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APPROXIMATION OF BURGERS' EQUATION
BY PSEUDO-SPECTRAL METHODS (*) (**)

by Y. MADAY (*) and A. QUARTERONI (2)

Commumcated by P G CIARLET

Résume — On applique des methodes pseudo-spectrales de collocation basées sur des développe-
ments polynomiaux de Chebyshev et de Legendre à Véquation de Burgers stationnaire monodimen-
sionnelle Uanalyse numérique est construite à partir de théorèmes abstraits concernant F approxi-
mation en dimension finie d^une classe de problèmes non linéaires.

Abstract —- Pseudo-spectral (collocation) methods for the statwnary one dimensional Burgers1

équation based on Chebyshev and Legendre polynomial expansions are considered The numencal
analysis is developed by means ofsome abstract theorems concerning finite dimensional approxima-
tions ofa class ofnonhnear problems.

INTRODUCTION.

The advection-diffusion équation :

-uxx + k(uux-f) = 0, XeU+ (0.1)

known as steady-state Burgers' équation, is commonly used in many appli-
cations, since it describes numerous transport phenomena of interest to
engineers and scientists. Even, (0.1) is an elliptic regularization of the hyper-
bolic Burgers' équation relative to nonlinear évolution transport.

In recent years a considérable number of numerical finite différence and
finite element methods have been proposed in this field, particularly when X
is large and advection is dominating. We refer for instance to the " upwind "
finite différences, first considered by Courant, Isaacson and Rees in 1952, and to
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376 Y. MADAY, A. QUARTERONI

the extension of the upwinding technique to fînite éléments first used by
Zienkiewicz and his school in 1977. Spectral and pseudo-spectral methods for
the linearized Burgers' équation were proposed by Gottlieb and Orszag [8],
Kreiss and Oliger [9] and by other authors more recently. In [13] Nickeli,
Gartling and Strang analyze a spectral décomposition coupled with fmite
element methods to solve numerically (0.1).

In [11] the analysis of an approximation to (0.1) by spectral methods based
on Legendre and Chebyshev polynomials is given by the authors. Homoge-
neous boundary conditions on the interval ƒ = (— 1,1) are taken into account.
For the same problem, in this paper we analyze pseudo-spectral methods using
the same orthogonal polynomials. Stability and convergence anaîysis is more
complicate than in [11] since the effccts of the errors ansing from numencal
intégrations have to be considered hère. However, pseudo-spectral numerical
schemes are more convenient for their computational aspects (indeed, the FFT
algorithm can be successfully used in gênerai). Furthermore, as Gottlieb and
Orszag emphasized in [8], Chebyshev polynomials have high resolution power
for thin boundary layers (which may occur when X is large).

Problem (0.1) may be written equivalently in the abstract form :

{ %, u } e M+ x F, u + TG(X, u) = 0 , (0.2)

where V and W are two Banach spaces with W c V\ G is a differentiable
mapping from U x V into W, T e S?(V' ; V) and T is compact from W into V.

In Section 1 we present some gênerai stability and convergence results
relative to the approximation of problem (0.2) by discrete problems which
may be written as follows

{X,uN}eR+ xVN9 uN + TNGN(kuN) = 0. (0.3)

In (0.3) VN is a finite dimensional subspace of V for any N G N, while TN and GN

are some approximations of the operators T and G. The formulation (0.3)
looks to be particularly adapted to describe approximations of problems like
(0.2) by pseudo-spectral methods (in [12], for instance, the authors carry out
the analysis of a pseudo-spectral method to approximate the three dimensional,
periodie, Navier-Stokes équations). Also5 (0.3) is the typical form of finite
element approximations to (0.2) which make use of numerical intégration.
Due to this generality, it is an authors' opinion that Section 1 has an interest
in itself, independently of its application to problem (0.1) which is developed
in next Sections. Results of Section 1 generalize those by Brezzi, Rappaz and
Raviart [4] which are confmed to the case GN = G. Relatively to the nonsingular
solutions of (0,2) we pro vide abstract bounds for the error norms || u — uN \\v

RAI.RO. Analyse numénque/Numencal Analysis



APPROXIMATION OF BURGERS' EQUATION 377

and II u — uN \\H9 for any Hilbert space H which contains algebraically and
topologically V. In addition we state sufficient conditions to have quadratic
convergence of a Newton itérative method to solve (0.3).

In Section 2 the Burgers problem (0.1) is written in the form (0.2).
Let À be any compact subset of U+ and assume that the mapping

is continuous for some er ^ 1 (CD is equal to 1 for the Legendre approximation,
and co(x) = (1 — %2)~1/2 for the Chebyshev approximation). In Section 3 we
establish the following error estimate between u and its pseudo-spectral
approximation uN :

VX e A f uN(X) - u(X) \\Hàl) + N1'™ \\ uN(X) - u(X) ^ = OCiV1"*) (0.4)

where e(oy) = 0 for the Chebyshev weight and e(cù) = 1/2 for the Legendre
weight.

The estimate (0.4) is established using the abstract results of Section 1.
Throughout this paper C will dénote a generic positive constant, independent

of the discretization parameter N, not necessarily the same in different contexts.
An outline of the paper is a follows :

1. ABSTRACT RESULTS : APPROXIMATIONS OF BRANCHES OF
NON SINGULAR SOLUTIONS.

1.1. Approximation in the energy norm.
1.2. Error estimâtes in lower order norms.
1.3. The Newton method to solve the discrete problem.

2. THE BURGERS' EQUATION : PRELIMINARIES.

3. APPROXIMATION BY PSEUDO-SPECTRAL METHODS : STA-
BILITY AND CONVERGENCE.

1. ABSTRACT RESULTS : APPROXIMATIONS OF BRANCHES OF NON SINGULAR
SOLUTIONS.

1.1. Approximation in the energy norm.

Let A be a compact interval of the real line, V and W be two Banach spaces,
and assume that W is contained into Vr (dual space of V) with continuous
imbedding. Let T € S(Vf ; V) and assume that T is compact from W into V ;
fmally, let G : A x V -• W be a C l mapping. We set

V { Xy u } e A x V F(Xy u) = u + TG{X, u), (1.1)

vol 16, n° 4, 1982



378 Y MADAY, A QUARTERONI

and we consider the problem find (X, u) e A x F such that

F(X9 u) = 0 (1 2)

Throughout this section we make the followmg assumption

there exists a branch { (X, u(X)), X e A } of non singukr solutions
of (1 2), m the sensé that there exists a constant a > 0 such that

(Hl)
VXeA, \fveV, \\ (là + TDU G[X, u{X)]) v \\v 2* a \\ v

The symbol Du G[X0, u0] (resp Dx G[X0, u0]) dénotes the Frechet denvative,
with respect to w(resp to X) of G(X, u), computed at the point (X09 u0) ld is
the identity operator

Let N be a parameter which will tend to mfinity in the applications In order
to approximate the branch {(X, u(X)), X e A } we introducé a family { VN } v

of finite dimensional subspaces of F, and a family { TN }N of operators belong-
mg to S£(V , VN) If not otherwise specified, for any N the space VN is equipped
by the norm of F

Let us now introducé the mapping F^ A x F - • Fdefmedby

FV(X, u) — u + TN G(X, u), (1 )̂

and consider the approximate problem fmd { X, uN } G A x VN such that

FN(X, uN) = 0 (14)

The followmg result is due to Brezzi, Rappaz and Raviart (see [4, theorem 6]
and replace smtably h by N)

THEORFM 1 1 Let m ^ 1 be an integer , assume that G is a Cm+i mapping
from A x F into W9 and that Dm+1 G is bounded over any bounded subset of
A x F LetUN V—> VN be continuons operator satisfying

Vu e F hm || UNv - v\\v - 0 , (1 5)

moreover assume that

hm || TN - T \\#{W V) = 0 (1 6)
JV-^oo

Then there exist a neighborhood 9 of the ongin in V and, for N ^ NQ large
enough, a unique Cm + 1 mapping X e A -> uN(X) e VN, such that

\/X e A , FN(X, uN(X)) = 0 , uN(X) - u(X) e 9 (17)
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APPROXIMATION OF BURGERS' EQUATION 379

Furthermore, there exist some positive constants Kt (0 ^ / ^ m) independent
ofk and N such that thefollowing estimâtes hold

VJ.EÀ, VI = 0, ,m 1 u$(\) - él\X) \\v ^

a , i {\\u^(k)-UNu^(X)\\v (1 8)

+ II (TN -

In the estimâtes (1 8) we use the notation <t>(0) = cj> for any function 4>
Moreover, denoting by i f k(X, Y) the space of all continuous /c-hnear map-
pmg of Xk into Y, the operators

G(k) A x V x jSf^A, V) x x if t(A, F) -^ Jîfà(A, K')

are defined by the récurrence formula

k-1

Let us now defme a more gênerai class of problems which approximate
(1 2) To this end, let Z be a Banach space such that VN c Z c V, the later
imbedding being continuous We assume that there exists a real number
r ^ 0 such that

VveVN \\v\\z^CN'\\v\\y (1 9)

For any N let GN M x VN -> F ' be a mapping, which will " approximate "
G in the applications, and define F$ A x VN -• F^ by

F$(X, uN) = % + TN Gjy^, u^) (1 10)

For the approximate problem find % e K^ such that

N) = 09 (1 11)

the following theorem holds

THEOREM 1 2 Assume that the hypotheses of Theorem 1 1 hold Moreover

assume that for any XeA, u(X) belong to Z Let GN AxVN^V'bea C"l+l

vol 16, n°4, 1982



380 Y. MADAY, A. QUARTERONI

mapping, and assume that there exists a positive increasingfunction K ; U+ -* U+

such that

II ®l GJAK V] lUaRxzi'-i.RxKïin < X(| X i + 11 v Iz) (1 < I < m + 1). (*)

(1.12)

Furthermore we assume that :

lim Sup I Du G[X, UN uW] - Du GN[X, ïlN u(X)] \\^yN,r) = 0 (1.13)
N —* QQ A 6 A

lim Sup JV' || F$(k, UN u(k)) \\v = 0, (1.14)

lim Sup 1 a(X) - n w «(X) ||z = 0 . (1.15)
N~*ao XeA

Thenjor N ^ No large enough and for any XeA there exist a positive constant
K independent of N and X and a unique Cm+i mapping XeA~* uN{X) e Vm

such that

F*(X, Ufl(X)) = 0 , || uN(%) - n, f u(X) \\r ^KN-. (1.16)

Moreover there exists a positive constant Ko independent ofN and X such that

uN(X) - u(X) \\v < Ko { || «(X) - UN «(X) \\v + II (TN - T) G(X, u(X)) \\v +

+ | | rw(Gw-G)(X,nNa(X)) | |K}. (1.17)

If, in addition, we assume that

lim Sup || um(X) - nN um(X) \\z = 0 , (1 ^ i < m) (L18)
N-*oo XeA

lim Sup || uim+l)(X) - nN u(m+1)(X) IL = 0 (1.19)
iV-*00 XeA

thenfor any X s A there e x i s t some positive constants K ^ l ^ l ^ m , independent
of N and X, such t h a t

(TN-

W X, UN u(X),..., IlN uM(X)) \\r } . (1.20)

(*) If Ax, ., Al% B are / + 1 Banach spaces, ^l{AuAli ,At>B) dénote the set of all eontmuous
m a p p m g s f r o m ^ x x Ax m to B which are hnear in each variable
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APPROXIMATION OF BURGERS ' EQUATION 381

Proof : Under the hypotheses of Theorem 1.1 the implicit function theorem
allows to state that X -> u{X) is a C 1 mapping. Moreover, thanks to (1.5)
the operator UN is uniformely bounded in N, so we get

| | | | K ^ C | A . - | i | . (1.21)

To complete the proof we need the following two lemmas.

LEMMA 1.1 : /ƒ (1.12),..., (1.15) and the hypotheses of Theorem 1.1 hold,
then for N ^ No large enough Du F$ [X, UN M(X)] is an isomorphism of VN

which satisfies

|| (Id + TN Du GN[\, UN u(X)}) v\\v>%\\v \\v Vv G VN (1.22)

(a is the constant defined by the assumption (Hl)).

Proof : Since À is compact, using (Hl) and the continuity of the operators
Du G : A x V -• se\y ; W) and T : W -> V, we get that there exists r|0 > 0
such that for any w e V which vérifies jj w - u(X,) | K ^ r|0 it follows

1 (ld + TDU G[X5 w]) t? \\v> ^ |! ï? | |F V Ü G F . (1.23)

Moreover, using the continuity of X -> w(X) we have that there exists M o > 0
such that for any N ^ Mo and any X e A we have

I n* «(X) - u(X) \\v < TI0 . (1.24)

We use the inequality

1 (ld + TN Da GN[\ UN u(X)]) v | | „> || (ld + TDM G[X, UN u(X)}) v \\v-

-\\(T- TN)(DuGN[l,UNu(X))v)\\v~

- I T(DU(G - GN) [X, UN u(X)] v) || . (1.25)

Thanks to (1.23) and (1.24) we get

I (ld + TDU G[X, IlN u(X)]) v \\Y > l± !| v \\Y VN > M o . (1.26)

On the other hand, using (1.6), (1.12) for / = 1, and (1.15) it follows that
there exists Mx > 0 such that for any JV > M\ and any X e A we have

I ( r - TN) (Du GN[X, UN u(X)] v) \\v < 11| v \\y ; (1.27)

vol. 16, n° 4, 1982



382 Y. MADAY, A. QUARTERONI

finally, using (1.13) and the continuity of T we get that there exists M2 > 0
such that for any N ^ M2 and any X e A we have

II T ( D U ( G - GN) [X, UN u(k)] v) \\v < | | | t > | | K . (1.28)

Now we obtain (1.22) from (i .25), ... (1 28). Now the proof is complete
since VN is finite dimensional. •

LEMMA 1.2 : If (1.12),..., (1.15) and the hypotheses of theorem 1.1 hold,
we get

sup H Dx F$[k UN «(A.)]y iUxvN,vN)^ C (1.29)
X e A

(VN is equipped with the norm ofV\ Moreover, there exists an increasing func-
tion Kx : U+ - • U+ such that, if

{\i9v}eAxVN and N"(\ X - p | + || UN u(X) - v \\v) ^ ^ , (1.30)

then

I DGN[X, IlN u(X)] - DGN[\i, v] y{RxVtW) ^ K&) (| X - )i \ +

+ \\UNu(X)-v\\z). (1.31)

Furthermore, if (1.18) and (1.19) are saîisfied, there exisis an increasing
function K2 : U+ -> [R+ swc/z tfeat, Ï/(1.30) /ÎOW5, we get

|| D* GJV^, UN u(X)] - Dz G ^ , Ü ] \\<?mxz)i-i,Rxvtw) <

< K 2 È ) ( | X - M | + | | n N « ( X ) - ü | | v ) ( 2 ^ / ^ m ) . ( 1 . 3 2 )

: Using (1 15), (1.6) and (1.12) with / = 1 we get immediately (1 29)
Next from (1.12) it follows that

\/{^v}eA x VN\\ D2 GN\}i9v]\\*2iRxZtRxKW) ^ K ( \ \ L \ + || v \ \ z ) . ( 1 . 3 3 )

Since

(f0) -

= Dx DGW[(1 - r0) ^ + f0 ji, (1 - t0) n N tt(X) + t0 »]•&* - ^) +

+ Du DGN[(1 - f0) X + t0 ^^ (1 ^ ^o) n^v M(^) + ô v]-(v - UN u(X)),

R A I R O Analyse numénque/Numerical Analysis



APPROXIMATION OF BURGERS' EQUATION 383

Applying the mean value theorem to

DGy[X + t(n - X), UN u(X) + t(v - UN u(k))~] ,

and usmg (1 9), (1 30) and (1 33) we have

|| DGN[X, UN u(X)] - DGN[\i> v] y{Uxv w) ^

^ K(\ X | + |[ UN u(X) \\z + Ç) | X - n | + || UN u(X) - v \\z (l 34)

Therefore (1 31) holds taking K&) = K{\ X | + || UN u(X) \\z + Ç)
Fmally, arguing in a similar way and usmg (1 12) with / = 3, , m + 1

the property (1 32) can be proved •

Let us go back to the proof of Theorem 1 2 Due to (1 21), (1 22), (1 29)
and (1 31), we can apply Theorem 1 of [4] to the mappmg F^ in the following
situation

the space X of the theorem is R provided with the norm Nr \ X |,
the space 7, Z of the theorem are VN provided with the norm Nr || v \\v,
finally y(À-) becomes n^ u(X)

We note that for all mapping AN e ££ {U x VN, VN\ we have

II ^JV lljf(Xxyz) — II ^ N IliPtRxVjv VN)

Then by the above mentioned resuit, for N > No large enough there
exists a constant K > 0, independent of AT, and a unique C1 mappmg
Xe A ^> uN(X) e VN such that (1 16) holds, together with the inequality

|| uN(X) - UN u(X) \\v ^ C || F*(X, UN u(X)) \\v , VX e A (1 35)

Usmg (1 1), (1 2) and (1 10), we have

, UN u(X)) \\v = || Fg(\, UN u(X)) - F(K u(X)) \\v ^

^ I UN u(X) - u(X) \\v + II (TN - T) G(X, u(X)) \\v +

+ || TN(GN - G) (X, UN u(X)) \\v + I TN(G(X, UN u(X)) - G(X, u(X))) \\v

(1 36)

using (1 6), (1 5) and the differentiabihty of G we obtam

|| TN(G(X, UN u(X)) - G(X, u(X))) \\v ^ C \\ G(X, UN u(X)) - G(X, u(X)) \\w ^

^C\\UNu(X)-u(X)\\v (1 37)

Now (1 17) is a conséquence of (1 35), (1 36) and (1 37)

vol 16 n°4 1982



384 Y. MADAY, A. QUARTERONI

In order to prove (1 20) we apply the theorem 2 of [4] to Fj§ , indeed, from
(1 9) we have

vAN e j£l[}î x VN ; VN) H AN \\g>l(x

and

\fv eVN \\v \\jriiXtY) = 11 v

Due to (1 18) and (1 19), using the above mentioned theorem we get the
inequality

(1.38)

c t ^v(/"fc)r II F$ik) (^ n ^ u(i)9..., nN u
k=0

for l = 1,..., m and for any X- e A. Finally we can obtain (1.20) from (1.38),
using (1.6), (1.15), (1.18), (1.19), the hypotheses that G is a Cm + i mapping,
and the identities

= 0 for fc = 0 , . . . , m . D

1.2. Error estimâtes in lower ordcr norms

Let Y, H, iC be three Banach spaces, equipped with the norms || • ||y, || . \\H

and || - || x respectively, such that the following imbeddings hold

Moreover, assume that T can be extended to a compact operator from Y
into H, and that Du G[X, v] can be extended to Du G[X9 v]e£f{H;Y).

THEOREM 1 . 3 : Let the hypotheses of Theorem 1.2 hold, and let uN be the
solution of (1.11). Assume that for any X in A :

the mapping v e K -> Du G[X, v] e £?{H ; Y) is continuons ; (1.39)

the mapping Du F[X, u(X)] is an isomorphism of H ; (1.40)

lim | | T - T J | O T ) = 0 (1.41)

u(X) and uN(X) helong to K and || uN(X) — u(X) \\K tends to zero with l/N .

(1.42)

R A I R O Analyse numénque/Numerical Analysis



APPROXIMATION OF BURGERS' EQUATION 385

Then, for N large enough the following estimate holds

V U A || u(X) - uN(X) \\H < C { |! FN(X, u(X)) \\H +

+ \\TN(G-GN)(X,uN(X))\\H] (1.43)

Remark 1 . 1 : From (1.43) we dérive also that

VX e A I u(X) - uN(X) \\H^C{ || (TN - T) G(X, u(X)) \\H +

+ \\(G-GN)(X,uN(X))\\Y}. O

Proof : Since F$(\, uN(X)) = 0, we have

FN(X, u(X)) = FN(X, u(X)) - F*(X, uN(X))

= DuF[X,u(Xy](u(X) - uN(X)) +

+ (TN - T) Du G[_X, u(X)] {u(X) - uN(X)) + TN(G(X, u(X))

- G(X, uN(X)) - Du G[X, u(XJ] (u(X) - uN(X)))

+ TN(G(X, uN(X)) - GN(X, uN(X))). (1.44)

Let us examine each term of the right hand side.
First, using (1.40) we deduce that there exists a positive constant P such

that

|| Du F[X, u(X)] (u(X) - uN(k)) \\H > p f u(X) - uN(X) \\H . ( 1 . 4 5 )

Next, thanks to (1.39) and (1.41) we get

1 (TN - T) (Du G[X, u(X)]) (u(X) - uN(X)) \\H ^ e(N) || u(X) - uN(X) \\H

(1.46)

where e(iV) tends to 0 with 1/JV.
On the other hand, setting uQ{X) = QuN(X) H- (1 - 9) u(X), for any 0 G [0, 1],

and for any Xe A, we have

u(X)) - G{X, uN(X)) - Du G\X, u{X)~\ (u(X) - uN(X)) =

vol. 16, n°4, 1982

= (Du G[X, ue(X)] - Du G[X, uQ(X)]) dQ(u{X) - uN(X)).
Jo



386 Y MADAY, A QUARTERON1

Then by (1 39) and (1 41) ît follows

|| TN { G(X, u(X)) - G(X, uN(X)) - Du G[X, u{X)] (u(X) - uN(X))} \\H <

^ CE {N) || u(X) - u„(X) IL (1 47)

where

(2>„ G[X, M6I
JQ \j?(H Y)

tends to zero with 1/iV due to (1 39) and to (1 42) Fmally (1 43) holds from
(1 44), , (i 47) takmg C = (p - e(N) - e'(M))""1 D

COROLLARY 1 1 Assume that (1 39), (1 41), (1 42) hold, together with the
hypotheses of Theorem 1 2 and with the following regularity assumption

i f v e H vérifies v 4 - TDU G [A,, w(À,)] v = 0 rl iew u e F ( 1 4 8 )

Then (1 43) holds

Proof To check that (1 40) holds let us note that Du F \Xy w(X)] is a compact
operator of £?(H, H) Then by the Fredhoïm alternative we only need to
check that

if Du F [A,, w(X)] p = 0 then v = 0 (1 49)

Besides that (1 49) follows easily from (1 48) and hypothesis (Hl) D

1.3. The Newton niethod to solve the approximate problem

In this section X is considered to be fixed
We assume that GN A x VN -» F is a C 2 mappmg, and that there exists

a positive constant 8 independent of N such that for any X e À

|| TN Dl GN[X, uN(X)} y2iVN v^ < § , (1 50)

There exists a mappmg s R+ -* R+ such that E(X)/X vanishes when x tends
to zero, and for any À, e À, for any t?eV N the followmg estimâtes hold

II TN(DU GN[K v] - Du GN[X, uN(X)] - Du
2 GN[X, uN(X)] (v ~ uN(X))) y{V V) <

^z{\v-uN(X)\\v)3 (1 51)

l| Ty(GN(\, v) - GN(X, uN(X)) - Du G^X, uN(X)] {v ~ uv(X)) -

- Pu
2 GN[K uN(\)] (v - uN(X))2) \\v ^ e ( \ v - uN(X) | |2) (1 52)

R A I R O Analyse numenque/Numerical Analysis



APPROXIMATION OF BURGERS' EQUATION 387

Argumg as m the proof of Lemma 1 1 we can estabhsh the followmg result

LEMMA 1 3 Assume that the hypotheses (1 12), , (1 15), (1 48) and those
ofTheorem 1 1 hold Let a be the constant defined by the property (Hl) There
exists a constant r\ > 0 such that for N ^ N2 large enough, and for any v e VN

which satisfies || v — HN u(k) \\v ^ r\, the mapping DuFN[k, v] is an isomor-
phism of VN, thus

]w\\v^^\\w\\v VweVN (1 53)

Moreovei it follows that

&(x)/x ^ 1 Vx ^ ri D (1 54)

Let v° e VN be given and consider the followmg Newton scheme find
vn+1 eVN{n^ 0) by solvmg

Du FN[K vn] vn+1 = Du FN[k9 vn) vn - FN(K vn) (1 55)

THEOREM 1 4 Assume that the hypotheses of the previous lemma hold
Moreover, assume that if N ^ JV3

\\uN(X)-UNu(X)\\v<r]/2 (1 56)

Then, there exists p > 0 such that, if v° satisfies

\\v° -uN(k)\\y < p , (1 57)

the Newton itérâtes (vn) are univocally defined by (1 55) and converge quadra-
tically to the solution uN(k) of(l 11)

Proof As X is fixed we shall drop any dependence on it along this proof
Duioting by p the minimum between q/2 and a/(4(5 + 2)), from (1 56) and
(1 57) it follows that || v° - UN u \\v ^ r|

Then by Lemma 1 3 the first iterate v1 of (1 55) is univocally defined
By induction on n we shall prove that for any n \\ vll+1 — uN \\v ^ p As
a matter of fact, assume that || v" — uN \\v ^ p By (1 56) we get that
\\UNu - vn \\v ^ T) Taking v = vn and w = vn+1 — uN in (1 53) gives

+ TNDuGN[v"])(v»+1 - u N ) \ \ v ^ ^ \ \ v » + 1 ~ u N \ \ v (1 5 8 )
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On the other hand, from (1.55), (1.11), (1.51), (1.52) and (1.54) we get

|| (ld + TN Du GN[v")) {v"+1 - uN) \\v = I TN{DU G,[v"] v") -

- TNGN(vn)-DuF*[v"]uN\\v^

^ 1 TN Dl GN[uN] (v* - uN)2 \\v + 2 || v" - uN \\v.

Finally, by (1.50) and (1.58) ît follows that

\\V+1 - u N \ \ v ^ 4 { 5 + 2 ) \ \ v » - u N \ \ v (1.59)

and therefore || v"J : — uN \\v < p. Then all the Newton itérâtes are univo-
cally defmed by (1.55), and, due to (1.59), they converge quadratically to
%- D

2. THE BURGERS' EQUATION : PRELIMINARIES

We dénote by ƒ the interval (— 1, 1) and by x the current variable of J.
We consider two weight functions : G>(X) = 1 (Legendre weight), and

(Chebyshev weight). We make use in this paper of the weighted Sobolev spaces
H^I). They are defined as follows : for s = Ü we set

Hl(I) = Ll(I) = {4> : / -^[R|c t>is measurable and (<|>, <!>)„,< + oo } (2.1)

r

where (4>, \|/)tó = §(x) ^x) ^x) dx dénotes the inner product of L2JJ).

For any integer s > 0, we set

H s
( û ( I ) ^ { < \ > e L l ( I ) \ D k < \ > e L t ( I ) , O ^ k ^ s } , (2.2)

where D = d/dx ; H^(I) is equipped with the following norm
2,* = É \

k=0 Jl
(Dk c())2 (x) (Ù{X) dx .

For any real, non intégral s, the space H^{I) is defined by the complex
interpolation method (see e.g. [3, Ch. 4]). For any integer s > 0 we dénote
by HQ^I) the closure of B(l) into HS^(I); fmally for non integer s > 0 we
define HS

Q tó(7) by interpolation. If co = 1 the spaces H^{I) and HS
O^{I) coin-
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cide with the dassical Sobolev spaces Hs(ï) and HQ(I) respectively, provided

s$ N + x (see eg. [3, 10]). For (Û(X) = (1 — x 2 )~ I / 2 some properties of

spaces H*JJ) have been given in [11], we shall constantly refer to them along
this paper The same results for the weight co = 1 are well known, and we
still refer to [1, 10] for the proofs

Let 8 be a positive real number, and ƒ be a given function of L^(l)-
We consider the followmg problem : fmd ueH^JJ) solution of

-8 t / x x + uux = ƒ i n / . (2.3)

Correspondmgly to Legendre's and Chebyshev's weight œ we set

V = HiJI), W = dual space of ff *£(ƒ ) , (2.4)

and we introducé the büinear form c : V x V -> IR defined by

«, V) = ux(v(o)x dx . (2 5)
X

I

LEMMA 2 1 : There exist three positive constants a, p, y such that for any
u e H^(I) and v e V we have

II v ||o)(û < a II vx ||Os(û (Poincaris inequality) (2 6)

c(r 0 ^ PIIHIÎ .» (2.7)

U ( i M ) | < Y l l « x l l o , » l l ^ l i o f B - • (2.8)

If co = 1 the above results are well known : note that c(., .) is the classical
Hl inner product. For ©(x) - (1 - x2)"1 / 2 , (2.6), (2 7) and (2 8) have been
proved m [5] Thanks to this lemma, the norm defined by c(v, v)112, Vu G V,
is equivalent to || v \\ 1 œ (we note that if ca is not constant c(., .) is not an inner
product since it is not symmetrie).

Let us define the hnear operator T : V' -> V by

>) = <0,<|>> V < | > G 7 ; (2.9)

we recall that (see [11, Remark 1.2 and Theorem 2 4]) for all s e [ - 1, 0[

T is continuous from ffo"i(/)' mto F n Hl+s(I). (2.10)

We define also the mapping G : H x F -> VP̂  by

G ( X , « ) = M « M X - / ) ; (2 11)
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we note that G is a C x mapping, and for any k e N, Dk G is bounded over
any bounded subset of R x V. Moreover, since W is obtained by interpo-
lation between V' and L^{I\ it contains topologically Ll(I), so we have

then, since V ci L x ( 7 ) (see [11, Theorem 2.2]) we get

1 G(K u)\\w^\X\ || uux - ƒ ||OtB < Cx | X | (|| u ||Looa) || u || l iW + || ƒ | | o , J ^

^ C | X | ( | | t t | | ï i l D + | | / | | O i J . (2.12)
In addition we get that

T is a compact operator from W into V . (2.13)

This property follows easily from (2.10); indeed, T maps continuously W
into i /^ / 4( / ) n F, which in turn is compactly imbedded into V (see [11, Theo-
rem 2.1]) so (2.13) holds.

Let us set F : U x V -> F,

F(X,u) = w + T G ( A , M ) ; (2.14)

the problem (2.3) can be equivalently written as follows : fïnd ueV such
that

F(Ku) = 09 (2.15)

where X = 1/s.
It can be easily seen that problem (2.3) admits a unique solution. Thus

for any compact subset A of U+ the branch { { X, u(X)}, X s A } is non singu-
lar, i.e. it satisfies condition {Hl). So in this paper A will dénote a generic
compact interval of [R + .

3. APPROXIMATIONS BY PSEUDO-SPECTRAL METHODS : STABILITY AND
CONVERGENCE

Let us dénote by { pn } ^ = 0 the family of polynomials which are orthogonal
with respect to the L^(I) inner product (., .)œ. It is well known (see e.g. [14])
that if co = 1 we have pn = Xn Ln9 where Xn - ((2 n + 1)/2)1/2 and L„ is the
n-th degree Legendre polynomial. If œ(x) = (1 — x2)~lj2 then pn — xn Tn,
with x0 = (1/TI)1/2, TB = y/2x0 if n ^ 1, and Tn is the n-th degree Chebyshev
polynomial of the first kind.

We dénote by F^ = { (xp (Oj)} | 0 ^ j ^ N } the Gauss-Lobatto inté-
gration formula relatively to the weight oo, with nodes

— 1 = x0 < x1 < ••• < xN = 1
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and weights co7 > 0 (see e.g. [7]). Then we have

N

0(x) œ(x) dx = £ 0(*,) ©, (3.1)

where Pm(/) dénotes the space of polynomials of degree ^ m over L
We introducé a bilinear form over C°(I) by setting

(<t>.̂ V»= I «K*,)^,)©,, (3.2)

and an interpolation operator Pc : C°(ï) -> PN{Ï) defined by

(Pcu)(xJ) = «(xJ), 0 < ; < N . (3.3)

It is easy to check that for any u e C°(7), we have

Pcu=Y,ukpki uN = ' , Mk = (M, P k V » , fc^iV-1. ( 3 . 4 )
fc=o \PN> PN)N,M

Using (3.2) and (3.3) we also have that

Vu, (|> e C°(ï) (Pe u, <\>)Nti0 = (M> c|))Ni(D (3.5)

Following [6], the triple (ƒ, F%L
N, Pc) is called a Legendre (or Chebyshev)

spectral interpolation system, according that (o = 1 (or co(x) = (1 — x2)~1 / 2 ,
respectively).

To approximate (2.3) we introducé the following pseudo-spectral problem :
find uN e VN such that

V4> e VN - (uNxx, $)Ntn + ^ ([Pc lij],, c|>)NiW = X(f, 4 ) ) ^ (3.7)

where 7W = {<|> e PN(J) | <|>(- 1) = <4>(1) = 0 } .

Remark 3.1 : For any j = 1,..., JV - 1 let ^ dénote the function of F^
defined by : <|>,(xk) = 5jk, k = 0,..., JV. Then from (3.7) we get

f " « N « ( ^ ) + 5 [̂ c " N ] , (^) = W(Xj), 1 < ; ^ N - 1

l MJV(X0) = %(XJV) = 0 .
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Conversely, multiplying the first équation of (3 8) by <|>(x,) CÛ, (<j> G VN)
and addmg over ; from 0 up to N we get that uN satisfies (3 7) Hence (3 7)
and (3 8) are equivalent

Smce — (u^)x = uN uNx, (3 8) should be a standard collocation method for

(2 3) at the nodes xp 1 ^ j < N — 1, if (u^)x was used instead of [Pc u^]x

On the other hand, to interpolate before makmg derivatives is one of the
features of pseudo-spectral methods smce ît is quite easy to implement suc-
cessfully this process (see e g [8, 9]) Fmally, we note that for definmg correctly
(3 7), ƒ must be continuous, and for that it is enough to require that f e H^(I\

for some s > -([11, Theorem 2 2]) For ease of exposition only, we shall

assume that ƒ belongs to H £(I ) •
We want to develop the analysis of the pseudo-spectral problem (3 7) m

the abstract framework of Section 1 For that we defïne the operator
TN F'-^by

V$eVN c(TNg,<b) = (g,<b}, (3 9)

moreover we defïne TlN V —• VN by

t;,<|>) = c(t>,<|>) (3 10)

Usmg (2 9) we get îmmediately

TN = UNoT (3 11)

Let us recall the following resuit which holds for both Legendre and Che-
byshev weights (see [11], Theorems 1 1 and 1 4])

ueHZ(I)nV9o>l, \\ u - UN u ||M tt ^ CN»~° \\ u ||c tt 0 < [i ^ 1

(3 12)

Thanks to (3 12) and using density arguments we can show that

V u e F lun \\v-IlNv\\la = Q (3 13)

Moreover it can be proved that

bm || T - TN | |^ (^K ) = 0 (3 14)
N-> os
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From (2.4), (2.10), (3.11) and (3.12) we have

geW, || ( T - TN)g\\Uüi = l(U-nN)Tg\

393

Tg

so that 1 T - TN \\#{W%V) < CJ\T1 / 4 and (3.14) follows. Finally for any
X e À we set

VoeF* , VcMF <GN(X,u),<|>> = 5([P c t ;2]x ,<|))Œ-M/( |)) i V . t t . (3.15)

L E M M A 3 . 1 : For any XeU and v e VN the operator GN(X, v) belongs to V',

Proof : The linearity is obvious by définition, so let us check the contmuity.

(i) We start by proving the following inequality

i z(<()co)x dx

If co = 1 it is a conséquence of the Cauchy-Schwarz inequality. Otherwise

we set w(x) = ; c i e a r i y w e fli(j) and by (2.8), we have

dx dx

and (3,16) holds.

(ii) At this sep we want to evaluate the quantities

E(%> 4>) = ! {%> 4>)iv9Û1 ~ (Z> 4>)« !

for any %, (j) G C°(/). Let us recall the following result : setting

we have [6]

(3.17)

Moreover we get (see [6, Theorems 3.1 and 3.2]) for any u e H°(I) with

a > x, and for any \x e [0, o]

if a>(x) = (1 -
.f ^ ^ ^ (3.18)
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Let us dénote by U0N Ll(I) -> PN{I) the L^ projection operator upon

V«|>ePw(I) (u-n o wu,<t>) 0 = 0 (3 19)

We have (see [6, Theorems 2 1 and 2 3]) for any ueH%(I) with a > 0

u -n0Nu\\0a^CN (3 20)

First we assume that <|> e fV(-T) Using (3 5) and (3 6) we have

( P . x> <b)N ,t - ( n 0 N-, x, *)i» » + ( n 0 N - 1 x, <J>L - (x,

- n0N_ ( n 0 N , x - x. * ) . I <
II r i o ^ - ! x — x H o » II + l l o « . ( 3 2 1 )< | | ( p e - n 0 W _ 1 ) x l U « l l < t > I U „ + II

then using (3 17) we have

VX e C ° ( ï ) , V(J) e P W ( J ) , | (x, $)N œ - (x, *)<„ | <

< C | | < | ) | | o B ( | l x - - P c X l l o - + liX - n O N _ l ) C Ilo J (3 22)

If <$> does no t belong to PN(I), arguing as before we get

) = | (Pc x, ^c 4>)AF » - ( n 0 /V- I X, ^c * ) i v . + ( n 0 N-1 x> P C 4>)„ -

- ^ c ^ l l o o , + I l x - n 0 J V ! x I lo „ I I * H o . } ,

using (3 18) and (3 20) we obtain that for any - < u

VX e Hl(I), Vcp e Hg „(ƒ ) , | (x, $)„ . - (x, <>). | <

(3 23)

(ni) Now we want to show that the différence between GN and G vanishes
when N tends to înfinity

For any X e U and v e VN, (2 11) and (3 15) lead to

(3 24)

Vcj> e V < (G - GN) {X, v), <\> > = X. U (»2 - P c u2)x c|)co dx +
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Integrating by parts and using (3 16) and (3 18) we get

j (v2 - Pc v\ §<s>dx = - f (P2 _ pc V
2)($co)xdx

< C |[ v2 - Pcv
2 ||o „H * Ui « «ï CAT i / 2 || ü2 IU œ || 4> || t w ^

< CAT1 '2 || i> ||2 „ H ||, B (3 25)

where the last ïnequahty is due to the fact that H 1(1) is an algebra (see [1,
Theorem5 23] and [11, Theorem 1 2]) Finally, using (3 24), (3 25) and (3 23)
with x = ƒ for any X G IR we obtain that

Vu e VN, V4> e 7 , | < (G — G^) (À, u), (j) ) | ^

(iv) Smce W is topologically ïmbedded m V , using (2 12) we have that
G(X9 v) belongs to V' for any XeU and any veVN Hence using (3 26) the
lemma is proved •

Let us go back to problem (3 7) Using (3 6) and mtegrating by parts we
have

V ^ e F j y — (uNxx, <\>)N œ = — (uNxx, fy)^ — c(uN, c()) (3 27)

Then by the définition (3 15), it follows from (3 7) and (3 27) that

Finally, setting F* M x VN -> VN,

F*(X9 uN) = uN + TN GN(k, uN), (3 28)

we get from (3 9) that the pseudo-spectral problem (3 7) is equivalent to
fmding uN E VN such that

F*{\, uN) = 0 (3 29)

In order to apply the abstract Theorem 1 2 to problem (3 29) we need to
prove some further results

LEMMA 3 2 The operator G Ndefinedbv (3 15) is a Cœ mapping from A x VN

into V Moreover there exists a positive increasing function K [R+ -> U +

such that

VJ2*1 || DlGN[X,v] \\*aHxyVW)^K(\K\+ \\ v \\lo) (3 30)
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Proof : The first assertion is obvious. To prove (3.30) we proceed by steps.

(i) Consider first the derivative with respect to X ; using (3.15) we have for
any JI e A

\Dx GN[k,v] ([i\ <^) y =^\i dx _ (3.31)

It follows from the Cauchy-Schwarz inequality that

\/à>e. ) f (PC V2)x QW

I J/
dx

r il P ,,2 i il A il -

On the other hand, integrating by parts and usmg (3.16) and (3.31 ) we have

V(j)G V °cv
2)x<b®dx | l 5 ( 0 . (3.33)

Finally, by interpolation between (3.32) and (3.33) (see [3, Theorem 4.4.1])
we obtam

C\\ rcv
2 , . . (3.34)

U s i n g ( 3 . 1 8 ) a n d t h e i n e q u a l i t y || v2 | | l t 0 < C || v ||2jW w e h a v e t h a t

il Pcv
2 ||1/4>o ^ II v2 ||1/4(O + || i?2 - Pcv

2 ||1/4tœ < C || Ï;2 ||1ÏM < C || v ||2,œ ;

in a d d i t i o n , s i n c e || § | |LM/) < C \\ <\> ||3/4(ö (see [11, T h e o r e m 1.2]) , w e h a v e

I U <t>)jv,„ I < <

Summarizing the previous inequahty and using (3.31) and (3.34) we get

\\lta + \\v\\2J. (3.35)

Clearly, higher order derivatives with respect to X vanish identically.
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(11) We consider now Du GN, arguing as m (1) we have

397

Du G[k, v] (w), - X dx

Then by interpolation ît Jollows from (3 18) that

, \<DU G[K v] (w), <\> > | ^

whence

(3 36)

(ni) Fmally consider the second order derivatives of GN For any n e
we have

- \i [Pc(vw)]x

then proceedmg as m (u) this term can be bounded by

so we get

Finally

VWlJ w2 6

N[K v] (3 37)

l> w 2 }), 4) > = - X f [7>c(»„ w 2 ) ] x

so argumg as usual we obtam

I Duu GN[X, v] X | . (3 38)

Higher order derivatives vanish ïdentically, so (3 30) follows from (3 35), . ,
(3 38) D

LEMMA 3 3 : We have

hm sup || DU{G - GN) [X, UN u(X)]
N^T 7 eA V)

(3 39)
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Proof Usmg (3 26), (3 16), (3 18) and setting v = TlN u{X) we have for
any w e V

V<j> s V |< DU{G - GN) [X, v] (w), (|> > | =

- x [(UW) _ p e ( w w ) ]

Then noting that \\ v^
property (3 39) follows

LEMMA 3 4 We have

•

hm sup
JV->oo I E A

«(X) ||x „ < C || «(X) ||x „ by (3 20), the

(3 40)

From (2 U), (2 15) and (3 28) ™e get

F*(X, UN u(X)) = F*(X, UN u(X)) - F(X, u(X)) = n w «(X) - M(X) +

+ (Tw - T) G(X, u{X)) + TN(G(X, nN u(X)) - G(X, u(X))) +

+ TN{GN - G) (X, UN u(X)) (3 41)

Using (2 14) and (3 11) we have

|| {TN - T) G(X, u(X)) \ \ l m = \ u{X) - UN u(X) \\, o , (3 42)

owing to the uniform continuity of n,y in V (see (3 20)), to the differentiability
of G, to the continuity of T from W into V and to (1 5) we have

TN(G(X, UN u(X)) - G(X, M

- G(X, u

. < C I T(G(X, UN u(X)) -
C || G(X, n N u(X)) - G(X, u(X)) ||̂  ^

< C | | n w « ( X ) - « ( X ) | l B (3 43)
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Finally, using (3.16), (3.21) and (3.26) we have

\\TN(GN-G)(X,nNu(X))\\U(ù =

399

sup ((GN-G)(X,UNu(X)l<\>}\ =

sup
1 f
2 [(H*,"4X))2 - pc(nN u(

c { II ( n N W ( i ) ) 2 - p c ( n N u(X))2 nO f B + | | / - P C / i i O i B +
+ II ƒ - n o ^ . j ƒ iiOitt} < c{ |[ M(M2 - P C « W 2 iio.„

+ || (ld - Pc) (u(X)2 - [UN u(X)]2) ||0(tt + || ƒ - Pc ƒ ||Ojto +

+ | | / - Ho.iv-iy"llo,»} - (3-44)

Now (3 40) holds thanks to (3.41),..., (3.44) and to (3.18) and (3.20).
Finally we have :

Q

THEOREM 3 . 1 : Let { { X, u(X)}, X e A } be a branch of non singular solutions
of (2.15), and let N be a sufficiently large number. There exist a neighborhood 9
of ü independent of N, and, for any X e A, a unique C1 mapping X -> u^(X)
such that

F*(X,uN(X)) = 0, uN(X)-nNu(X)eQ. (3.45)

Moreover, iffe H ° ( / ) (G > i \ then for any XeA u(X) eV n H ^ + 2 ( / ) ,

and the following error estimate holds :

| ƒ ||a>„ } (3.46)

where = 0 i/ = (1 — x2)2 ) " 1 / 2 = -r if co = 1.

: Due to (3.13), (3.14), (2.13) and Lemmas (3.1), (3.2), (3.3) and
(3.4) we can apply Theorem 1.2 with Z = V, Note that the hypothesis
(1.9) is trivially satisfied with r = 0. Then by (1.16) we immediately get (3.45).
Moreover it follows from (1.17), (3.42) and (3.44) that for any XeA

II uN{X) - u(X) \\Um ^ c {n (id - nN) u(X)

+ II ( ld - Pc) (u(X)2 - [UN u(X)]2) ||OiB

+ H ( l d - P c ) / I l o . „ + II
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Using the continmty of the operator T from H^(I) mto V n Hs
a

+2(I) if
s ^ 0 (see [11, Theorem 1 4 and Remark 1 2]), ît is easy to see that if ƒ e H°(I ),
then for any X the solution of (2 3) belongs to if£+2(J), so u(X) e F n ff°+2(J)
for any ?i Usmg (3 18) and the fact that H°+2(I) is an algebra we get

(ld - Pc) u
2(X) ||0 B < CN«*-2-° 1 u2(k)

Moreover, usmg (3 12) and (3 18) we have

(Id - Pr) (u2(X) - [UN u(X)]2) ||0 ^

u(X) \\lm\\ u(X) + n ^ u(X) \\x œ

2 - » 1 u W ||o + 2 Œ 1 u(X) \\la (3 4 9 )

Finally, usmg (3 18) and (3 20), (3 46) follows from (3 47), , (3 49) D

We want now to obtam an L\ error estimate that ïmproves the one which
can be tnvially deduced from (3 46)

To this and let M > N be an integer and define the discrete inner product
(., .)vf «> a s m (3 2) by formally replacing N with M

Let Pc dénote the interpolation operator with respect to the pomts xv,
0 ^ v < M Usmg (3 18) we then obtain

(A42-- if ©(x) - (1 - x2) 1/2

hence, if M > AT (CT"2) when a)(x) = (1 - x2) 1/2, and M > N2^ when
o = 1, we deduce the inequality

l l / - ^ c / l l o « < C | | / | | c 2(ùN^-° (3 50)

Define now a new pseudo spectral problem as follows find iïN e VN such
that

FN(X,üN(X)) = 0 (3 51)

Here we set, for any X e A, ueFjy and <\> e V

< (?„(*, «), (|> > = \ ([Pc v%, 4))m - X(f, 4>)M . (3 52)

and
FN(k, v) = v+TN ÖN(k, v)
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We note that problem (3 51) differs from problem (3 29) only for a more
précise intégration formula used for the computation of the contributions

of/
It is an easy matter to check that the Theorem 3 1 still holds if uN is replaced

by iïN and F$ by FN

THEOREM 3 2 . Assume thatjor some a > 2, ƒ e H^~2{I) and that the mapping
l e À - > U(X) e V n H^{I) is continuons.

Then for any Xe A there exists a positive constant C(X) depending on
1 u(k) ||0)(û and on \\ f \\a.u<a such that

1 iïN(X) - u{X) ||Otœ ^ C(X) N^~° . (3 54)

Proof : To achieve (3 54) it is sufficient to verify the hypotheses of the
Corollary 1 1

For that we set K = F, H = Ll(I) and Y = V'.
First, we deduce from (2.11) that

Du G[X, v ] w - - {vw)x

If v e V and w e H, then vw e if, and by (3 16) we get that

( U ) ' = Y
This proves (1.39).
Next, it is an easy conséquence of (2 10) that (1 48) holds. Then, (1.41)

is a simple conséquence of (2 10), (3 11) and (3 12)
Fmally, as previously seen, || iïN(X) - u(X) ||ljlD = O(1/JV), hence (1 42)

holds
Then usmg (1 43) we obtam for any X G A

\\ iïH{K) - u{\) ||OiB ^ C || u(l) + TN G{\, u(k)) ||0]M +

+ | | T J V ( G - ^ ) ( ^ ï ï ^ ) ) | | 0 j < 0 . (3 55)

Using the equality u{X) + TG(X, u(k)) = 0, and TN = UNoT we get

1 u(X) + TN G(\, u(X)) ||0;(0 ^ CN ~' || u(X) ||OiB (3 56)

Next let us estimate the last term of (3.55).
By Lemma 2 1 there exists 4» e VN such that for any v e VN

c(v, <1>) = (v, TN{G - GN) (X, 3N(X.))). . (3 .57)
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Moreover there exists a positive constant C such that

Then, taking v = TN{G - GN) (X, üN{X)) by (3 57) we get

|j TN{G - GN) (X, aN(X)) \\2
Ota = c{TN(G - GN) (X, uN{X)), <

Using now (3 9), (3 16) and (3 21) we have

|| TN(G - GN) (X, ÜN(X)) \\l a = | < (G - GN) (X, aN(X)), * > | =

5 j [(id - PC) u2
N(X)-]x <|>co dx + (ƒ <|))B - (ƒ c)))M B

^ C | A. | { 11 (Id - Pc) Ù
2
N(X) ||0 „ + II (Id - Pc)f ||0 . +

+ | | ( I d - n O M _ 1 ) / | | 0 a ) } | | c | ) | | K (3 59)

Using (3 18) we estimate the first term of the right hand side as foilows

(ld - Pc) a*(\) ||o „ < || (ld " Pc) «
2(

+ II ( l d - Pc) (u2(X) - Ü2(X)) \\O u(X)

+ j v ^ » - 1 il aN(X) - u(X) \\la\\ aN(X) + u(X) \ \ l m }

Using the ^ ' - e r r o r estimate concerning üN, and (3 50), (3 58) and (3 59)
we then get

2 m } (3 60)

Il TN(G - GN) (X, ÙN(X)) ||0 „ < C | X | { N°M-<> || u(X) ||o œ

+ ^2 . , - ) - . -111^)112 n + ^ . ) -

Fmally, from (3 55), (3 56) and (3 60) we conclude that

|| aN{X) - u(X) || < c | x | iv e ( m )- c {|| u(X) \\a a +

So(3 54)holds D

We finish this paper by making some remarks about the practical solution
of the approximate problem As an example let us consider the pseudo-spectral
problem (3 29) Following the Section 1 3, according to (1 55) we can define
a séquence (v") of functions of VN by solving

(Id + TN Du GN[v"]) (vn+1 - v") = - (vn + TN GN(v")), n > 0 (3 55)
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(the parameter X is taken as fixed, so it does not appear in (3 55)) An equi-
valent form of (3 55) is as foliows find vn+1 e VN such that

G VN C(V" , (|>) + X | [ p ^ » t>B+1)"L (t)(û ̂  =

A,
(3 56)

To apply Theorem 1 4 we need only to check that (1 50) holds
Using Lemma 2 1 and (3 9), (3 11), (3 12) it follows

V», weVN || TN Dl GN[uN] (v, w) ||£ < P" ' ^ 0B
2 Gw[«w] (Ü, W) ,

r N D 2 G N [ % ] («, w)) ^ p - 1 1 < D«2 G N [ % ] ( « . w ) .
^ öu

2 GW[«N] (v, w) > | ^ C p " J [ sup (PC(ÜW)X> <|>) J 2

H + l l i »

F i n a l l y , b y ( 3 1 6 ) , ( 3 1 8 ) a n d t h e i n e q u a l i t y || u u \\t ö ^ C || u \\x œ || w 1^
we get

hence (3 50) holds

Then by Theorem 1 4 we can conclude that if v° is suitably chosen, then the

Newton itérâtes (vn) converge quadratically to uN{X) for any À- e A
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