambda, v), \phi\right\rangle=\frac{\lambda}{2}\left(\left[P_{c} v^{2}\right]_{x}, \phi\right)_{\omega}-\lambda(f, \phi)_{N, \omega} \tag{3.15}
\end{equation*}
$$

Lemma 3.1: For any $\lambda \in \mathbb{R}$ and $v \in V_{N}$ the operator $G_{N}(\lambda, v)$ belongs to V^{\prime}.
Proof: The linearity is obvious by definition, so let us check the continuity.
(i) We start by proving the following inequality

$$
\begin{equation*}
\forall z \in L_{\omega}^{2}(I), \forall \phi \in V\left|\int_{I} z(\phi \omega)_{x} d x\right| \leqslant C\|z\|_{0, \omega}\|\phi\|_{1, \omega} \tag{3.16}
\end{equation*}
$$

If $\omega \equiv 1$ it is a consequence of the Cauchy-Schwarz inequality. Otherwise we set $w(x)=\int_{-1}^{x} z(\xi) d \xi$; clearly $w \in H_{\omega}^{1}(I)$ and by (2.8), we have

$$
\left|\int_{I} z(\phi \omega)_{x} d x\right|=\left|\int_{I} w_{x}(\phi \omega)_{x} d x\right| \leqslant \gamma\left\|w_{x}\right\|_{0, \omega}\|\phi\|_{1, \omega}
$$

and (3.16) holds.
(ii) At this sep we want to evaluate the quantities

$$
E(\chi, \phi)=\left|(\chi, \phi)_{N, \omega}-(\chi, \phi)_{\omega}\right|
$$

for any $\chi, \phi \in C^{0}(\bar{I})$. Let us recall the following result : setting

$$
\|\phi\|_{N, \omega}^{2}=(\phi, \phi)_{N, \omega}
$$

we have [6]

$$
\begin{equation*}
\forall \phi \in \mathbb{P}_{N}(I) \quad \frac{1}{2}\|\phi\|_{N, \omega} \leqslant\|\phi\|_{0, \omega} \leqslant\|\phi\|_{N, \omega} . \tag{3.17}
\end{equation*}
$$

Moreover we get (see [6, Theorems 3.1 and 3.2]) for any $u \in H_{\omega}^{\sigma}(I)$ with $\sigma>\frac{1}{2}$, and for any $\mu \in[0, \sigma]$

$$
\left\|u-P_{c} u\right\|_{\mu, \omega} \leqslant C\|u\|_{\sigma, \omega}\left\{\begin{array}{lll}
N^{2 \mu-\sigma} & \text { if } & \omega(x)=\left(1-x^{2}\right)^{-1 / 2} \tag{3.18}\\
N^{2 \mu-\sigma+1 / 2} & \text { if } \omega \equiv 1
\end{array}\right.
$$

Let us denote by $\Pi_{0 N} \quad L_{\omega}^{2}(I) \rightarrow \mathbb{P}_{N}(I)$ the L_{ω}^{2} projection operator upon $\mathbb{P}_{N}(I), 1 \mathrm{e}$

$$
\begin{equation*}
\forall \phi \in \mathbb{P}_{N}(I) \quad\left(u-\Pi_{0 N} u, \phi\right)_{\omega}=0 \tag{array}
\end{equation*}
$$

We have (see [6, Theorems 21 and 23]) for any $u \in H_{\omega}^{\sigma}(I)$ with $\sigma \geqslant 0$

$$
\begin{equation*}
\left\|u-\Pi_{0 N} u\right\|_{0 \omega} \leqslant C N{ }^{\sigma}\|u\|_{\sigma \omega} \tag{array}
\end{equation*}
$$

First we assume that $\phi \in \mathbb{P}_{N}(I)$ Using (3 5) and (3 6) we have

$$
\begin{align*}
E(\chi, \phi) & =\left|\left(P_{c} \chi, \phi\right)_{N \omega}-\left(\Pi_{0 N-1} \chi, \phi\right)_{N \omega}+\left(\Pi_{0 N-1} \chi, \phi\right)_{\omega}-(\chi, \phi)_{\omega}\right| \\
& =\left|\left(\left(P_{c}-\Pi_{0 N-1}\right) \chi, \phi\right)_{N \omega}+\left(\Pi_{0 N 1} \chi-\chi, \phi\right)_{\omega}\right| \leqslant \\
\leqslant \|\left(P_{c}\right. & \left.-\Pi_{0 N-1}\right) \chi\left\|_{N \omega}\right\| \phi\left\|_{N \omega}+\right\| \Pi_{0 N-1} \chi-\chi\left\|_{0 \omega}\right\| \phi \|_{0 \omega} \tag{array}
\end{align*}
$$

then using (3 17) we have

$$
\begin{align*}
\forall \chi \in C^{0}(\bar{I}), & \forall \phi \in \mathbb{P}_{N}(I), \quad\left|(\chi, \phi)_{N \omega}-(\chi, \phi)_{\omega}\right| \leqslant \\
& \leqslant C\|\phi\|_{0 \omega}\left(\left\|\chi-P_{c} \chi\right\|_{0_{\omega}}+\left\|\chi-\Pi_{0 N-1} \chi\right\|_{0_{\omega}}\right) \tag{array}
\end{align*}
$$

If ϕ does not belong to $\mathbb{P}_{N}(I)$, arguing as before we get

$$
\begin{aligned}
E(\chi, \phi)= & \mid\left(P_{c} \chi, P_{c} \phi\right)_{N \omega}-\left(\Pi_{0 N-1} \chi, P_{c} \phi\right)_{N \omega}+\left(\Pi_{0 N-1} \chi, P_{c} \phi\right)_{\omega}- \\
& -\left(\Pi_{0 N-1} \chi, \phi\right)_{\omega}+\left(\Pi_{0 N-1} \chi, \phi\right)_{\omega}-(\chi, \phi)_{\omega} \mid \leqslant \\
& \leqslant C\left\{\left\|\left(P_{c}-\Pi_{0 N-1}\right) \chi\right\|_{0 \omega}\left\|P_{c} \phi\right\|_{0 \omega}+\right. \\
& \left.+\left\|\Pi_{0 N-1} \chi\right\|_{0 \omega}\left\|\phi-P_{c} \phi\right\|_{0 \omega}+\left\|\chi-\Pi_{0 N}{ }_{1} \chi\right\|_{0 \omega}\|\phi\|_{0 \omega}\right\},
\end{aligned}
$$

using (3 18) and (3 20) we obtain that for any $\frac{1}{2}<\mu \leqslant 1$

$$
\begin{align*}
& \forall \chi \in H_{\omega}^{1}(I), \forall \phi \in H_{0}^{\mu}(I), \quad\left|(\chi, \phi)_{N \omega}-(\chi, \phi)_{\omega}\right| \leqslant \\
& \leqslant C N^{(1 / 2)-\mu}\|\chi\|_{1 \omega}\|\phi\|_{\mu \omega} \tag{array}
\end{align*}
$$

(111) Now we want to show that the difference between G_{N} and G vanishes when N tends to infinity

For any $\lambda \in \mathbb{R}$ and $v \in V_{N},\left(\begin{array}{l}211) \text { and (3 15) lead to }\end{array}\right.$

$$
\begin{array}{r}
\forall \phi \in V\left\langle\left(G-G_{N}\right)(\lambda, v), \phi\right\rangle=\lambda\left\{\frac{1}{2} \int_{I}\left(v^{2}-P_{c} v^{2}\right)_{x} \phi \omega d x+\right. \\
\left.+(f, \phi)_{\omega}-(f, \phi)_{N \omega}\right\} \tag{array}
\end{array}
$$

Integratıng by parts and using (3 16) and (3 18) we get

$$
\begin{align*}
& \left|\int_{I}\left(v^{2}-P_{c} v^{2}\right)_{x} \phi \omega d x\right|=\left|-\int_{I}\left(v^{2}-P_{c} v^{2}\right)(\phi \omega)_{x} d x\right| \leqslant \\
& \quad \leqslant C\left\|v^{2}-P_{c} v^{2}\right\|_{0 \omega}\|\phi\|_{1 \omega} \leqslant C N^{-1 / 2}\left\|v^{2}\right\|_{1 \omega}\|\phi\|_{1 \omega} \leqslant \\
& \tag{array}\\
& \leqslant C N^{-1 / 2}\|v\|_{1 \omega}^{2}\|\phi\|_{1 \omega}
\end{align*}
$$

where the last inequality is due to the fact that $H_{\omega}^{1}(I)$ is an algebra (see [1, Theorem 5 23] and [11, Theorem 1 2]) Finally, using (3 24), (3 25) and (3 23) with $\chi=f$ for any $\lambda \in \mathbb{R}$ we obtan that

$$
\begin{align*}
\forall v \in V_{N}, \forall \phi \in V, \quad \mid & \left\langle\left(G-G_{N}\right)(\lambda, v), \phi\right\rangle \mid \leqslant \\
& \leqslant C N^{-1 / 2}|\lambda|\left(\|v\|_{1 \omega}^{2}+\|f\|_{1 \omega}\right)\|\phi\|_{1 \omega} \tag{326}
\end{align*}
$$

(iv) Since W is topologically imbedded in V, using (2 12) we have that $G(\lambda, v)$ belongs to V^{\prime} for any $\lambda \in \mathbb{R}$ and any $v \in V_{N}$ Hence using (3 26) the lemma is proved

Let us go back to problem (3 7) Using (3 6) and integrating by parts we have

$$
\begin{equation*}
\forall \phi \in V_{N}-\left(u_{N_{x x}}, \phi\right)_{N \omega}=-\left(u_{N_{x x}}, \phi\right)_{\omega}=c\left(u_{N}, \phi\right) \tag{327}
\end{equation*}
$$

Then by the definition (3 15), it follows from (3 7) and (327) that

$$
\forall \phi \in V_{N} \quad c\left(u_{N}, \phi\right)=-\left\langle G_{N}\left(\lambda, u_{N}\right), \phi\right\rangle
$$

Finally, setting $F_{N}^{*} \mathbb{R} \times V_{N} \rightarrow V_{N}$,

$$
\begin{equation*}
F_{N}^{*}\left(\lambda, u_{N}\right)=u_{N}+T_{N} G_{N}\left(\lambda, u_{N}\right), \tag{328}
\end{equation*}
$$

we get from (3 9) that the pseudo-spectral problem (3 7) is equivalent to finding $u_{N} \in V_{N}$ such that

$$
\begin{equation*}
F_{N}^{*}\left(\lambda, u_{N}\right)=0 \tag{array}
\end{equation*}
$$

In order to apply the abstract Theorem 12 to problem (329) we need to prove some further results
Lemima 32 The operator G_{N} defined bv(315) is a C^{∞} mapping from $\Lambda \times V_{N}$ into V Moreover there exists a positive increasing function $K \quad \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$ such that

$$
\begin{equation*}
\forall l \geqslant 1 \quad\left\|D^{l} G_{N}[\lambda, v]\right\|_{\mathscr{L}_{\left([\mathcal{R} \times V]^{l} w\right)}} \leqslant K\left(|\lambda|+\|v\|_{1 \omega}\right) \tag{330}
\end{equation*}
$$

vol $16 \mathrm{n}^{\circ} 4,1982$

Proof : The first assertion is obvious. To prove (3.30) we proceed by steps.
(i) Consider first the derivative with respect to λ; using (3.15) we have for any $\mu \in \Lambda$

$$
\begin{equation*}
\left\langle D_{\lambda} G_{N}[\lambda, v](\mu), \phi\right\rangle=\frac{1}{2} \mu \int_{I}\left(P_{c} v^{2}\right)_{x} \phi \omega d x-\mu(f, \phi)_{N, \omega} \tag{3.31}
\end{equation*}
$$

It follows from the Cauchy-Schwarz inequality that

$$
\begin{equation*}
\forall \phi \in L_{\omega}^{2}(I)\left|\int_{I}\left(P_{c} v^{2}\right)_{x} \phi \omega d x\right| \leqslant C_{1}\left\|P_{c} v^{2}\right\|_{1, \omega}\|\phi\|_{0, \omega} \tag{3.32}
\end{equation*}
$$

On the other hand, integrating by parts and using (3.16) and (3.31) we have

$$
\begin{equation*}
\forall \phi \in V \quad\left|\int_{I}\left(P_{c} v^{2}\right)_{x} \phi \omega d x\right| \leqslant C_{2}\left\|P_{c} v^{2}\right\|_{0, \omega}\|\phi\|_{1, \omega} \tag{3.33}
\end{equation*}
$$

Finally, by interpolation between (3.32) and (3.33) (see [3, Theorem 4.4.1]) we obtain

$$
\begin{equation*}
\forall \phi \in H_{0, \omega}^{3 / 4}(I)\left|\int_{I}\left(P_{c} v^{2}\right)_{x} \phi \omega d x\right| \leqslant C\left\|P_{c} v^{2}\right\|_{1 / 4, \omega}\|\phi\|_{3 / 4, \omega} \tag{3.34}
\end{equation*}
$$

Using (3.18) and the inequality $\left\|v^{2}\right\|_{1, \omega} \leqslant C\|v\|_{1, \omega}^{2}$ we have that $\left\|P_{c} v^{2}\right\|_{1 / 4, \omega} \leqslant\left\|v^{2}\right\|_{1 / 4, \omega}+\left\|v^{2}-P_{c} v^{2}\right\|_{1 / 4, \omega} \leqslant C\left\|v^{2}\right\|_{1, \omega} \leqslant C\|v\|_{1, \omega}^{2} ;$ in addition, since $\|\phi\|_{L^{\prime}(I)} \leqslant C\|\phi\|_{3 / 4, \omega}$ (see [11, Theorem 1.2]), we have $\forall \phi \in H_{0, \omega}^{3 / 4}(I) \quad\left|(f, \phi)_{N, \omega}\right| \leqslant C\|f\|_{L^{r}(I)}\|\phi\|_{L^{\prime}(I)} \leqslant$

$$
\leqslant C\|f\|_{1, \omega}\|\phi\|_{3 / 4, \omega} .
$$

Summarizing the previous inequality and using (3.31) and (3.34) we get

$$
\begin{equation*}
\left\|D_{\lambda} G_{N}[\lambda, v]\right\|_{\mathscr{L}_{(\mathbb{R}, W)}} \leqslant C\left(\|f\|_{1, \omega}+\|v\|_{1, \omega}^{2}\right) . \tag{3.35}
\end{equation*}
$$

Clearly, higher order derivatives with respect to λ vanish identically.
(11) We consider now $D_{u} G_{N}$, arguing as in (1) we have

$$
\begin{aligned}
& \left|\left\langle D_{u} G[\lambda, v](w), \phi\right\rangle\right|=\left|-\lambda \int_{I}\left[P_{c}(v w)\right]_{x} \phi \omega d x\right| \leqslant \\
& \quad \leqslant C|\lambda| \begin{cases}\left\|P_{c}(v w)\right\|_{1, \omega}\|\phi\|_{0, \omega}, & \forall \phi \in L_{\omega}^{2}(I) \\
\left\|P_{c}(v w)\right\|_{0, \omega}\|\phi\|_{1, \omega}, & \forall \phi \in V\end{cases}
\end{aligned}
$$

Then by interpolation it follows from (318) that

$$
\begin{aligned}
& \forall w \in V, \forall \phi \in H_{0, \omega}^{3 / 4}(I), \quad\left|\left\langle D_{u} G[\lambda, v](w), \phi\right\rangle\right| \leqslant \\
& \leqslant C|\lambda|\|v\|_{1, \omega}\|w\|_{1, \omega}\|\phi\|_{3 / 4, \omega}
\end{aligned}
$$

whence

$$
\begin{equation*}
\left\|D_{u} G_{N}[\lambda, v]\right\|_{\mathscr{L}(\mathbb{R} \times V, W)} \leqslant C|\lambda|\|v\|_{1, \omega} . \tag{array}
\end{equation*}
$$

(i11) Finally consider the second order derivatives of G_{N} For any $\mu \in \mathbb{R}$ we have

$$
\forall w \in V \quad\left|\left\langle D_{u \lambda} G_{N}[\lambda, v](\{\mu, w\}) \phi\right\rangle\right|=\left|-\mu \int_{I}\left[P_{c}(v w)\right]_{x} \phi \omega d x\right|,
$$

then proceeding as in (11) this term can be bounded by

$$
|\mu|\|v\|_{1, \omega}\|w\|_{1, \omega}\|\phi\|_{3 / 4, \omega}
$$

so we get

$$
\begin{equation*}
\left\|D_{u \lambda} G_{N}[\lambda, v]\right\|_{\mathscr{L}_{\left([\mathbb{R} \times V]^{2}, W\right)}} \leqslant C\|v\|_{1, \omega} \tag{array}
\end{equation*}
$$

Finally

$$
\forall w_{1}, w_{2} \in V\left\langle D_{u u} G_{N}[\lambda, v]\left(\left\{w_{1}, w_{2}\right\}\right), \phi\right\rangle=-\lambda \int_{I}\left[P_{c}\left(w_{1}, w_{2}\right)\right]_{,} \phi \omega d x
$$

so arguing as usual we obtain

$$
\begin{equation*}
\left\|D_{u u} G_{N}[\lambda, v]\right\|_{\left.\left.\mathscr{L}_{([\mathbb{R}} \times V\right]^{2}, W\right)} \leqslant C|\lambda| . \tag{array}
\end{equation*}
$$

Hıgher order derıvatives vanısh identically, so (3 30) follows from (3 35), ., $\left(\begin{array}{ll}3 & 38\end{array}\right)$

Lemma 3 3: We have

$$
\begin{equation*}
\lim _{N \rightarrow x} \sup _{\lambda \in \Lambda}\left\|D_{u}\left(G-G_{N}\right)\left[\lambda, \Pi_{N} u(\lambda)\right]\right\|_{\mathscr{L}(V, V)}=0 \tag{array}
\end{equation*}
$$

Proof Using (3 26), (3 16), (3 18) and setting $v \equiv \Pi_{N} u(\lambda)$ we have for any $w \in V$

$$
\begin{aligned}
& \forall \phi \in V \quad \mid< D_{u}\left(G-G_{N}\right)[\lambda, v](w), \phi>\mid= \\
&=\left|\lambda \int_{I}\left\{(v w)_{x}-\left[P_{c}(v w)\right]_{x}\right\} \phi \omega d x\right| \\
&=\left|-\lambda \int_{I}\left[(v w)-P_{c}(v w)\right](\phi \omega)_{x} d x\right| \leqslant \\
& \leqslant \leqslant|\lambda|\left\|v w-P_{c}(v w)\right\|_{0 \omega}\|\phi\|_{1 \omega} \\
& \leqslant C|\lambda| N^{-1 / 2}\|v w\|_{1 \omega}\|\phi\|_{1 \omega} \\
& \leqslant C|\lambda| N^{-1 / 2}\|v\|_{1 \omega}\|w\|_{1 \omega}\|\phi\|_{1 \omega}
\end{aligned}
$$

Then noting that $\|v\|_{1 \omega}=\left\|\Pi_{N} u(\lambda)\right\|_{1 \omega} \leqslant C\|u(\lambda)\|_{1 \omega}$ by (3 20), the property (3 39) follows

Lemma 34 We have

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \sup _{\lambda \in \Lambda}\left\|F_{N}^{*}\left(\lambda, \Pi_{N} u(\lambda)\right)\right\|_{1 \omega}=0 \tag{array}
\end{equation*}
$$

Proof From (2 14), (2 15) and (3 28) we get

$$
\begin{array}{r}
F_{N}^{*}\left(\lambda, \Pi_{N} u(\lambda)\right)=F_{N}^{*}\left(\lambda, \Pi_{N} u(\lambda)\right)-F(\lambda, u(\lambda))=\Pi_{N} u(\lambda)-u(\lambda)+ \\
+\left(T_{N}-T\right) G(\lambda, u(\lambda))+T_{N}\left(G\left(\lambda, \Pi_{N} u(\lambda)\right)-G(\lambda, u(\lambda))\right)+ \\
+T_{N}\left(G_{N}-G\right)\left(\lambda, \Pi_{N} u(\lambda)\right) \tag{array}
\end{array}
$$

Using (2 14) and (3 11) we have

$$
\begin{equation*}
\left\|\left(T_{N}-T\right) G(\lambda, u(\lambda))\right\|_{1 \omega}=\mid u(\lambda)-\Pi_{N} u(\lambda) \|_{1 \omega} \tag{array}
\end{equation*}
$$

owing to the uniform continuity of Π_{N} in V (see (3 20)), to the differentiability of G, to the continuity of T from W into V and to (15) we have

$$
\begin{array}{r}
\left\|T_{N}\left(G\left(\lambda, \Pi_{N} u(\lambda)\right)-G(\lambda, u(\lambda))\right)\right\|_{1 \omega} \leqslant C \| T\left(G\left(\lambda, \Pi_{N} u(\lambda)\right)-\right. \\
-G(\lambda, u(\lambda)))\left\|_{1 \omega} \leqslant C\right\| G\left(\lambda, \Pi_{N} u(\lambda)\right)-G(\lambda, u(\lambda)) \|_{W} \leqslant \\
\leqslant C\left\|\Pi_{N} u(\lambda)-u(\lambda)\right\|_{1 \omega} \tag{array}
\end{array}
$$

Finally, using (3.16), (3.21) and (3.26) we have

$$
\begin{align*}
& \left\|T_{N}\left(G_{N}-G\right)\left(\lambda, \Pi_{N} u(\lambda)\right)\right\|_{1, \omega}= \\
& =\sup _{\phi \in V_{N}\|\phi\|_{1, \omega}=1}\left|\left\langle\left(G_{N}-G\right)\left(\lambda, \Pi_{N} u(\lambda)\right), \phi\right\rangle\right|= \\
& =\sup _{\phi \in V_{N}\|\phi\|_{1, \omega}=1} \left\lvert\, \frac{1}{2} \int_{I}\left[\left(\Pi_{N} u(\lambda)\right)^{2}-P_{c}\left(\Pi_{N} u(\lambda)\right)^{2}\right]_{x} \phi \omega d x+\right. \\
& \quad+(f, \phi)_{\omega}-(f, \phi)_{N, \omega} \mid \leqslant \\
& \leqslant C\left\{\left\|\left(\Pi_{N} u(\lambda)\right)^{2}-P_{c}\left(\Pi_{N} u(\lambda)\right)^{2}\right\|_{0, \omega}+\left\|f-P_{c} f\right\|_{0, \omega}+\right. \\
& \\
& \left.\quad+\left\|f-\Pi_{0, N-1} f\right\|_{0, \omega}\right\} \leqslant C\left\{\left\|u(\lambda)^{2}-P_{c} u(\lambda)^{2}\right\|_{0, \omega}\right. \\
& \quad+\left\|\left(\operatorname{Id}-P_{c}\right)\left(u(\lambda)^{2}-\left[\Pi_{N} u(\lambda)\right]^{2}\right)\right\|_{0, \omega}+\left\|f-P_{c} f\right\|_{0, \omega}+ \tag{3.44}\\
& \\
& \left.\quad+\left\|f-\Pi_{0, N-1} f\right\|_{0, \omega}\right\} .
\end{align*}
$$

Now (3 40) holds thanks to (3.41), ..., (3.44) and to (3.18) and (3.20).
Finally we have :
Theorem 3.1: Let $\{\{\lambda, u(\lambda)\}, \lambda \in \Lambda\}$ be a branch of non singular solutions of (2.15), and let N be a sufficiently large number. There exist a neighborhood θ of 0 independent of N, and, for any $\lambda \in \Lambda$, a unique C^{1} mapping $\lambda \rightarrow u, ~(\lambda)$ such that

$$
\begin{equation*}
F_{N}^{*}\left(\lambda, u_{N}(\lambda)\right)=0, \quad u_{N}(\lambda)-\Pi_{N} u(\lambda) \in \theta \tag{3.45}
\end{equation*}
$$

Moreover, if $f \in H_{\omega}^{\sigma}(I)\left(\sigma>\frac{1}{2}\right)$, then for any $\lambda \in \Lambda u(\lambda) \in V \cap H_{\omega}^{\sigma+2}(I)$, and the following error estimate holds :

$$
\begin{align*}
\left\|u_{N}(\lambda)-u(\lambda)\right\|_{1, \omega} \leqslant & C\left\{N^{-(\sigma+1)}\|u(\lambda)\|_{\sigma+2, \omega}+\right. \\
& \left.+N^{e(\omega)-(\sigma+2)}\|u(\lambda)\|_{\sigma+2, \omega}^{2}+N^{e(\omega)-\sigma}\|f\|_{\sigma, \omega}\right\} \tag{3.46}
\end{align*}
$$

where $e(\omega)=0$ if $\omega(x)=\left(1-x^{2}\right)^{-1 / 2}$, and $e(\omega)=\frac{1}{2}$ if $\omega \equiv 1$.
Proof: Due to (3.13), (3.14), (2.13) and Lemmas (3.1), (3.2), (3.3) and (3.4) we can apply Theorem 1.2 with $Z=V$. Note that the hypothesis (1.9) is trivially satisfied with $r=0$. Then by (1.16) we immediately get (3.45). Moreover it follows from (1.17), (3.42) and (3.44) that for any $\lambda \in \Lambda$

$$
\begin{align*}
& \left\|u_{N}(\lambda)-u(\lambda)\right\|_{1, \omega} \leqslant C\left\{\left\|\left(\operatorname{Id}-\Pi_{N}\right) u(\lambda)\right\|_{1, \omega}+\right. \\
& +\left\|\left(\operatorname{Id}-P_{c}\right)\left(u(\lambda)^{2}-\left[\Pi_{N} u(\lambda)\right]^{2}\right)\right\|_{0, \omega}+\left\|\left(\operatorname{Id}-P_{c}\right) u(\lambda)^{2}\right\|_{0, \omega}+ \\
& \left.\quad+\left\|\left(\operatorname{Id}-P_{c}\right) f\right\|_{0, \omega}+\left\|\left(\operatorname{Id}-\Pi_{0, N-1}\right) f\right\|_{0, \omega}\right\} . \tag{3.47}
\end{align*}
$$

vol $16, n^{\circ} 4,1982$

Using the continuity of the operator T from $H_{\omega}^{s}(I)$ into $V \cap H_{\omega}^{s+2}(I)$ if $s \geqslant 0$ (see [11, Theorem 14 and Remark 12]), it is easy to see that if $f \in H_{\omega}^{\sigma}(I)$, then for any λ the solution of (23) belongs to $H_{\omega}^{\sigma+2}(I)$, so $u(\lambda) \in V \cap H_{\omega}^{\sigma+2}(I)$ for any λ Using (3 18) and the fact that $H_{\omega}^{\sigma+2}(I)$ is an algebra we get

$$
\begin{align*}
\left\|\left(\operatorname{Id}-P_{c}\right) u^{2}(\lambda)\right\|_{0 \omega} \leqslant C N^{e(\omega)-2-\sigma} \| & u^{2}(\lambda) \|_{\sigma+2 \omega} \leqslant \\
& \leqslant C N^{e(\omega)-2-\sigma}\|u(\lambda)\|_{\sigma+2 \omega}^{2} \tag{348}
\end{align*}
$$

Moreover, using (3 12) and (3 18) we have

$$
\begin{align*}
& \left\|\left(\operatorname{Id}-P_{r}\right)\left(u^{2}(\lambda)-\left[\Pi_{N} u(\lambda)\right]^{2}\right)\right\|_{0 \omega} \leqslant \\
& \leqslant C N^{e(\omega)-1}\left\|u(\lambda)-\Pi_{N} u(\lambda)\right\|_{1 \omega}\left\|u(\lambda)+\Pi_{N} u(\lambda)\right\|_{1 \omega} \\
& \leqslant C N^{e(\omega)-2-\sigma}\|u(\lambda)\|_{\sigma+2 \omega}\|u(\lambda)\|_{1 \omega} \tag{array}
\end{align*}
$$

Finally, using (3 18) and (3 20), (3 46) follows from (3 47), , (3 49)
We want now to obtain an L_{ω}^{2} error estimate that improves the one which can be trivially deduced from (346)

To this and let $M>N$ be an integer and define the discrete inner product (., . $)_{M \omega}$ as in (3 2) by formally replacing N with M

Let \widetilde{P}_{c} denote the interpolation operator with respect to the points x_{v}, $0 \leqslant v \leqslant M$ Using (318) we then obtain

$$
\forall \sigma>\frac{5}{2}\left\|f-\widetilde{P}_{c} f\right\|_{0 \omega} \leqslant C\|f\|_{\sigma-2 \omega} \begin{cases}M^{2-\sigma} & \text { if } \omega(x)-\left(1-r^{2}\right)^{1 / 2} \\ M^{(5 / 2)-\sigma} & \text { if } \omega(x) \equiv 1\end{cases}
$$

hence, if $M>N^{\sigma(\sigma-2)}$ when $\omega(x)=\left(1-x^{2}\right)^{1 / 2}$, and $M>N^{\frac{2 \sigma-1}{2 \sigma} 5}$ when $\omega=1$, we deduce the inequality

$$
\begin{equation*}
\left\|f-\widetilde{P}_{c} f\right\|_{0_{\omega}} \leqslant C\|f\|_{\sigma \quad 2 \omega} N^{e(\omega)-\sigma} \tag{array}
\end{equation*}
$$

Define now a new pseudo spectral problem as follows find $\tilde{u}_{N} \in V_{N}$ such that

$$
\begin{equation*}
\tilde{F}_{N}\left(\lambda, \tilde{u}_{N}(\lambda)\right)=0 \tag{array}
\end{equation*}
$$

Here we set, for any $\lambda \in \Lambda, v \in V_{N}$ and $\phi \in V$

$$
\begin{equation*}
\left\langle\widetilde{G}_{N}(\lambda, v), \phi\right\rangle=\frac{\lambda}{2}\left(\left[P_{c} v^{2}\right]_{x}, \phi\right)_{\omega}-\lambda(f, \phi)_{M \omega} \tag{array}
\end{equation*}
$$

and

$$
\widetilde{F}_{N}(\lambda, v)=v+T_{N} \widetilde{G}_{N}(\lambda, v)
$$

We note that problem (351) differs from problem (3 29) only for a more precise integration formula used for the computation of the contributions of f.

It is an easy matter to check that the Theorem 31 still holds if u_{N} is replaced by \tilde{u}_{N} and F_{N}^{*} by \tilde{F}_{N}

Theorem 32 . Assume that, for some $\sigma>2, f \in H_{\omega}^{\sigma-2}(I)$ and that the mapping $\lambda \in \Lambda \rightarrow u(\lambda) \in V \cap H_{\omega}^{\sigma}(I)$ is continuous.

Then for any $\lambda \in \Lambda$ there exists a posituve constant $C(\lambda)$ depending on $\|u(\lambda)\|_{\sigma, \omega}$ and on $\|f\|_{\sigma-1, \omega}$ such that

$$
\begin{equation*}
\left\|\tilde{u}_{N}(\lambda)-u(\lambda)\right\|_{0, \omega} \leqslant C(\lambda) N^{e(\omega)-\sigma} \tag{array}
\end{equation*}
$$

Proof: To achieve (3 54) it is sufficient to verify the hypotheses of the Corollary 11

For that we set $K=V, H=L_{\omega}^{2}(I)$ and $Y=V^{\prime}$.
First, we deduce from (2.11) that

$$
D_{u} G[\lambda, v] w=\frac{1}{2}(v w)_{x}
$$

If $v \in V$ and $w \in H$, then $v w \in H$, and by (316) we get that

$$
(v w)_{x} \in\left(H_{0, \omega}^{1}(I)\right)^{\prime}=Y
$$

This proves (1.39).
Next, it is an easy consequence of (2 10) that (148) holds. Then, (1.41) is a simple consequence of $\left(\begin{array}{ll}2 & 10\end{array}\right),\left(\begin{array}{ll}3 & 11\end{array}\right)$ and (312)

Finally, as previously seen, $\left\|\tilde{u}_{N}(\lambda)-u(\lambda)\right\|_{1, \omega}=0(1 / N)$, hence (1 42) holds

Then using (143) we obtain for any $\lambda \in \Lambda$

$$
\begin{align*}
\left\|\tilde{u}_{N}(\lambda)-u(\lambda)\right\|_{0, \omega} \leqslant C \| u(\lambda)+ & T_{N} G(\lambda, u(\lambda)) \|_{0, \omega}+ \\
& +\left\|T_{N}\left(G-\widetilde{G}_{N}\right)\left(\lambda, \tilde{u}_{N}(\lambda)\right)\right\|_{0, \omega} \tag{array}
\end{align*}
$$

Using the equality $u(\lambda)+T G(\lambda, u(\lambda))=0$, and $T_{N}=\Pi_{N} \circ T$ we get

$$
\begin{equation*}
\left\|u(\lambda)+T_{N} G(\lambda, u(\lambda))\right\|_{0, \omega} \leqslant C N^{-\sigma}\|u(\lambda)\|_{\sigma, \omega} \tag{356}
\end{equation*}
$$

Next let us estımate the last term of (3.55).
By Lemma 21 there exists $\phi \in V_{N}$ such that for any $v \in V_{N}$

$$
\begin{equation*}
c(v, \phi)=\left(v, T_{N}\left(G-\widetilde{G}_{N}\right)\left(\lambda, \tilde{u}_{N}(\lambda)\right)\right)_{\omega} \tag{3.57}
\end{equation*}
$$

vol 16, n $^{0} 4,1982$

Moreover there exists a positive constant C such that

$$
\|\phi\|_{1 \omega} \leqslant C\left\|T_{N}\left(G-\widetilde{G}_{N}\right)\left(\lambda, \tilde{u}_{N}(\lambda)\right)\right\|_{0 \omega}
$$

Then, takıng $v=T_{N}\left(G-\widetilde{G}_{N}\right)\left(\lambda, \tilde{u}_{N}(\lambda)\right)$ by (3 57) we get

$$
\left\|T_{N}\left(G-\widetilde{G}_{N}\right)\left(\lambda, \tilde{u}_{N}(\lambda)\right)\right\|_{0 \omega}^{2}=c\left(T_{N}\left(G-\widetilde{G}_{N}\right)\left(\lambda, \tilde{u}_{N}(\lambda)\right), \phi\right)
$$

Using now (3 9), (3 16) and (3 21) we have

$$
\begin{align*}
& \left\|T_{N}\left(G-\widetilde{G}_{N}\right)\left(\lambda, \tilde{u}_{N}(\lambda)\right)\right\|_{0 \omega}^{2}=\left|\left\langle\left(G-\widetilde{G}_{N}\right)\left(\lambda, \tilde{u}_{N}(\lambda)\right), \phi\right\rangle\right|= \\
& \quad=\left|\lambda\left\{\frac{1}{2} \int_{I}\left[\left(\operatorname{Id}-P_{c}\right) \tilde{u}_{N}^{2}(\lambda)\right]_{x} \phi \omega d x+(f, \phi)_{\omega}-(f, \phi)_{M \omega}\right\}\right| \leqslant \\
& \leqslant C|\lambda|\left\{\left\|\left(\operatorname{Id}-P_{c}\right) \tilde{u}_{N}^{2}(\lambda)\right\|_{0 \omega}+\left\|\left(\operatorname{Id}-\widetilde{P}_{c}\right) f\right\|_{0 \omega}+\right. \\
& \left.\quad+\left\|\left(\operatorname{Id}-\Pi_{0 M-1}\right) f\right\|_{0 \omega}\right\}\|\phi\|_{V} \quad(\tag{array}
\end{align*}
$$

Using (3 18) we estımate the first term of the rıght hand side as follows

$$
\begin{aligned}
& \left\|\left(\operatorname{Id}-P_{c}\right) \tilde{u}_{N}^{2}(\lambda)\right\|_{0 \omega} \leqslant\left\|\left(\operatorname{Id}-P_{c}\right) u^{2}(\lambda)\right\|_{0 \omega}+ \\
& +\left\|\left(\operatorname{Id}-P_{c}\right)\left(u^{2}(\lambda)-\tilde{u}_{N}^{2}(\lambda)\right)\right\|_{0 \omega} \leqslant C\left\{N^{e(\omega)-\sigma}\|u(\lambda)\|_{\sigma \omega}^{2}+\right. \\
& \left.\quad+N^{e(\omega)-1}\left\|\tilde{u}_{N}(\lambda)-u(\lambda)\right\|_{1 \omega}\left\|\tilde{u}_{N}(\lambda)+u(\lambda)\right\|_{1 \omega}\right\}
\end{aligned}
$$

Using the H^{1}-error estımate concerning \tilde{u}_{N}, and (3 50), (3 58) and (3 59) we then get

$$
\begin{align*}
& \left\|T_{N}\left(G-\tilde{G}_{N}\right)\left(\lambda, \tilde{u}_{N}(\lambda)\right)\right\|_{0 \omega} \leqslant C|\lambda|\left\{N^{e(\omega)-\sigma}\|u(\lambda)\|_{\sigma \omega}+\right. \\
& \left.\quad+N^{2 e(\omega)-\sigma-1}\|u(\lambda)\|_{\sigma \omega}^{2}+N^{e(\omega)-\sigma}\|f\|_{\sigma \quad 2 \omega}\right\} \tag{array}
\end{align*}
$$

Finally, from (355), (356) and (3 60) we conclude that

$$
\begin{aligned}
&\left\|\tilde{u}_{N}(\lambda)-u(\lambda)\right\| \leqslant C|\lambda| N^{e(\omega)-\sigma}\left\{\|u(\lambda)\|_{\sigma \omega}+\right. \\
&\left.+N^{e(\omega)-1}\|u(\lambda)\|_{\sigma \omega}^{2}+\|f\|_{\sigma-2 \omega}\right\}
\end{aligned}
$$

So (3 54) holds
We finish this paper by making some remarks about the practical solution of the approximate problem As an example let us consider the pseudo-spectral problem (3 29) Following the Section 1 3, according to (155) we can define a sequence $\left(v^{n}\right)$ of functions of V_{N} by solving

$$
\begin{equation*}
\left(\mathrm{Id}+T_{N} D_{u} G_{N}\left[v^{n}\right]\right)\left(v^{n+1}-v^{n}\right)=-\left(v^{n}+T_{N} G_{N}\left(v^{n}\right)\right), \quad n \geqslant 0 \tag{355}
\end{equation*}
$$

(the parameter λ is taken as fixed, so it does not appear in (3 55)) An equivalent form of (355) is as follows find $v^{n+1} \in V_{N}$ such that

$$
\begin{align*}
\forall \phi \in V_{N} \quad c\left(v^{n+1}, \phi\right)+\lambda \int_{I}\left[P_{c}\left(v^{n} v^{n+1}\right)\right]_{x} \phi \omega d x= \\
\frac{\lambda}{2} \int_{I}\left[P_{c}\left(v^{n}\right)^{2}\right]_{x} \phi \omega d x+(f, \phi)_{N \omega} \tag{array}
\end{align*}
$$

To apply Theorem 14 we need only to check that (150) holds Using Lemma 21 and (39), (3 11), (3 12) it follows

$$
\begin{aligned}
\forall v, w \in V_{N} \quad \| & T_{N} D_{u}^{2} G_{N}\left[u_{N}\right](v, w) \|_{V}^{2}
\end{aligned} \leqslant \beta^{-1} c\left(T_{N} D_{u}^{2} G_{N}\left[u_{N}\right](v, w), ~\left(T_{N} D_{u}^{2} G_{N}\left[u_{N}\right](v, w)\right) \leqslant \beta^{-1} \mid\left\langle D_{u}^{2} G_{N}\left[u_{N}\right](v, w), ~\left(\sup _{\substack{\phi \in 1}}\left(P_{c}(v w)_{x}, \phi\right)_{\omega}\right]^{2}\right)\right.
$$

Finally, by (3 16), (3 18) and the inequality $\|v\|\left\|_{1 \omega} \leqslant C\right\| v\left\|_{1 \omega}\right\| w \|_{1 \omega}$ we get

$$
\left\|T_{N} D_{u}^{2} G_{N}\left[u_{N}\right](v, w)\right\|_{V}^{2} \leqslant C\|v\|_{1 \omega}^{2}\|w\|_{1 \omega}^{2}
$$

hence (350) holds
Then by Theorem 14 we can conclude that if v^{0} is suitably chosen, then the Newton iterates (v^{n}) converge quadratically to $u_{N}(\lambda)$ for any $\lambda \in \Lambda$

ACKNOWLEDGMENTS

The authors wish to express their gratitude to professor P-A Raviart for helpful discussions about the subject of this paper

REFERENCES

[1] R A Adams, Sobolev spaces, Academic Press, New York (1975)
[2] J Babuska, A K Aziz, "Survey lectures on the mathematical foundations of the finite element method", in The Mathematıcal Foundations of The Finite Element Method with Applicatıons to Partial Differential Equatıons, Ed Azız, Academic Press, New York (1972), 3-343
[3] J Bergh, J Lofstrom, Interpolation Spaces An Introduction, Sprınger Verlag, Berlin (1976)
[4] F Brezzi, J Rappaz, P A Raviart, Finite dimensional approximation of nonlinear problems Part I branches of nonsingular solutions Num Math, 36 (1980), 1-25
[5] C Ca\uto, A Quarteron, Spectral and pseudo-spectral methods for parabohc problems with non periodic boundary conditions, Calcolo, 18 (1981), pp 197-217
[6] C Canuto, A Quarteron Approximation results for or thogonal polynomials in Sobolev spaces, Math Comput, 38 (1982), pp 6786
[7] P Davis, P Rabinowitz, Methods of Numerical Integration, Academic Press, New York (1975)
[8] D Gortlieb, S A Orszag, Numerical Analysis of Spectral Methods Theory and Applications, Regional Conference Series in applied mathematics, SIAM, Philadelphia (1977)
[9] H O Kreiss, J Oliger, Stability of the Fourter method, SIAM J Num An, 16, 3 (1949), 421-433
[10] J L Lions, E Magenes, Non Homogeneous Boundary Value Problems and Applcatıons, Springer Verlag, Berln (1972)
[11] Y Maday, A Quarteroni, Legendre and Chebyshev spectral approximation of Burgers equatıon, Numer Math, 37 (1981), pp 321-332
[12] Y Maday, A Quarteroni, Spectral and pseudo-spectral approximations of Navier-Stokes equatıons, SIAM J Numer Anal, 19 (1982), pp 769-780
[13] R E Nickell, D K Gartling, G Strang, Spectral decomposition in advectiondiffusion analysis by finite element methods, Comp Meths Appl Mech Eng 17/18 (1979), 561-580
[14] G Szego, Orthogonal Polynomials, AMS Colloquium publications, vol 23, AMS, New York (1939)

[^0]: $\left(^{*}\right)$ Received in december 1981.
 (**) AMS (MOS) subject classifications (1980). Prımary 65J15, Secondary 65N35.
 $\left({ }^{1}\right)$ Analyse Numérıque, Tour 55-65, Université P et M Curie, 4, place Jussieu, 75230 Parıs Cedex 05
 $\left(^{2}\right)$ Istıtuto dı Analısı Numerıca del C N.R , C. so C Alberto, 5, 27100 Pavia, Italıe.

[^1]: $\left(^{*}\right)$ If $A_{1}, ., A_{1}, B$ are $l+1$ Banach spaces, $\mathscr{L}_{1}\left(A_{1}, A_{2}, \quad, A_{i}, B\right)$ denote the set of all continuous mappings from $A_{1} \times \quad \times A_{l}$ into B which are linear in each variable

