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R A I R O Analyse numénque/Numencal Analysis
(vol 16, n° 4, 1982, p 319 à 349)

APPROXIMATION OF SOLUTION BRANCHES
OF NONLINEAR EQUATIONS (*), (**)

by Jean DESCLOUX (*) and Jacques RAPPAZ 0)

Commumcated by P G CIARLET

Abstract —- We present a gênerai theory for the approximation of regular and bifurcating bran-
ches of solutions ofnonhneat équations It can be apphed to numerous problems, including different ial
équations on unbounded domains, in connection with vanous numencal algonthms, for example
Galerkin methods with numencal intégration

Résumé —On présente une théorie générale de l'approximation de branches, régulières ou avec
bifurcation, de solutions d'équations non linéaires Cette théorie s'applique à de nombreux problêmes,
y compris les équations différentielles sur des domaines non bornes, résolus par des méthodes numé-
riques variées, par exemple des méthodes de Galerkin avec intégration numérique

1. INTRODUCTION

In their three papers [1], [2], [3], Brezzi, Rappaz and Raviart consider the
approximation of nonlinear équations of the type

u + TG(X,u) = 0 (1.1)

by a family of équations of the form

u + ThG(X,u) = 0'9 (1.2)

hère G : M x V ^ W is & regular nonlinear mappmg, T : W -> V and
Th\W ^ Vh are bounded linear operators ; V and W are real Banach spaces,

(*) Received m december 1981
(**) This work was supported by the Fonds National Suisse de la Recherche Scientifique
l1) Département de Mathématiques, École Polytechnique Fédérale, Lausanne, Suisse.
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320 J DESCLOUX, J RAPPAZ

{ Vh )h 1S a farnily of fimte dimensional subspaces oï V As a mam hypothesis
Connecting (1 l)and(l 2), they suppose that

hm || 7 - T J ^ K ) = 0, (1 3)
h~* 0

which implies in particular that T is compact
Brezzi, Rappaz and Raviart have hmited their investigations to regular

branches of solutions [1], limit points [2] and simple bifurcation points [3],
whereas m [12], [13] Rappaz and Raugel have considered m the same context
bifurcation at multiple eigenvalues

Tne purpose of mis paper is to genei ahze m an umfied treatment sorne of
the mam results contained m the références mentioned above In particular,
our theory includes the possibility to analyse two new situations

a) m (1 1), T is non compact, b) the approximation is of Galerkin type
with numencal intégration

Also most concrete problems can be wntten naturally m the form (1 1),
we have found suitable to adopt the following framework Let X and Y be real
Banach spaces, F X -• Y be a sufficiently regular nonlmear map, x0 e X be
such thatF(x0) = 0 In a neighborhoodof x0, weconsider the équation

F(x) = 0 , (14)

we shall suppose ihai F {x0) A -> Y is a FicdLolm operator of index 1,
however we shall assume no compactness hypothesis on F (x0)

Several authors have considered bifurcation problems m the gênerai form
(1 4) (see for example Magnus [10]), since with ît the parameter X e M does
not appear exphcitly, a simple hmit point cannot be distmguished from a
regular point, in the same way, the " double hmit point " mtroduced by Decker
and Keiler m [5], can be treated as an usual simple bifurcation point (see
Descloux, Rappaz [8])

For approximatmg the équation F{x) = 0 we consider two families of fmite
dimensional subspaces { Xh },,, { Yh }h of X and Y respectively, nonlmear
mappings Fh Xh -> Yh and the équations

Fh(x) = 0, (1 5)

mstead of (1 3), we impose on F and Fh a consistency condition and a stabihty
condition which are given by relations (3 5) and (3 7) in Section 3, remark
that they do not suppose that F (x0) possesses any property of compactness

As for the analysis of problems (1 1), (1 2) by Brezzi, Rappaz, Raviart and
Raugel, our investigation will be based on the implicit function theorem In
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APPROXIMATION OF BRANCHES OF NONLINEAR EQUATIONS 321

Section 1, we recall a version of this theorem and prove a basic error estimate
(Theorem2.2).

Section 3 deals with " regular points ", i.e. we require that F'(x0) is sur-
jective. Theorem 3.1 contains the gênerai results. In Theorem 3.2, we suppose
that X is of the form M x V, and that x0 = (X09 u0) e X is a turning point ;
for Galerkin methods, as in [2], we obtain an improved bound for the parameter
X at the approximate turning point.

The main results of this paper are contained in Section 4 which is devoted
to bifurcation points. Although not impossible, we have found it very compli-
cated to work with the approximate problem (1.5) when Fh opérâtes on finite
dimensional subspaces ; for this reason we require that Fh admits a suitable
extension Fh : X -* Y such that, in particular, the équations Fh(x) = 0 and
Fh(x) = 0 possess the same solutions. As in Section 3, we impose to F and
Fh (where now Fh dénotes the extended operator X -• Y) a consistency condi-
tion (4.4) and a stability condition (4.6). Supposing that the dimension of the
kernel of F'(x0) is n + 1 with n ^ 1, we apply the Lyapunov-Schmidt proce-
dure to F and Fh (Theorem 4.1) and reduce problems (1.4) and (1.5) to
équations of the form ƒ(<?) = 0 and fh(o) = 0, where ƒ and fh operate on the
same finite dimensional subspaces. Theorems 4.2 and 4.3 are based on the
following hypothesis :

/(O) = /'(O) = - = /(*-1}(0) - 0, fh(0) = /„'(O) = - = ^ - " ( O ) = 0

for some q ^ 2 and there exists a non degenerate characteristic ray (Hypothe-
ses (4.16), (4.17)) ; they show the existence of a branch F of solutions of the
exact problem (1.4) passing through x0 and tangent to the characteristic ray
at x0 and, on the other side, the existence of a branch Th of solutions of the
approximate problem (1.5) converging to F. The particular case of a simple
bifurcation point is treated in Theorems 4.4 and 4.5 which give error estimâtes
similar to those obtained in [3].

The aim of Section 5 is to show how the results of Section 4 can be applied
to the following classical problem

(X, u) e M x if oHQ), - Au - Xu + u3 = 0 ;

here O is the unit square 0 < x, y < 1 and we are interested by solutions in the
neighborhood of (Xo, 0) where Xo = 5 II2 is a double eigenvalue of the eigen-
value équation Au + Xu = 0. The approximate problem is obtained by the
Galerkin method with numerical intégration. The exact problem can be written
in the form (1.1) with T compact ; however, due to the présence of numerical
intégration and to the fact that HQ(Q) is not imbedded in C°(Q), the approxi-
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322 J DESCLOUX, J RAPPAZ

mate problera cannot be put m the form (1 2) Note that this difficulty can
be overcome by replacmg HQ(Q) by WQ P(Q) for p > 2 , but, then, the estimate
0(/i)m(5 25)shouldbereplacedbyO(/i1"E),£ > 0(see[ll])

Except for a part of Section 5, all the results of this paper are contained in
our Report [8] m which however some further questions are discussed, for
example bifurcation m présence of symmetry, the situation of imperfect nume-
ncal bifurcation (î e using the above notations, ƒ satisfies the relations
/(O) = /'(O) - = f{q~l)(0) = 0, but fh does not satisfy the relations
/fc(0) = /h'(0) = = fiq~l)(0) = 0) Let us also mention the analysis of a
nonhnear Sturm-Liouville eigenvalue problem on the infinité interval (0, oo),
hère, the exact problem can be wntten in the form (1 1), but with T non
compact (see also [9])

2. NOTATIONS. PRELIMINARIES

We first introducé some notations Let X, Y, Z be real Banach spaces For
the sake of simphcity, we shall dénote by || . || the vanous norms m X, Y, Z,
&m(X, Y), SejX x Y,Z), where £Pm(X9 Y) is the space of continuous m-lmear
mappings of Xm mto Y In the same way, for any space, B(a, p) dénotes the
open bail of center a and radius p The norm m X x Y is defined by the rela-
tion || (x, y) || = || x || + H j ; || For a map G Q c X -* Y, Dm G or
G(m) Q -^ ^m(X, Y) represents the m-th Frechet denvative of G, for x e Q5

^ - £ l s , U E Xm, we use the notations G(">(x) e &JX, Y),

if ^ = %2 = = ^m_!, or if ^ = ^2 = = %m, we may also wnte
G(m)(x)Ç = Gim)(x)Ç? 1^ffl or G(m)(x)^ - G{m){x)^, respectively For a
map G Q c X x Y -• Z, Dx G, Z)̂  G, DX

2
X G, D,2V G will dénote the partial

denvatives
As in [1], [2], [3], the essential tool of this work will be the împhcit function

theorem We quote hère a particular version of ît, for the proof, see, for exemple
[8]

THEOREM 2 1 Let X, Y and Z be Banach spaces, x0 e X, y0 e Y, 5 be a
p o s i t i v e nurnber, Q = B ( x 0 , 5 ) x B { y 0 9 5 ) c X x 7 , G Q ^ Z b e a C

mapping with p ^ 2 P^e suppose that Dy G(xOi y0) is an isomorphism from Y

onto Z and that there exist the numbers co,c^ ,cp such that

DyG{x0, c0 ,

V(x,y)eQ, k = 1, 2, ,p

R A I R O Analyse numenque/Numencal Analysis



APPROXIMATION OF BRANCHES OF NONLINEAR EQUATIONS 323

Then, there exist positive numbers a, b, à depending only on 5, c0, cx, c2 and for
k = 1,2,..., p, the numbers Mk depending only onc0,cx, ...,ck such that :

î) for any (x, y) e B(x0, a) x B(yQ, b\ Dy G(x, y) is an isomorphism from Y
onto Z such that || Dy G(x, y)"1 [| ^ 2 c 0 ,

n) if || G{x09 y0) I < d, there exists a Cp mapping g • B(x09 a) -> B(y0, b)
such that, for any x e B(x0, a), y = g(x) is the unique solution of the équation
G(x,y) - 0tye*B(yO9b)9i.e.

G(x9 g{x)) = 0 , g(x) e B(y09 b) \/x e B(x0, a) ;

furthermore

|| gW(x) || ^Mk Vx e B(x0, a), 1 < k < p .

The next theorem provides a key resuit for error estimâtes.

THEOREM 2 . 2 : We consider the situation given by Theorem 2.1 with
|| G(x0, y0) || < d. Let W be a real Banach space, A ci W be open,
s : B(x09 a) -> B(y0, b) and a : A -> B(x0, a) be Cp~l mappings, g = g o a
anrf iT = s o a : A -> J5(y0, b). Ŵ e suppose that there exist constants

ek Vx € B(xos a), || a(fc)(f) || < Yk W e À ,

fc= l , 2 , . . . , p - 1 .

7hen, foi k = O, 1, , p — 1, rAe/e ?\/.sf constants Kk depending onl\ on

|| ^ ( 0 - sW(r) || ^ K, | || H«>(0 II W e A , 0 ^ k < p - 1 , (2.1)

w/iere H : A ^ Z is the Cp~1 mapping defined by H(t) = G(a(t), s*(t)).

Proo/ : Since G(a(t), g(t)) = 0, we obtain by the fondamental theorem of
calculus :

H(t) = G(a(t), 5(0) - G(a(0, g(t)) = E{t) (s[t) - g{t)) > f e A , (2.2)

where

= f Dy G{*i
Jo
f y it), g(t) + T(s(f) - gf(f )) dx ; (2.3)
Jo
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324 J. DESCLOUX, J. RAPPAZ

by the same theorem again, we have that || E(t) — Dy G(x0, y0) || ^ c2(a -b h).
Without restriction of generality we can assume in Theorem 2.1 that
2 c0 c2(a + b) < 1 ; writting

E(t) = Dy G(x0, v0) (ƒ - Dy G(x0, yQrx (Dy G(x0, j,0) - £ (0 ) ) ,

we see that for any t e À, E(t) is an isomorphism from Y onto Z with inverse
bounded by 2 c0. By differentiating (2.3) j times, 1 ^ j ^ p — 1, and by
using the bound || g(k)(x) || ^ Mk of Theorem 2.1, we see that || Eij)(t) || is
bounded, uniformly with respect to t, by a constant depending only on
c0, c l3 ..., cJ+1, el9 e2,..., ejS 7i, ••-, y r We now prove Theorem 2.2 by induc-
tion ; for k = 0, we have by (2.2):

1 s(0 - git) II ̂  II Eity11| || H(t) || < 2 c01| H(t) II

which proves (2.1) for k = 0 with Ko = 2 c0. Now suppose (2.1) true for
1 ^ k ^ q — 1, 1 ^ q ^ p — l ; b y differentiating (2.2) q times we obtain
for any ̂  = (^ , ...5 ̂ ) e FF9 and any t e A :

£(0 f

where 11̂  is any partition of the set { £l5..., ^4 } in two subsets r|(riJ) and
(̂11̂ ) containing respectively ; and (q - j) éléments; by the hypothesis of

induction, this proves (2.1) for k = q. •
We conclude this section by recalling a classical result we shall use frequently

in the following.

THEOREM 2 . 3 : Let X and Y be Banach spaces, D be a relatively compact
subset of X, f and fn, neN.be maps from D into Y. We suppose :

a) lim fn(x) = f(x) V'x e D,b) there exists a constant L such that

I! / „ M - / » ( Ç ) | | < M * - U Vx, ^ D , VneN.

Then lim fn = f uniformly.

3. REGULAR POINTS

Let X and Y be two real Banach spaces, F : X -» Y be a Cp mapping with
p ^ 2 and x o e l b e such that F(x0) = 0. We suppose that x0 is a regular

R.A I R.O. Analyse numénque/Numerical Analysis



APPROXIMATION OF BRANCHES OF NONLINEAR EQUATIONS 325

point in the followmg sensé

F'{x0) X -> Y is a Fredholm operator of index 1 , (3 1)

Range F'(x0) = Y (3 2)

Hypotheses (3 1) and (3 2) imply that the kernel of F'(x0) is one-dimensional
and consequently is spanned by some vector <D0 G X, <D0 # 0 Let \|/0 e X*
be such that < CD0, V|/0 > ^ 0, where Z * dénotes the dual space of X and
< ., . > the duahty painng between X and X* As we shall see m Theorem 3 1,
there is an unique branch of solutions of the équation F(x) = 0 passing through
x0 which can be parametnzed by a function x(t) satisfymg the relations
F{x(t)) = 0, < x(t) - x0, v|/0 > - t = 0

In order to approximate this branch of solutions let { Xh }h and { Yh }h be two
families of fimte dimensional subspaces of X and Y respectively, { Fh }h be a
family of Cp functions mapping Xh into Yh and { Hh }h be a family of projectors
mapping X onto Xh, hère h is a parameter which tends to zero We suppose

a) hm Ylh x = x V x e l , (3 3)

fc) dimension Xh = dimension Yh + 1 , (3 4)

c) for any 0 < k ^ p — 1 and for any fixed x, £l9 , ^ Ê I , we have

hm II F«(x) ft„ , ̂ ) - FfCn» x) (n, ^, , II, ̂ ) || = O , (3 5)

h~+ 0

^) there exist the positive constants 8 and c such that

|| Ff)(x) || ^ c, Vx G X, with || x - Uh x0 l| < 6 , Vh, 1 < k < p ,

(3 6)

e) there is a positive constant |a such that

|| F;(nft x 0 K || Z\L\\$\\V$eWh, V/z, (3 7)

where ^ - { x G X J < x, x|/0 > = 0 }

(3 3) implies that the projectors Iîh are umformly bounded, (3 4) is the
discrete analogous of (3 1), (3 5) is a relation of pointwise convergence which
can be interpreted as a condition of consistency whereas (3 7) will appear as
a condition of stabihty allowmg the use of the ïmphcit function theorem

Remark 3 1 Let W = { x e X |< x, \|/0 > = 0 }, by Hypotheses (3 1),
(3 2) and by Banach's theorem, F'(x0) defînes an isomorphism from W onto Y

vol 16, n° 4, 1982



326 J DESCLOUX, J RAPPAZ

and consequently there exists a positive constant c such that

1 F ( x 0 ) Ç f > c \\% || V^ e VK

It follows that a sufficient condition which ïnsures the stability hypothesis (3 7)
is the followmg one

hm sup || (F^n, x0) Ç - F (x0) Ç || = 0, (3 8)
h-o ^xh util - i

such a condition has been used for example m [7] m connection with eigen-
value problems

Let <g U x X ^U x Y Sind^h H x l ^ i x ^ b e defined by the
relations

#(r, x) = « x - x0, x|/0 > - u F(x)), 9h(t9 x) = « x - x0, ^0 > - t,Fh{x))

(3 9)

LEMMA 3 1 Assume Hypotheses (3 1) to (3 7) T/ien a) D^ ̂ (0, x0) zs
an isomorphism from X onto U x Y b) For n sraa// enough, Dx ^/z(0, Ilh x0)
zs an isornorphismfrom Xh onto U x Yh with uniformly (with respect to h) bounded
inverse

Proof By Hypotheses (3 1), (3 2) and the fact that < <D0, \|/O > ^ 0, part
a) of lemma 3 1 follows immediately from Banach's theorem In the followmg,
c will dénote a positive genene constant independent of h, since Xh and
Ri x Yh have the same imite dimension, u suffices, for piuvmg part b), to
show, for h small enough, that || Dx <gh(Q, Uh x0) ^ || ^ c || Ç || V ^ e l h

Let ü>Oh = ITh ©o, by Hypotheses (3 3) and (3 5) we have that hm <oOh = CD0

and hm F Jn,, x0) ©Oh = 0 Any t)sXh can be decomposed as Ç = a(D0lj + w,

a G R, w e Wh and we obtain by Hypothesis (3 7)

|| Dx 9h(0, n h x0) ^ || = | a < o0h, v|/0 > | + || F&

^ c | a | + c || w || - | a Fh(Uh x0)

c { | a w

THEOREM 3 1 Assume Hypotheses (3 1) to (3 7) T/ien f/ie^ exist positive
constants h0, t09 a, K and two unique maps x(t)e X and xh(t) e Xh, \ t \ < t0

satisfying respectively the conditions

9{t, x(0) = 0 , || x(0 - x0 || < oc, for \ t \ < t0 , (3 10)

&h(t, xh(t)) = 0 , I xh(t) - n h x 0 || < a , for \t\ < t0 and h < h0,

(3 11)
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moreover x(0) = x0, x'(0) / 0, x(.) and xh(.) are of class Cp with bounded
derivatives of order 0 , 1 , , p where the bounds are uniform with respect to t
and h < h0, and we have

km sup il xik)(t) - x<f>(f ) II = 0 , k = 0 , 1 , , p - 1 ,
/i->0 |f | <*o

(3 12)

x<"(f) - x?>(f)

t\ (3 13)

Proo/ By Hypotheses (3 l)-(3 7) and by Lemma 3 1, relations (3 10),
(3 11) and the boundedness of the derivatives of x(r) and of xh(t) follow easily
from Theorem 2 1 apphed to 'S and ^h By applying Theorem 2 2 to 'S^, with
W= U, <x(f) = f, s(t) = Uh x(t), we obtain for 0 ^ k ^ p - 1, | 11 < t0 and
some constant c

xî>(r)-nhx(*>(0 î

from which, by using (3 10), (3 13) follows îmmediately Hypotheses (3 3),
(3 5) together with the fact that F(x(t)) = 0 imply that the nght member of
(3 13) converges, for each t, to zero as h tends to zero , m fact, by Theorem 2 3,
the convergence is uniform with respect to t, this proves (3 12) •

Besides Hypotheses (3 l)-(3 7), we shall assume from now on that we have
the following particular situation X = U x V, where V is a real Banach
space, Xh = U x Vh9 where Vh is a subspace of V, an element oîU x V will
be denoted by {X, u), XeU, ue V and we shall wnte F(X, u) for F(x) and
F,(X,w)forF,(x)5wesetx0 - (A,o, w0), x(t) = (Ht), u(t)), xh(t) = (Xh(t\^)l

11 < t0, where x(t) and xh(t) are defined by Theorem 3 1, we suppose that

Range Du F(X0, u0) is closed and of codimension 1 m Y , (3 14)

Dx F(X0, u0) ^ Range Du F(X0, u0), (3 15)

note that (3 14) and (3 15) are consistent with (3 2), m fact ît is easy to prove
(see Appendix / of [8]) that (3 1) implies that DuF(X0,u0) is a Fredholm
operator of index 0 so that (3 14) is a conséquence of (3 1), (3 2) and (3 15)

Let a 7 x 7 -^ R be a continuons and coercive bilmear form , we assume
that Fh is the Galerkm approximation of F with respect to a î e

a{Fh(X, u\ y) = a{F(X9 u), y) Vv e Yh, V(X, u)eXh, Vfc , (3 16)

- z || = 0 , Vv e 7 (3 17)lim inf
h-*0 zeYh

vol 16, n° 4, 1982



328 J DESCLOUX, J RAPPAZ

By differentiatmg the relation F(k(t\u(t)) = 0 at t = 0, and by taking in
account (3 15), we obtam that A/(0) = 0, i e (k0, uö) is a limit point, we shall
assume furthermore that it is a turnmg point i e

r (0) # 0 (3 18)

Our purpose is to show that the approximate branch parametnzed by
(kh(t), uh(t)) has also a turning point for some t = th near t = 0 and to give
an « improved » estimate for the quantity Xo — A,fc(t J

Hypothesis (3 14) imphes the existence of an element yoe Y such that

v0 / 0 , a(Du F(X0, u0) v, y0) = 0 Vz; e V (3 19)

THEOREM 3 2 Assume Hypotheses (3 l)-(3 7), (3 14)-(3 18) and suppose
that p ^ 3 Then there exist positive constants tx and hx such that for h < hx

there exists an unique th e (— tu tx) with k'h(th) = 0, Xf^(th) ^ 0, furthermore
there exists a constant c such that, for h small enough, we have

I K(fh) - K \ < c { \ \ *;(0) - x'(0) ||2 + II xh(0) - x 0 II x

x (II x f c ( 0 ) - x 0 || + i n f H j / 0 — V I I ) } ( 3 2 0 )
yeYh

Proof In the followmg, c will dénote a genene positive constant independent
of h We use estimate (3 12) of Theorem 3 1 for k = 1, 2 Since X'(0) = 0,
we obtain that hm ^ (0 ) = 0 , by (3 18), there exists tx > 0 such that, for h

small enough, | Xf^(t) | ^ c, | t \ < tx, consequently there exists hx > 0 and
for / i < ^ an unique tf te(— tx, tx) such that X^(ïh) = 0, furthermore, we
have the estimâtes

I th\ < c | ^ (0 ) | = c | ^ (0) - V(0) | ^ c || 4(0) - x'(0) || , (3 21)

K(0) = K(h) - (K(th)) th + 0(r,2) = Xh(th) + 0(th
2) (3 22)

In order to prove (3 20), let zh e Yh such that || y0 ~ zh \\ = inf || y0 — z ||
zeYh

By (3 14), (3 15), (3 19), a{Dx F(k0, uQ), y0) / 0 and consequenlly, by
(3 17), we shall have that | a(Dx F(X0, u0), zh)\ ^ c for h small enough By
(3 16), a(F(Xh(0), M„(0)), zh) = a(Fh(\h(0), u„(0)), zh) = 0 and by Taylor's
expansion we have

0 = a(F(Xh{0), uh(0)), zh) - a(F{X0, u0), zh)

= (Xh(0) - Xo) a{Dx F(X0, u0), zh) + a{Du F(X0, u0) {uh(0) - u0), z„) +
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APPROXIMATION OF BRANCHES OF NONLINEAR EQUATIONS 329

by (3 19),

a{Du FÇk0, u0) {uh(0) - u0), zh) = a{Du F(k0> u0) (uh(Q) - u0), (zh - y0))

and, for h small enough, we deduce the estimate

| MO) - ^o I < c II x,(0) - x0 || (|| x,(0) - x0 || + || zh - y0 | | ) , (3 23)

combining (3 21), (3 22) and (3 23), we obtain (3 20) •

Remark 3 2 (3 21) and (3 22) are independent of the fact that Fh is a
Galerkm approximation of F, whereas (3 23) is independent of the condition
À/'(0) ï 0

4. BIFURCATION POINTS

Let X and Y be two real Banach spaces, F X ^ Y bo SL Cp mapping with
p ̂  2 and x o e l b e such that F(x0) = 0 We suppose that x0 is a cntical
point of order O l i n the following sensé

a) Ff(x0) X -» 7 is a Fredholm operator of index 1, (4 1)

b) codimension Range i*"(x0) = n (4 2)

Hypotheses (4 1), (4 2) imply that Xx = Ker F (x0) has dimension n + 1
and, if we set 7 2 = Range Ff(x0), there exist two closed subspaces X2 a X
and 7 ^ 7 such that

X - X, ® X2 , Y = Y, 0 72 , (4 3)

clearly dimension Yx = n and the restriction of F'(x0) to X2 defines an îso-
morphism from X2 onto Y2

Let Q Y -> Y2 and 7-Q 7 -> 7X be the projectors associated with the
décomposition Y = Y1 ® Y2

In order to approximate the solutions of the équation F(x) = 0 m a neighbor-
hood of x0, we consider a family { Fh }h of Cp operators Fh X -> Y, where h
is a positive parameter tending to zero, m applications, Fh will appear as a
suitable extension of a function defîned on a fimte dimensional subspace Xh

oïX with values in a finite dimensional subspace Yh of Y We suppose

c) for any 0 ̂  k < p — 1 and for any fixed x? £ ls , ^ e l , we have

hm 1 F(">(x) fêi, ̂ 2. » y - F«(x) (^, ^2, , ̂ ) || = 0, (4 4)
h~* 0

d) there exist the positive constants 5 and c such that

|| F<*>(x) || < c V x e l with || x - x0 || < 6 , Vh , 1 ̂  k ^ p, (4 5)
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e) QF'h(xQ) is an isomorphism from X2 onto Y2 with uniformly bounded
inverse with respect to h. (4.6)

(4.4) is a relation of pointwise convergence which can be interpreted as a
condition of consistency whereas (4.6) will appear as a condition of stability
which will allow, in Theorem 4.1 , the Lyapunov-Schmidt procedure for Fh;
clearly (4.4) and (4.6) are analogous to Hypotheses (3.5) and (3.7) introduced
in the preceding section.

THEOREM 4 . 1 : We suppose that Hypotheses a) to e) are satisfied. Then there
exist positive constants h0, Ç, a, K and two unique maps v : 5(0, Q c Xx -> X2,
vh : 5(0, Q c X1 -• X2 such that :

QF(x0 + a + v(o)) = 0 , || w(a) || < a Va e 5(0, Ç) , (4.7)

QFh(x0 + a + üfc(a)) = 0 , || üfc(a) || < a Va e 5(0, Q , Vfc < fc0 ; (4.8)

t)ft are C p mappings with bounded denvatives of order 0, 1, ...9 p where the
bounds are uniform with respect to G e 5(0, Q and h < h0; furthermore, we
have :

lim sup II vik)(a) - v^(a) II = 0 , k = 0, 1, ..., p - 1 , (4.9)
fc0 fl(00

v(k)(a) - v%\o) || ^ K
k

j—o
, (4.10)

5 ( 0 , O , h < h 0 .

Proof : We apply Theorems 2 .1 and 2 .2 to G : X x x X 2 -> 7 2 and Gft :

Xx x X2^> Y2, where G(a3 Ü) = QF{x0 + a + v), Gh(a, v) = QFh(x0 + a + u)
from which (4.7), (4.8) and (4.10) follow immediately ; then (4.9) is a consé-
quence of Theorem 2.3, of (4.10), of Hypotheses (4.4), (4.5) and from the
fact that Xx is fini te dimensional. •

By Theorem 4 .1 , the équations F(x) = 0 and Fh(x) = 0 are reduced, in a
neighborhood of x0, to the équation f (o) = 0 and fh(a) = 0 in a neigh-
borhood of 0, where ƒ and fh are the bifurcation functions defined by :

ƒ : 5(0, Q - y x , / ( a ) = (J-Q) F(x0 + a + v{o)), (4.11)

/fc : 5(0, Q^Y19 fh(a) = (J-g) Ffc(x0 + a + üfc(a)). (4.12)

The following relations are either obvious or easy to verify :

v(0) = 0 , i/(0) = 0 , /(0) = 0 , / ( 0 ) = 0 , (4.13)

f ' (x o)Ç = 0 V Ç e l , , ( /-g)F'(xo) = 0 . (4.14)
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We now introducé the following new hypotheses p ^ 4 , there exist aoe Xx

and the integer q with 2 ^ q ^ p/2 such that

ƒ) ƒ»>(<)) = 0 2 ^ fc ^ q - 1 , (4 15)

^) /"'(O) a§ = 0 , (4 16)

fc) the relations a G XU fiq){0) al'1 a = 0 imply the existence of x G M
with a = xa0 , (4 17)

i) /W(0) = 0 0 < k ^ ^ - l (4 18)

Remark 4 1 Consider the conditions oc) (J-g) F(fc)(x0) = 0, 2 ^ f c s $ g - l ,
P) the restriction of F(k)(x0) to Xk vamshes for 2 ^ k ^ <? - 1, then ît is
easy to venfy that a) or P) is a sufficient condition for obtaimng (4 15), fur-
thermore, if a) or P) is satisfîed, then fiq)(0) is equal to the restriction of
(I-Q) Fiq)(x0) to Xf9 which allows to express (4 16) and (4 17) m terms of F
directly

Remark 4 2 We could replace (4 18) by the more gênerai hypothesis y)
there exists r\h e X1 such that hm r|h = 0 and Ûk)(r\h) = 0for0^k^q — 1,

h->0

in fact, with minor modifications, all the following results of this section would
remain valid However, ît is possible to reduce y) to (4 18) in the following
way, let zh = r{h + vh(r\h) and Fh(x) = Fh(x + zh), then by applying Theorem
4 1 to Fh we obtain a map vh B(0, Q a Xl ~> X2 such that

QFh{x0 + a + vh(a)) = 0

and a new bifurcation function fh(a) = (I-Q) Fh(x0 + a + vh(o)), ît is possi-
ble to venfy that fh(a) = fh{a + r\h) and consequently, by y), flk)(0) = 0 for
0 < fc < 4 - 1, note also that Fh(x0) = 0

Under the above hypotheses, we shall show the existence of a Cp~q branch
of solutions of the équation F(x) = 0 passing through x0 and of a correspond-
îng approximate branch for the équation Fh(x) = 0, the « exact » branch will
be parametrized by a function x(t) eX such that x(0) = x0, x'(0) = a0 To
this end, let v|/0 G X * be such that < a0, \|/0 > / 0, where X * dénotes the dual
of X and < ., . > the duahty painng between X and X *, we introducé the
following mappings

t, a) = U a - a0, *0 > , 1 f(ta)\ , (4 19)
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^ and <Sh (h small enough) are defined on some neighborhood Q c H x I t

of (0, a0) with values in IR x Yr ; ü is independent of h ; by (4.13) and Hypo-
theses (4.15) and (4.18), 9 and eêh are Cp~* mappings where we recall that
P - q > 2.

THEOREM 4.2 : We assume that Hypotheses a) to ï) are satisfied. Then there
exist positive constants h0, t0, P, M and two unique maps a( . ) : (— t0, t0) -• X1 ;

, \t\<t09 (4.21)

t\<tQ9 h < h0; (4.22)a fc(0-a0

o(.) and oh(.) are Cp~q mappings with bounded denvatives of order 0, l , . . . ,p — ^
where the bounds are uniform with respect to \ t \ < tö and h < h0 ; furthermore

0, a 0 ) = 0 and we have for 0^k^p-2q + \ :

lim sup = o ,

sup
\t\<to d?

(tG(t) - tah M sup

(4.23)

< V

(4.24)

Proof : By (4.13) and (4.15) we have for any a e XY :

, a0) a = ^< o, v|/0

by (4.17) and the fact that < a0, \|/0 > / 0, we see that Da <g(0, a0) is injective ;
since Xx and IR x Yl have the same finite dimension n + 1, we conclude that
Da ^(0, a0) defines an isomorphism between these two spaces. Moreover, by
(4.13), (4.15) and (4.16), we have »(0, a0) - 0. By (4.4), (4.5), (4.9) and
Theorem 2.3, we obtain

lim sup || fk\a) -
fc0

= 0 , 0 p - 1 ; (4.25)

furthermore f£p) is bounded on B(0, Q uniformly with respect to ft ; by (4.13),
(4.15), (4.18) and Taylor's formula, we obtain :

(4.26)
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together with (4.25), this proves

lim sup || %{k\t, a ) - %{k% a ) || = 0 , O ^ f c ^ p - ^ - l , (4.27)

and that 0fc
(p~fl) is bounded on Q uniformly with respect to h. In particular we

have : lim || Do 0(0, a0) - Dc <gh(0, a0) || = 0, which shows that, for h small
ft—* 0

enough, Da 0fc(O, a0) is an isomorphism from Xi onto M x Y1 with inverse
uniformly bounded with respect to h.

In the foUowing, c will dénote a generic constant independent of h. By using
the above preiiminary results, in particular (4.25), we can apply the implicit
function Theorem 2.1 to 0 and 0 ^ from which we deduce (4.21), (4.22)
and the boundedness of the fïrst (p — q) derivatives of a ( . ) and of CT/,(.)-

Applying furthermore Theorem 2.2 to ^h, we obtain, for h small enough,
Q^k^p — q — l and | 11 < tQ, the estimate

aik\t) - (4.28)

(f, a(t)) = 0, it follows that < a(t) — CT0, \|/O > = 0 and consequently
that %{t, o(t)) = (0, f "« eh{t)% where we set gh(t) = fh(ta(t)) ; then, by (4.28),
we have for h small enough, O^k^p — q - l and | f | < £0 :

k - l

+ j=o

k - l

+ J = O

dJ

dtJ V HK >}

dJ - •

))

J ° 1

J
(4.29)

using once more Hypothesis (4.18) and Taylor's formula, we have for 0
and, in particular for m = q — 1, m = q :

— eh(t) = 7 ^ T 7 I (1 - s)'""1 e^\
tm H (m — 1) ! I v ' h \

ds ,

by replacing this expression in (4.29), we obtain the desired estimate
(4.24). •

We now can define the parametrizations of the two above announced
branches of solutions for the équations F(x) = 0 and Fh{x) = 0. We set :

*(•) ••(- to, to)-*X; x(t) = x0 + ta(t) + v(ta(t)); (4.30)

**(•) : ( - t* to)-+X; xh{t) = x0 + tah(t) + vh{tah(t)), (4.31)
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where the mappings u(.), vh(.\ a(.) and oh(.) are defined by Theorems 4.1
and 4.2.

THEOREM 4.3 : We assume that Hypotheses a) to ï) are satisfied', let x(.)
and xh(.) be given by (4.30) and (4.31). Then there exist positive constants
h0 and L such that

i) x(.) and xh(.) are Cp~q mappings with uniformly bounded denvatives
(with respect to \ t \ < t0 and h < h0) of order 0 ,1, . . . , p — q ^ 2 ;

ii) F(x(t)) = 0, Fh(xh(t)) = 09\t\<tO9h<ho; x(0) = x 0 ; x'(0) = a 0 ;

(4.32)

iii) lim sup II x{k){t) - x<£\t) | = 0 , 0 ^ k ^ p - 2 q + 1 ; (4.33)
h^ö \t\<to

iv) for

sup II xik)(t) -
\t\<to

— 2 q + 1 and h < hö, we have the error estimate

(4.34)
k+q-l

L y sup
j = 0 | t | < ï o

Proof : Clearly, by Theorems 4.1 and 4.2, we have to venfy only (4.34).
In the following, c will dénote a generic constant independent of h. By using
the boundedness of the derivatives of vh of order < p (Theorem 4.1), we can
write for 0 ^ k < p - 2 q + i :

dt'

dk

dFk vh(to(t)))

(v(ta(t)) - vh(to(t)))

(4.35)

As for the proof of Theorem 4.1, we now apply Theorem 2.2 to
G : Xx x X2 - • y 2 , G(a, w) = QFh{x0 + a + v); with g(t) = vh(ta{t)) and
s(t) = v(ta{t)), we obtain, for 0 ^ j ^ p — q and 111 < ï0, the estimate

. (4.36)
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By (4.24), the définition (4.12) of fh and (4.5), we have :

335

- toh(t))

sup
| t | < t o

k + q-l

; = 0 | T | < ( O

— Fh{x0 + TCJ(T) + vh{xa{x)))
dv

+ sup
| t | < t o dr7

(4.37)

(4.34) is then a direct conséquence of (4.35), (4.36) and (4.37).

Remark 4.3 : If a0 # 0 satisfies condition (4.16), we shall say that a0 is a
characteristic ray; if a0 satisfies conditions (4.16) and (4.17), we shall say
that CT0 is a non-degenerate characteristic ray. Let E c X1 be the set of cha-
racteristic rays with norm 1 ; by using a compactness argument bounded to
the fact that Xx is finite dimensional, it is easy to establish the foliowing result :
if all characteristic rays are non-degenerate, then S is a finite set.

Remark AA : Let us dénote by Px and P2 the projectors associated with
the décomposition X — Xr ® X2 ; let

r = t \ < t 0 } , r h = { x h ( t ) \ \ t \ < t 0 }

be the branches of solutions given by Theorem 4.3 ; for the constant P intro-
duced in Theorem 4.2, we consider the cone

C = { a G Xx | ||< a0, \|/0 > a - < a, x|/0 > a0 || < p |< a, vj/o > | } ;

by the uniqueness of the maps a(.) and oh{.) in Theorem 4.2, it is fairly easy
to establish the existence of positive constants y and h0 such that

{xeX\F(x) = Q, | | x - x o | | < y , - x0) e C } c F ,

x - x o ) e C } <= rfc

Furthermore, let E be the set of characteristic rays with norm 1 and suppose
that all characteristic rays are non-degenerate ; by Remark 4.3, E is a finite
set with éléments £, Ç2s ..., ^ say ; by Theorem 4.3, to each Ç( corresponds a
branch of solutions F, of the équation F(x) = 0 and a branch F[ft of the équation
Fh(x) = 0, for h small enough ; note that for each i corresponds j such that
^ = — 4js s o t n a t r t = Fj and FIh = Tjh ; it is then possible to show by ele-
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mentary means the existence of positive constants y and h0 such that

n

{ x € X | F(x) = 0 , || x - xQ || < y } <= U r , ,

{ x e X | Fh(x) = 0 , II x - x0 || < y } c y rifc, h < h0

1 = 1

We shall conclude this section by discussmg the particular case of simple
bifurcation points, ie essentially the case n = \,q = 2 Note that our analysis
will mclude implicitly the treatment the « double limit bifurcation point » [5]
Specifically we shall suppose, from now on, that

j) n = codimension Range F'(x0) = hp > 4 , (4 38)

with q = 2, then Hypothesis (4 15) is void, furthermore, by Remark 4 1,
/"(O)(Ç,TI) = (/ - Q)F"(XO)&T\) for ail £, r\eXu so that (4 16) and
(4 17) are equivalent, m this case, to the existence of a0 G X1 such that

k) (I -Q)F"(x0)(o0,o0) = 0, (4 39)

/) the relations aeXl9 (I - Q) F"{x0) (a0, a) = 0 imply the existence
of x G R with a = xa0 (4 40)

Xx = Ker r"(Ao) ^ ias dimension 2 and î \ has dimension 1, let eu e2 be a
basis of X1 and let g # 0 be an element of Yj, for any a = e t ex -h e2 e2 G X1?

ex and 82 G K, we can wnte

/'(O) (a, a) = (/ - Q) F"(x0) (a, a) = R(els e2) ̂  , (4 41)

where R U2 -• R is a quadratic form, as easily venfied, (4 39) together
with (4 40) are equivalent to the property that R is indefmite and non-dege-
nerate, i e that the determinant of the matrix associated with R is négative,
consequently, (4 39) and (4 40) imply the existence of a non-degenerate
characteristic ray Oj lmearly independent of a0 such that any charactenstic
ray is parallel to o 0 or to <JX

In connection with Remark 4 2, we state the followmg result

THEOREM 4 4 Let Hypotheses a) to e) and]) to l) be satisfied, we suppose
the existence oftwo C1 mappings x(.) and xh(.) (— t0, tQ) cz M -> Xx, t0 > 0,
such that F(x(t)) = Fh(xh(t)) = 0 for \ t \ < t0, x(0) = x0, x'(0) = a0,

h m s u p || x{k){t) - x ? > ( 0 ii = 0 for k = 0,l
h^O \t\<to
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!

Then there exist positive constants h0 and 6 and, for h < h0, an unique point
r\h e X1 such that

M * II < 6 , fh(r\h) = 0 , fi{r\k) = O for h < h0 and hmT]h = Ô,

(4 42)

furthermore, there exists a constant c such that

11 % 11 < c |, £(0) || (4 43)

Proof Recallmg the définitions (4 11) and (4 12) of ƒ and fh, we set co = ƒ '
and (ùh = fl £ ( 0 , 0 -> &{Xl9 Y J , the non-degeneraney of the quadratic
form R m (4 41) implies that o)'(0) G Sf(Xl9 &(Xl9 Yt)) is an îsomorphism,
by usmg (4 25), which is valid under the sole Hypotheses a) to e\ (4 13) and
Theorems 2 1,2 2, we obtam for h small enough and m some neighborhood of
0 the existence of an unique r\h G Xt satisfymg the relation (ù(r]h) = f'(t)h) = 0
and the estimate (4 43) It remains fo show that fh(r\h) = 0 , to this end, we
décompose x(t) m the form x(t) = x0 + Q(t) + w(t) where 8(r) e Xl9

w(t) G X2, since F'(x0) x'(0) = 0, we have wf(0) = 0 and 9'(0) = cr0, m the
same way we wnte xh(t) = x0 + Qh(t) H- wh(t)9 Qh(t) G X19 wh(t) e X2 and we
set oh(t) = fh(%(t)) % where ^ e l j is a fixed element lmearly independent
of a 0 , by (4 13), (4 25) and (4 40) we have hm cpA(O) = 0,

/ > 0

i()

smce (oj, and a>£ are bounded m a neighborhood of 0, uniformly with respect
to h, there exists, for h small enough, th such that (Dh(th) = 0 with hm th = 0 ,

clearly /A(6h(f )) = 0 which implies that fi(Qh(th)) %(th) = 0 and fh{Qk(th)) = 0 ?

smce hm Q'Jt,) = aOî it follows that ./ïfôjfj) = 0 for h small enough, by
h0h->0

the uniqueness of T̂ ft we have r\h = 8h(th) for h small enough •

Remark 4 5 In Theorem 4 4, the existence of the map x(.) is clearly
msured by Theorem 4 3, the existence of the map xh can be obtamed, m
« practical » situations, m two cases a) when x(.) paramétrées a « trivial
branch » and then xh(t) = x(t), I?) m présence of symmetnes (for more details
see[3],[8])

THEOREM 4 5 Let Hypotheses a) to e) and]) to l) be satisfied and let fh

be defined by (4 12), we suppose the existence, for h small enough, ofr\h G XX

such that fh(r\h) = 0, f^(r\h) = 0 and hm % = 0 Then, for some t0 > 0 and
h->0

h0 > 0 we have
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i) there exist Cp~2 mappings xt(.) : (— r0, t0) -> X, i = 0, 1, such that

F{xt(t)) = 0 , | 11 < tö , x,(0) - x0 , x;(0) ^ 0 , i = 0,1 , xJ>(0) * xi(0);

(4.44)

ii) there exist Cp~2 mappings xlA(.) : (— fOs t0) -> X9i = 0, 1,5wc/i f/iat

f » ( a ) ) = 0 . M < ' o > * < * o , ^ = 0 , 1 , ( 4 . 4 5 )

lim sup
h->0 | t | < t o

= 0 , 0 < Jfc < p - 3 , i = 0, 1 ; (4.46)

iii) there exists a constant c such that

, h <hQ; (4.47)

iv) tftere exists a constant c such that for 0 < k ^ p — 3, i = 0, 1 ;

sup I xf\t) - xj»(r)
| t l < t o

k + 1

E , S U P
j — O I ' I < 'o

fc0. (4.48)

Proof ; In the foUowing, c will dénote a generic constant. FoUowing Remark
4.2, we set zh = r\h + ^(rjA), F^(x) = Fh{x + zA), where uA is defined by (4.8);
since lim r\h = 0, Fh will satisfy the same Hypotheses c\ d) and e) as Fh, for /2

small enough ; by applying Theorem 4.1 to Fh, we obtain a bifurcation function
fh such that /h(0) = 0, j*'(0) - 0. By (4.39) and (4.40), there exist two lineary
independent characteristic non-degenerate rays a 0 and av By applying
Theorem 4.3 to F and Fh, a 0 and aï9 we obtain Cp~2 mappings x((.)» 3crt(.) :
(— fo?

 fo) ->- X, z = 0, 1 verifying (4.44), x'((0) = a, and the relations

Fh(xlh(0) = 0 for \t\< tQ9 f = 0, 1 ;

furthermore, for h small enough, 0 ^ k ^ p — 3andi = 0,1, we have

= 0 , (4.49)

sup
l l <

lim sup

h -* 0 | f I < to

Ht\ - v(t),
3cg>(t) sup ( 4 . 5 0 )

L e t u s d e f i n e t h e C 2mappingsxlh(.):(— tQ,tQ) -* X,i = 0 , 1 , b y

x*(0 = **(0 + z*, 111 < f o . « = 0 ,1; (4.51)
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clearly(4 45)isthensatisfied By(4 10),

339

vh(i]h) - v(r]h) Fh(x0 + Tifc + uOn„) || ,

since v{0) = 0 (4 13), with Hypothesis (4 5), we obtam the estimate

II vh{i\k) H c { || TU || + II Fh(x0) || }

and consequently \\ zh\\ ^ c { || T^ || + || Fh{x0) || }, in particular, by Hypo-
thesis (4 4), we have hm zh = 0 , then (4 46) and (4 48) foliow immediately

Ji->0

from (4 49) and (4 50) It remains to prove (4 47), clearly the hypotheses of
Theorem 4 4 are satisfied and by (4 43), it sufïïces to estimate || /h'(0) || ,
since a0 and ax form a fixed basis of Xl9 the proof of Theorem 4 5 wül be
achieved, if we show, for h small enough, the estimate

dtj ( = 0 , i = 0, 1, (4 52)

we prove (4 52) for i - 0, by (4 30) and (4 32), xo(t) is of the form

xo(t) = x(t) = x0 + ta(t) + v(to{t)),

with a(0) = a 0 , by définition (4 12) of /h we have

(4 53)

by using the estimate (4 36) (which is valid without Hypothesis i)), we easily
deduce (4 52) from (4 53) •

5. AN EXAMPLE

Let Q = (0, 1) x (0, 1) be the unit square in U2.H£ = if J(Q) wül dénote
the set of square ïntegrable functions on Q, vanishing on 3Q and possessing
square ïntegrable first partial denvatives

We consider the classical nonhnear eigenvalue problem of finding
(A, u) e U x Hj such that

- Au - Xu + M3 = 0 in Q (5 1)
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Let us introducé the symmetrie bihnear forms a and b by

a Hl x J?* -> R , a(u, v) = f (dxu dxv + dyudyv), (5 2)

6 L2 x L2 - , R , 6(M, t?) = f u.v , (5 3)

J
clearly (5 1) is equivalent to the problem of finding (X, u)eU x HQ such
that

a(u, v) - À,&w v) -h b(w\ Ü) - 0 VÜ 6 /fo1 (5 4)

For n, positive integer, we divide the closure Q of Q in n2 closed equal
squares of side h = l/n, let 2h be the set of these squares and

Vh = {feHè f\KeQx VXe^}, (5 5)

where Qx is the set of polynomials of the form axy -f bx + cv + d We intro-
ducé the a-projector Ilft, the interpolatory projector Ph and the symmetrie
bilinear form bh defined by

n , H*^Vh9 a(Tlhu-u,v) = Q VveVh, ueH*, (5 6)

bh Co° x Co° -> R , feh(u,ü) - f F h(u. i ; ) ,

(5 7)

(5 8)

here, C£ = C°(fi) dénotes the set of contmuous functions on Q, vanishmg on
9Q As an approximation of (5 1) or (5 4), we consider the problem of finding
(X, u) e U x Vh such that

a(u, v) - Xbh(u, v) + bh(u\ v) = 0 \/veVh (5 9)

Note that, if ƒ e C£, we have

" fc), (5 10)

sothat(5 9) is equivalent to an exphcit system of (n — l)2 nonlinear équations
f o r t h e (n — l ) 2 + 1 u n k n o w n s X, u ( i h , j h ) , l ^ i j ^ n — 1
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In the following, we shall be concerned with the approximation of solutions
of Problem (5.1) in the neighborhood of (Â,o, u0) = (5 II2, 0) e U x Ho

l ; let
Yl a HQ be the two-dimensional subspace spanned by

2 2
Ox(x, y) = ——• sin Iïx sin 2 Ily , <p2(

x> y) = —i= sin 2 Ilx sin IIj; : (5.11)

as easily verified, we have a^^ <p}) = 5y31 ^ i,j ^ 2 ; furthermore Xo = 5 U2

is a double eigenvalue of the problem of finding (X, u) eU x HQ such that
— Au = Xu ; Y ! is the corresponding eigenspace. Concerning the approximate
problem of finding (X9u)eR x Vh such that

a(u,v) = Xbh(u,v) VveVh, (5.12)

we have the following resuit :

THEOREM 5 . 1 : There exists 8 > 0 and, for h small enough, there exists an

unique eigenvalue Xh e (k0 — g, Xo + s) of Problem (5.12) ; Xh is a double eigen-

value with error estimate :\X0 — Xh\ = 0(h2).

For convenience, we shall first present all the results, and delay a sketch
of their proofs to the end of the section.

We defïne by Lax-Milgram Theorem the operators T and Th as

T:L2^Hà, a(TuiV) = b(u,v) Vu G H* , VueL 2 , (5.13)

Th : Co° -> Vh, a(Th u, v) = 6,(u, i;) Vi? e Vh, Vw e Co° ; (5.14)

then (5.4) is equivalent to the équation

u + T ( - A,M + w3) = 0 , (X, u)eU x H£ 9

whereas (5.9) is equivalent to the équation u + T\(— ^w + u3) = 0,
(X, u)eU x Vh\ since the range of Th is K ,̂ (5.9) is also equivalent to the
problem of finding (X, u) e U x HJ such that

in this last expression, note that it is not possible to suppress the introduction
of the projector Uh defined in (5.6); indeed Th is defined in CQ and HQ is not
imbedded in C°.

In order to use the results of Section 4, we set X = U x HQ and Y = HQ.
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Following Sattinger [14], we introducé, forÇ = ± 1, the functions

F X^Y, F{x) = u + T(- (Xo +(,s2)u + u3),

x = (s,u), (5 15)

F , X -> Y , Fh(x) = u + T h ( - ( ^ + Cs2) n h u + (Uh uf),

x = (s,u), (5 16)

clearly, by the change of variable X = Xo + Çs2, solving (5 1) is equivalent
to solve the équation F(x) = 0 for Ç = 1 and Ç = — 1, in the same way, by
the change of variable À = Xh -t- Çs2, solvmg (5 9) is equivalent to soive the
équation Fh(x) = 0 for Ç = 1 anc/ Ç = - 1, since, by Theorem 5 1,

it is reasonable to compare, separately for Ç = 1 and ^ — — 1, the solutions
of F(x) = 0 with the solutions of Fh(x) = 0 in the neighborhood of x0 = 0

THEOREM 5 2 F and Fh are Cœ mappings from X into Y For any k ^ 0
and any bounded subset B cz X,we have

hm sup || Dk F(x) - Dk Fh(x) || = 0 (5 17)
h-*0 xeB

We consider Y = H^ as a Hilbert space equipped with the scalar product

a(-, •)
Let Y2 be the orthogonal complement of Y x in 7 where Y x is defined in

(5 11)
Let <D0 - (1, 0), <E>! = (0, CDJ, <D2 = (0, <D2) G R X H O

: = X and let ^ c l
be the three-dimensional subspace spanned by O0, O l3 €>2 Setting

X 2 = { 0 } x Y2 <= X 9

we see that X = Xx © X2 Finally let Q Y -• Y be the orthogonal projector
from Y onto Y2 By (5 15) we have

F'(0) (51; ttl) = ux - Xo Tu, , V(s1? ux)eX9 (5 18)

smce T, defined by (5 13), is selfadjomt m HQ with respect to a(., .), we ïmme-
diately obtain

Xx = kerF'(O), Y2 = Range F'(Q) (5 19)

Clearly, for x0 = 0, F satisfies Hypotheses (4 1) and (4 2) of Section 4
with n = 2, furthermore Theorem 5 2 insures that F and Fh venfy Hypo-
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theses (4.4), (4,5) and (4.6). Consequently, we can apply Theorem 4.1 and
define maps v(.) and vh(.) satisfying (4.7) and (4.8); we deduce the bifurcation
functions ƒ and fh defined by (4.11 ) and (4.12).

THEOREM 5.3 : a) fk){0) = 0,/ft
(k)(0) = 0,* = 0,1,2,hsmallenough;(5.20)

b) for a — s<D0 + T|1 O t + X[2 ®2 s Xu we have

/'"(0) a 3 = (AÇs2 TU + Br\\ + CTU i\l)<Pi +

A = - — B = — C = —

We remark that (5.20) implies that Hypotheses (4.15) and (4.18) are satis-
fied with q = 3. By using (5.21 ), it is now easy to solve the équationf'"(0) a 3 = 0
and to détermine a maximal set of linearly independent characteristic rays
(see Remark 4.3); using the notation a = (r0, r1? r2) for

a = r0 O0 + rx Ox + r2 O2 ,

we obtain :

C - - 1 : a o o = (1,0,0); (5.22)

Ç = 1 : a 0 0 = (1, 0, 0), G 0 1 = (1, a, 0) , ô 0 1 = (1, - a, 0) ,

cr02 = (1, 0, a ) , a0 2 = (1, 0, - a ) , a 0 3 = (1, P, P),

a 0 3 = ( 1 , - p, - p), (5.23)

a 0 4 = (1 - p, p), a 0 4 = (1, p, - p),

where

P =

it is also easy to check that all the rays given in (5.22) and (5.23) are not
degenerated, i.e. they satisfy Hypothesis (4.17).

THEOREM 5 . 4 : Let a0 s Xx be one ofthe characteristic rays given in (5.22)
and (5.23). Then there exist positive constants s0, h0 and the C00 mappings
M(0> uh(*) : ("* % so) "^ # 0 sucn tnat by setting

x(s) - (5, u(s)), xh{s) = (s, uh{s)) e X ,
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we have

a) F(x(s)) - 0, Fh(xh(s)) = 0, | s | < sQ, fc< ft0, x(0) = xfc(0) = 0,

x'(0) = a o , (5 24)

b) /or any /c = 0, 1, 2, , w(k)(.) a/W uf*(.) are uniformly bounded with respect
to s and h,

c) for any k = 0, 1, 2, , we tove

sup II u«>(s) - <\s) ||„1(n, = 0(fc) (5 25)
| s | < s 0

Consider w(s) and wfc(s) defmed by Theorem 5 4 and set X{s) = Xo + Çs2,
Xh(s) = Xh + Çs2 where A,h is given by Theorem 5 1, clearly, by définitions
(5 15), (5 16) of F and Fh, {k{s), u(s)) and (Xh(s), uh(s)) e U x H£ wül be
respectively solutions of our original problems (5 1) and (5 9) If a 0 = a 0 0

with Ç = — 1, we obtam the branch {(X, 0) | X ^ Xo } and the approximate
branch {(X, 0) | X ^ ^ h } , if a0 = a 0 0 with Ç = 1, we obtam respectively
the branches {{X, 0) | X ^ Xo } and { {X, 0) 11 > Xh}, together, this gives the
trivial branch, solution of both the exact and approximate problems Suppose
now that u(s) and uh(s) correspond to a0 1 and let ü{s) and üh{s) correspond to
a 0 1 , from the relations

+ Ti! Ox -h Ti2 <X>2) - ƒ ( - 5<D0 + Th <DX + TI2 <S>2),

we deduce that, for s small enough, w(» = 2 ( - J ) and wfj(̂ ) = w,,(- j),
consequently the branches parametnzed by (A,o + s2, u(s)), (Xk -h 52, MA(5))9

| s | < 50, are respectively identical to the branches parametnzed by

(Xo + S2, Ü(s)) , {Xh + 52, Mfc(5)) , | S | < 50

The same argument works for the pairs aOt, dOi, i = 2, 3, 4 so that each of the
original exact and approximate problems possess in fact four non-trivial
branches in the neighborhood of (Xo, 0), it is easy to venfy that these four
branches are different and supercntical, that the problems possess no further
solution is a conséquence of Remark 4 4 By Theorem 5 4, we then deduce
our final resuit

THEOREM 5 5 In a neighborhood of (Xöi 0) e U x H& the exact problem
(5 1) and the approximate problem (5 9) possess each four non-trivial bran-
ches which can be parametnzed respectively in the farm (Xo + s2, wt(s)),
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(kh + s2, ulh(s)\ | s | < s0, i = 1, 2, 3, 4, w/im? wt and ilh : ( - s0, s0) -> H£

are Cœ mappings such thaï

sup || uf\s) - M2
| s | < s 0

| H 1 ( O ) = 0( / Î ) , i = 1, 2, 3, 4 , fc = 0, 1, 2 , . . .

As announced, we shall only sketch the proofs of Theorems 5.1 to 5.5 which

essentially rely on the results of Section 4. To this end, we need some preli-

minary lemmas.

We fîrst introducé some further notations. For ue H1 — H 1(Q),

u = u2 + (Ôxu)2 + (du):
1/2

[dxuf + (dyUy
1/2

For u€Lp = LP{Q) and 1 < p < oo,

l /P

As before Qx is the set of polynomials of the form axy + bx + cy + d.

P : C°(Q) -> Qx is the interpolatory operator at the four vertices of Q. Further-

more, c will dénote a genene constant.

LEMMA 5 . 1 : Let ux e Qu 1 ^ i < 4 ;

a)

b)

c)

C l 4

\ p( rr u

f A", -
• )

I P(u
ï

4.n ii « ,

4 \

n «.)

| P i , where

< c Ê i ».
i = i

C | Mj | | M2 |

4

i = l

in

p, ~

n«.

1 (c

IU;

dépends on p,)

(5.

(5.

(5.

;

26)

27)

28)

Proof : (5.26) is a conséquence of the équivalence of the norms in finite

dimensional spaces and of Hölder's inequality. Let |o.I be the mean value of

uv i.e. ii, = ut ; we have || ux — \xt \\ 2 < c | ut \ (see for example Ciarlet [4],

page 115) ; then we deduce (5.27) from (5.26) and from the relations

n u> - \p( n M = («î - ^ i ) u2 u3u4+ \ix{u2 ~ \i2) w3 uA +

+ - + \ix \i2 |13(U4 - | I 4 ) ~ P((UX - HX) U2 M3 U4)
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~ "* ~

a r
Hl " ^ 3 ^ 4 - Pfal ^2^3

since the last parenthesis vanishes. In the same way, (5.28) follows from the
identity

«1 «2 " P(UX Uz) = ("l - Hl) («2 - H2) - ^((«1 - ^ l ) ( "2

+ ( f M«2 " H2) - ( ^(M«2 - H2))) + ( [ H2 Ml " f f (

since the two last parentheses vanish.

By the standard argument of the « référence element » (see Ciarlet [4]) and
the continuous injection of H1 in LP (1 ^ p < 00), we deduce easily from
Lemma 5 . 1 :

LEMMA 5 . 2 : Let ul9 u2J «3s veVh; then

a) I bh(ux u2 u3, v ) \ < c \ \ u 1 II II u2 II II u3 II II v \\ ,

I t h ( t t l , Ü) I < c II Ml II H v II 9 ( 5 . 2 9 )
b) j & ( « ! W2 U 3 s ü ) - feh(M1 U2 M3s ü) I ^ cfc |i Ml !| II U2 II II ü 3 Ij II V II ,

( 5 . 3 0 )

c ) I b(ul9 v) - bh(uu v) i ^ ch2 II ux II H t; H . (5.31)

It is well-known that T, defined m (5.13), maps continuously L2 into
H2 = H2(Q) : by using the Standard techniques of finite éléments in connec-
tion with numerical intégration, we obtain by (5.30) and (5.31).

LEMMA 5.3 :

II T(u1 u2 M3) - Th(u1 u2 M 3 ) II < ch II ux II II w2 II II u3 \\

Vul9u29u3eVh; (5.32)

II Tu - Th u II < c// II M II VM e Vh. (5.33)

Proof of Theorem 5.1 : By Lemma 5.3 and classical results on spectral
approximation (see for example [6], p. 140), there exist exactly two eigenvalues
(repeated following their multiplicity) Xlh and X2h of Problem (5.12) which
converge to À,o ; from symmetry arguments, it is easy to show that, in fact,
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Xlh = X2h f° r h small enough and we set Xh = Xlh By [6], again, there exists
an eigenfunction ©lh e Vh corresponding to Xh such that a(<olh, olh) = 1 and
II ©i — ©ifc II = OW» where <ÙX IS given in (5 11) Let \i0 = XQ1, \ih = X^1,
we have u.o a{ol9 V) = b(vl9 v) Vu G H* and \ih a{<olh, v) = bh(olh9 v) Vi; e Vh

from which we deduce

Vh ~ Ho = &fc(©i*3 ©ii.) - Ho a(®ih, ®ih)

by(5 31),weobtainufc - \i0 = 0(/z2)andconsequently^ft - À,o = 0(/z2) •

ProofofTheorem 5 2 The fact that F is a C00 mapping is well-known, it is
based on the continuous, in fact compact, injection OÏHQ into Lp, 1 < p < oo
Since Vh if finite-dimensional, the restriction of Fh to Fft) equipped with the
norm || . ||, is clearly a C00 mapping, since nft is a continuous hnear operator
in HQ, Fh is also a C00 mapping Let J HQ -> L6 dénote the injection and
J* (L6)* -> //Q be lts dual operator, J and consequently J* arc compact,
for any ue HL hm IL u = u, m J/i equipped with the scalar product a(., .),

ïlh is selfadjoint, by a classical resuit, it follows that (ƒ — Ylh) J* and conse-
quently îts dual operator J(I — Et J converge in norm to zero, ï e

hm U / - n h ||^(Hi L6) - 0 (5 34)
H~* 0

Setting x = (s, M) as m (5 15), (5 16), wecanwnte

|| Dk F{s, u) - Dk Fh(s9u) || < || Dk F(s, u) - Dk F(s9 îlh u) \\ +
+ \\DkF{s,nhu)-DkFh(s9u)\\9 (5 35)

with (5 35), (5 34) and Lemma 5 3, we can deduce (5 17) by elementary cal-
culations •

Proofof Theorem 5 3 By (4 13), /(O) - 0, ƒ'(0) = 0, since F"(0) = 0, we
also have /'(0) = 0, by Remark 4 1, /"'(O) is equal to the restriction of
(ƒ - Q)F'"(0) which allows to obtain (5 21) by elementary calculations In
the same way, we have Fh(0) = 0, F '̂(0) = 0 which imply that fh(0) = 0,
/fc"(0) = 0, by Theorem 5 1, the kernel of f^(0) is two-dimensional from
which follows that ft{0) = 0 •

Proof of Theorem 5 4 F, Fh and a0 satisfy Hypotheses a) to i) with q = 3
of Section 4 at x0 = 0, we apply Theorem 4 3 and remark that the parame-
trization by t is determmed by the choice of \|/0 e l * in (4 19), (4 20), by
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(5 22) and (5 23), we can choose \|/0 such that < <P0, \|/0 > = 1, < <t>„ \|/0 > = 0,

ï = 1, 2, then, for x(t) = (s(t), u(t)) and xh(t) = (sh(t), uh(t)) given by Theo-
rem 4 3, we obtam 5(0 = sh(t) = t It remains to venfy the estimate (5 25),
by (4 34), it suffices to prove that for anyy = 0,1,2, , we have

sup = sup
M<

(5 36)

since T maps contmuously L2 into H2, for any k > 0, u(k)(s) is umformly
bounded in H 2 with respect to | s | < s0, by standard approximation results
(see Ciarlet [4]), sup || (/ — Tlh)u

{k)(s) \\ = 0(/i), together with Lemma 5 3p
| < s0and the arguments already used in the proof of Theorem 5 2, the estimate

(5 36) follows easily •
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