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APPROXIMATION OF SOLUTION BRANCHES
OF NONLINEAR EQUATIONS (*), (**)

by Jean DgscLoux (') and Jacques Rappaz (%)

Communicated by P G CIARLET

Abstract — We present a general theory for the approximation of regular and bifurcating bran-
ches of solutions of nonhinear equations It can be applied to numerous problems, including differential
equations on unbounded domains, in connection with various numerical algorithms, for example
Galerkin methods with numerical integration

Résumé -— On présente une théorie générale de I’approximation de branches, réguliéres ou avec
bifurcation, de solutions d’équations non linéaires Cette théorie sapphque a de nombreux problémes,
y compris les équations différentielles sur des domaines non bornes, résolus par des méthodes numé-
riques variées, par exemple des méthodes de Galerkin avec intégration numerique

1. INTRODUCTION

In thewr three papers [1], [2], [3], Brezzi, Rappaz and Raviart consider the
approximation of nonlinear equations of the type

u+ TGAu) =0 (1.1)
by a family of equations of the form
u+ T,GAu)=0; (1.2)

here G : Rx V> W is a regular nonlinear mappmg, T : W — V and
T, : W — V, are bounded linear operators ; V' and W are real Banach spaces,

(*) Received in december 1981
(**) This work was supported by the Fonds National Suisse de la Recherche Scientifique
(!) Département de Mathématiques, Ecole Polytechnique Fédérale, Lausanne, Suisse.
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320 J DESCLOUX, J RAPPAZ

{ V, }, 18 a family of finite dimensional subspaces of V' As a mam hypothesis
connecting (1 1) and (1 2), they suppose that

Im | T - T,llgwy, =0, (13)

h—0

which implies in particular that T i1s compact

Brezzi, Rappaz and Raviart have Iimited their mvestigations to regular
branches of solutions [1], limit poimnts [2] and simple bifurcation ponts [3],
whereas 1n [12], [13] Rappaz and Raugel have considered in the same context
bifurcation at multiple eigenvalues

The purpose of this paper 1s to genetahize in an umified treatment some of
the man results contained n the references mentioned above In particular,
our theory includes the possibility to analyse two new situations

a) m (1 1), T 1s non compact, b) the approximation 1s of Galerkin type
with numerical integration

Also most concrete problems can be written naturally in the form (1 1),
we have found suitable 1o adopt the following framework Let X and Y be real
Banach spaces, F X — Y be a sufficiently regular nonlinear map, x, € X be
such that F(x,) = 0 In a neighborhood of x,, we consider the equation

F(x) =0, 1 4)

we shail suppose that F (x,) X — Y 1 a Fredholw operator of wmdea 1
however we shall assume no compactness hypothesis on F (x)

Several authors have considered bifurcation problems in the general form
(1 4) (see for example Magnus [10]), since with 1t the parameter A € R does
not appear explicitly, a simple limit point cannot be distinguished from a
regular point, 1n the same way, the “ double limit point ” introduced by Decker
and Keller m [5], can be treated as an usual simple bifurcation point (see
Descloux, Rappaz [8])

For approximating the equation F(x) = 0 we consider two famihies of finite
dimensional subspaces { X, },, { ¥, }, of X and Y respectively, nonlinear
mappings F, X, — Y, and the equations

Fy(x) = 0, 1s)

mstead of (1 3), we 1mpose on F and F, a consistency condition and a stability
condition which are given by relations (3 5) and (3 7) in Section 3, remark
that they do not suppose that F (x,) possesses any properly of compactness

As for the analysis of problems (1 1), (1 2) by Brezzi, Rappaz, Raviart and
Raugel, our mvestigation will be based on the implicit function theorem In
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APPROXIMATION OF BRANCHES OF NONLINEAR EQUATIONS 321

Section 1, we recall a version of this theorem and prove a basic error estimate
(Theorem 2.2).

Section 3 deals with “ regular points ”, i.e. we require that F'(x,) is sur-
jective. Theorem 3.1 contains the general results. In Theorem 3.2, we suppose
that X is of the form R x V, and that x, = (A, u,) € X is a turning point ;
for Galerkin methods, as in [2], we obtain an improved bound for the parameter
A at the approximate turning point.

The main results of this paper are contained in Section 4 which is devoted
to bifurcation points. Although not impossible, we have found it very compli-
cated to work with the approximate problem (1.5) when F, operates on finite
dimensional subspaces ; for this reason we require that F, admits a suitable
extension F, : X — Y such that, in particular, the equations F W(x) = 0 and
F,(x) = 0 possess the same solutions. As in Section 3, we impose to F and
F, (where now F, denotes the extended operator X — Y) a consistency condi-
tion (4.4) and a stability condition (4.6). Supposing that the dimension of the
kernel of F'(x,) is n + 1 with n > 1, we apply the Lyapunov-Schmidt proce-
dure to F and F, (Theorem 4.1) and reduce problems (1.4) and (1.5) to
equations of the form f(c) = 0 and f,(c) = 0, where f and f, operate on the
same finite dimensional subspaces. Theorems 4.2 and 4.3 are based on the
following hypothesis :

f0) = [10) = = = [479(0) = 0, £,0) = £:(0) =+ = £27(0) = 0

for some g > 2 and there exists a non degenerate characteristic ray (Hypothe-
ses (4.16), (4.17)) ; they show the existence of a branch I of solutions of the
exact problem (1.4) passing through x, and tangent to the characteristic ray
at x, and, on the other side, the existence of a branch I',, of solutions of the
approximate problem (1.5) converging to I'. The particular case of a simple
bifurcation point is treated in Theorems 4.4 and 4. 5 which give error estimates
similar to those obtained in [3].

The aim of Section 5 is to show how the results of Section 4 can be applied
to the following classical problem

M ueR x HHD), — Au — hu + u®> = 0;

here Q is the unit square 0 < x, y < 1 and we are interested by solutions in the
neighborhood of (A, 0) where A, = 5 I1? is a double eigenvalue of the eigen-
value equation Au + Au = 0. The approximate problem is obtained by the
Galerkin method with numerical integration. The exact problem can be written
in the form (1.1) with T compact ; however, due to the presence of numerical
integration and to the fact that H}(Q) is not imbedded in C°(Q), the approxi-
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322 J DESCLOUX, J RAPPAZ

mate problem cannot be put m the form (1 2) Note that this difficulty can
be overcome by replacing H} (Q) by Wi ?(Q) for p > 2, but, then, the estimate
0(h) n (5 25) should be replaced by O(h* ~%), & > 0 (see [11])

Except for a part of Section 5, all the results of this paper are contained 1n
our Report [8] m which however some further questions are discussed, for
example bifurcation in presence of symmetry, the situation of imperfect nume-
rical bifurcation (1e using the above notations, f satsfies the relations
f0) = f'0) = = f@1(0) =0, but f, does not satisfy the relations
£,0) = £;(0) = = f@"D(0) = 0) Let us also mention the analysis of a
nonhinear Sturm-Liouville eigenvalue problem on the infinite mterval (0, o),
here, the exact problem can be written i the form (1 1), but with T non
compact (see also [9])

2. NOTATIONS. PRELIMINARIES

We first mtroduce some notations Let X, Y, Z be real Banach spaces For
the sake of simplicity, we shall denote by | . || the various norms in X, Y, Z,
LX,Y), L (X x Y,Z), where %, (X,Y)isthespace of continuous m-linear
mappings of X™ mnto Y In the same way, for any space, B(a, p) denotes the
open ball of center a and radius p The norm in X x Y 1s defined by the rela-

tion n(x,y)n=||x||+1|y|| For amap G QcX->Y, D"G or
G™M Q- (X Y) represents the m-th Frechet derivative of G, for x e Q,
£E— (¢, L&, eX™ we use the notations G™(x)e Z,(X,Y),

G E =GV s EEY

if £, =8,= =¢,_,, or f §& =&, = =¢, we may also write
G™(x)E& = G™M(x)&m &, or G™(x)E = G™(x)E&T, respecuvely For a
mapG Qc X xY—>ZD.G D G DG, D} G willdenote the partial
derivatives

As n [1], [2], [3], the essential tool of this work will be the implicit function
theorem We quote here a particular version of 1t , for the proof, see, for exemple

(8]

THEOREM 2 1 Let X, Y and Z be Banach spaces, x, € X, yo€ Y, 8 be a
positive number, Q = B(xy, 8) x B(yg, ) = X x Y, G Q—>Z be a C*?
mapping with p = 2 We suppose that D, G(xo, y,) 1s an isomorphism from Y
onto Z and that there exist the numbers cy, ¢,, , ¢, such that

|| Dy G(xos y0) ™' || < ¢o >
[ GPx, y) | <c Y, »)eQ, k=12 .,p

R ATIR O Analyse numerique/Numerical Analysis



APPROXIMATION OF BRANCHES OF NONLINEAR EQUATIONS 323

Then, there exist positive numbers a, b, d depending only on 9, ¢y, ¢,, ¢, and for
k = 1,2,...,p, the numbers M, depending only oncg, ¢, ..., ¢, such that :

1) for any (x, y) € B(xo, @) x B(yo, b), D, G(x, y) is an 1isomorphism from Y
onto Z such that | D, G(x, )™ | < 2¢,,

1) if | G(xo, ¥o) | < d, there exists a C? mapping g = B(x,, a) — B(y,, b)
such that, for any x € B(x,, a), y = g(x) 1s the umque solution of the equation
G(X, ,V) = O: y € B(yOs b), lLe.

G(x, g(x)) = 0, g(x) € B(yo, b) Vxe Blxo, a) ;
furthermore
I9%C) | < My VxeBlxga)l<k<p.

The next theorem provides a key result for error estimates.

THEOREM 2.2 : We consider the situation given by Theorem 2.1 with
| G(xo, ¥o) | <d. Let W be a real Banach space, A = W be open,
s : B(xg,a) = B(yy, b) and o : A — B(xy, a) be CP™! mappings, § = goa
and § = soa : A - B(y,, b). We suppose that there exist constants

€1,€5, s €y 15 V1> V2s oo Vpo1
such that
| s®(x) | < e VxeB(xga), |a®@)|| <y, VieA,
k=12,..,p—1.

Then, for k=0,1, ,p— 1, theie eust constants K, depending onlh on
Cos Cis-ovs Cht 15 €15 €25 vvs € Y15 Y2 o> Vi SUCh that

k
690 30 [ < K 3 [HOO] vieA, 0<k<p-—1, @.1)

where H : A — Z 15 the C?~ 1 mapping defined by H(t) = G(a(t), §(¢)).

Proof : Since G(a(t), g(t)) = 0, we obtain by the fundamental theorem of
calculus :

H(t) = Goft), A1) — Glalt), §(t)) = E(1) (5() — §(1)), teA, (2.2)

where

0

E(t) = J D, G(ar), g(t) + t(8(t) — g(r)) dr; 2.3)

vol 16, n° 4, 1982



324 J. DESCLOUX, J. RAPPAZ

by the same theorem again, we have that | E(t) — D, G(xo, ¥o) | < cy(a + b).
Without restriction of generality we can assume in Theorem 2.1 that
2 ¢y cy(a + b) < 1; writting

E(t) = D, G(xo, yo) (I = D, G(xo, )" (D, G(xo, ¥5) — E(t)),

we see that for any t € A, E(t) is an isomorphism from Y onto Z with inverse
bounded by 2 ¢, By differentiating (2.3) j times, 1 <j < p — 1, and by
using the bound | g®(x) | < M, of Theorem 2.1, we see that | EQ(t) | is
bounded, uniformly with respect to ¢, by a constant depending only on
Cos Cps oo €y 15 €15 €25 00y € Y15 -5 ¥ W€ TOW prove Theorem 2.2 by induc-
tion ; for k = 0, we have by (2.2) :

[56) =g | < [EO™" [ [HO | <2¢ | HO |

which proves (2.1) for k = 0 with K, = 2 ¢,. Now suppose (2.1) true for
1<k<g—-—1,1<gq < p— 1; by differentiating (2.2) g times we obtain
forany & = (§,,...,§,)e Wiandanyte A:

B0 (90 ~ §90) & = HO0OE = Y ¥ EO (101)-
D(8(t) — (1) (E(L)),
where I1, is any partition of the set {&,, ..., §, } in two subsets n(Il,) and

¢(I1,) containing respectively j and (g — j) elements; by the hypothesis of
induction, this proves (2.1) for k = q. [ ]

We conclude this section by recalling a classical result we shall use frequently
in the following.

THEOREM 2.3 : Let X and Y be Banach spaces, D be a relatively compact
subset of X, fand f,, ne N, be maps from D into Y. We suppose :

a) lim f,(x) = f(x) Vx e D,b)there exists a constant L such that

| £) = f@ | <Llx—-§l V¥x, gEeD, VneN.
Then lim f, = f uniformly.

3. REGULAR POINTS

Let X and Y be two real Banach spaces, F : X — Y be a C? mapping with
p = 2 and x, € X be such that F(x,) = 0. We suppose that x, is a regular
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APPROXIMATION OF BRANCHES OF NONLINEAR EQUATIONS 325

point 1n the following sense

F'(xy) X — Y 1s a Fredholm operator of index 1, 31
Range F'(xy) = Y 3 2)

Hypotheses (3 1) and (3 2) imply that the kernel of F'(x,) 1s one-dimensional
and consequently 1s spanned by some vector 0 € X, 0, # 0 Let yoe X *
be such that { g, Vo > # 0, where X * denotes the dual space of X and
{ ., . > the duality pairing between X and X * As we shall see in Theorem 3 1,
there 1s an unique branch of solutions of the equation F(x) = 0 passing through
X, which can be parametrized by a function x(t) satisfying the relations
F(x(t)) = 0, { x(t) — xg, Wo > — t = 0

In order to approximate this branch of solutionslet { X, },and { Y, },betwo
families of finite dimensional subspaces of X and Y respecuvely, { F, }, be a
family of C? functions mapping X, into Y, and { I, }, be a family of projectors
mapping X onto X, , here h 1s a parameter which tends to zero We suppose

a)ylmIl,x =x VxelX, (3 3)
h=0
b) dimension X, = dimension Y, + 1, 34

¢) forany0 € k < p — 1 and for any fixed x,&,, ,&, € X, we have

}3_{% H F®(x) i &) — F,Ek)(l_lh x) (T, &y L I1, &) ” =0, (35

d) there exist the positive constants & and ¢ such that
[ FPx) | <e VYxeX, with | x—TI,x, || <8, Vh 1 <k<p,
(3 6)
e) there 1s a positive constant p such that
| FiM,x) & | > w1 &l Ve W,, Vh, 37
where W, = {xeX,|{(x,Yyy> =0}

(3 3) implies that the projectors II, are uniformly bounded, (3 4) 1s the
discrete analogous of (3 1), (3 5)1s a relation of pointwise convergence which
can be mnterpreted as a condition of consistency whereas (3 7) will appear as
a condition of stability allowing the use of the implicit function theorem

Remark 31 Let W ={xeX|{x,yo»> =0}, by Hypotheses (3 1),
(3 2)and by Banach’s theorem, F'(x,) defines an 1somorphism from W onto Y
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326 J DESCLOUX, J RAPPAZ
and consequently there exists a positive constant ¢ such that
[Fx)Ef =zcli&l veEew

It follows that a sufficient condition which nsures the stability hypothesis (3 7)
18 the following one
lim sup || (Fill,xo) & — F(x0)& || =0, (3 8)
h=0 EeXn [|E]l -1
such a condition has been used for example in {7] 1n connection with eigen-
value problems

Let4 Rx X->RxYand¥%, R x X, >R x Y, be defined by the
relations

G, x) = ({x = xo, ¥ > — L, F(x), Flt.x) = ({x — Xo, Yo > — 1,F(x))
B9

Lemma 3 1 Assume Hypotheses (3 1) to (3 7) Then a) D, 9(0, x4) 1s
an 1somorphism from X onto R x Y b) For h small enough, D %4,(0, I1, x,)

15 an isomorphism from X, onto R x Y, withumiformly (with respect to h) bounded
inverse

Proof By Hypotheses (3 1), (3 2) and the fact that { o4, ¥, > # 0, part
a) of lemma 3 1 follows immediately from Banach’s theorem In the following,
¢ will denote a positive generic constant independent of h, smnce X, and

show, for h small enough, that || D,%,(0,I1,x)& | =cl &l VEeX,

Let 04, = IT, ©,, by Hypotheses (3 3) and (3 5) we have that im o,, = o,
h—0

and lim F, (T, x4) 0o, = 0 Any £ € X, can be decomposed as & = ooy, + W,
h—0

o € R, w e W, and we obtain by Hypothesis (3 7)

| Dy %40, 11, x0) € || = | & @gp Vo > | + || FoI, Xo) (@0, + w) || =
zclal+clfwl| — o] ”Fh(nhxo)(DOh ”
Zc{lal+wl}=clgl] u

THEOREM 3 1 Assume Hvpotheses (3 1) to (3 7) Then there exist positive
constants hy, ty, o, K and two umque maps x(t)e X and x,(t)e X,, | t| < t,
satisfying respectively the conditions

G(t,x(1)) =0, | x(t) = xol|l <o, for|t] <t,, (3 10)
G, (t, x, (1)) =0, | x,(t) = T, xq | <o, for |t] <ty and h < hy,
G 11)
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moreover x(0) = xo, X'(0) # 0, x(.) and x,(.) are of class C? with bounded
derwvatives of order 0, 1, , p where the bounds are uniform with respect to t
and h < hy, and we have

m sup | x®() — xP@)| =0, k=0,1, ,p—1, (312)

h—=0 |t]| <to
k d!
0 =00 | < & 5 GRmxe) | + 1 - <o ],
lt]<ty, h<hy, O<k<p—1 (3 13)

Proof By Hypotheses (3 1)-(3 7) and by Lemma 3 1, relations (3 10),
(3 11) and the boundedness of the derivatives of x(¢) and of x,(t) follow easily
from Theorem 2 1 applied to 4 and 4, By applying Theorem 2 2 to 4,, with
W=R,ot) =t 3t) =11, x(t), weobtam for 0 < k < p — 1, | t]| < t, and
some constant ¢

from which, by using (3 10), (3 13) follows immediately Hypotheses (3 3),
(3 5) together with the fact that F(x(t)) = 0 imply that the right member of
(3 13) converges, for each t, to zero as h tends to zero , n fact, by Theorem 2 3,
the convergence 1s uniform with respect to t, this proves (3 12) ]

k

1
| X0y — I, x®(t) | < ¢ IZO d

Py 9,(t, I, x(t))

Besides Hypotheses (3 1)-(3 7), we shall assume from now on that we have
the following particular situation X = R x V, where V 1s a real Banach
space, X, = R x V,, where V, 1s a subspace of V', an element of R x V will
be denoted by (A, u), AeR, ue V and we shall write F(A, u) for F(x) and
F,(h, u) for F,(x), we set xo = (ho, tto), X(6) = (M2, u(t)), x,(6) = (y(2), 1,(0)),
[ t] < to, where x(t) and x,(t) are defined by Theorem 3 1, we suppose that

Range D, F(Lg, uo) 1s closed and of codimension 1 m Y, 3 14)

D, F(\g, up) ¢ Range D, F(Xq, uy), (3 15)

note that (3 14) and (3 15) are consistent with (3 2), 1n fact 1t 1s easy to prove

(see Appendix I of [8]) that (3 1) implies that D, F(hy, uy) 1s a Fredholm

operator of index 0 so that (3 14) 1s a consequence of (3 1), (3 2) and (3 15)

Leta Y x Y — R be a continuous and coercive bilinear form , we assume
that F, 1s the Galerkin approximation of F with respecttoaie

a(F,(h, u), ¥) = a(F(\, u),y) VveY,, YV u)eX,, Vh, (3 16)

Im mnf [y—z| =0, VveY 3 17)

h—0 zeYy
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328 J DESCLOUX, ] RAPPAZ

By differentiating the relation F(A(t), u(t)) = 0 at t = 0, and by taking n
account (3 15), we obtain that A'(0) = 0, 1e (Ag, o) 1s a limit point, we shall
assume furthermore that 1t 1s a turning point1e

A"(0) # 0 (3 18)

Our purpose 1s to show that the approximate branch parametrized by
(A (1), u, () has also a turning point for some ¢t = t, near t = 0 and to give
an « improved » estimate for the quantity Ay — A,(1,)

Hypothesis (3 14) implies the existence of an element y, € Y such that

vo # 0, a(D, F(ho,up)v,¥5) =0 YoeV 3 19)

THeOREM 3 2 Assume Hypotheses (3 1)-(3 7), (3 14)-(3 18) and suppose
that p = 3 Then there exist positive constants t, and h, such that for h < h,
there exists an umque t, € (— t;, t,) with Ay(t,) = 0, A, (t,) # O, furthermore
there exists a constant ¢ such that, for h small enough, we have

| Mt — 2o | < e {1l x4,(0) — x'(0) I* + || x,(0) — xo || x
x (I %,0) — xo | + yneﬂ; lyo—yI)} (320

Proof Inthe following, ¢ will denote a generic positive constant independent
of h We use estimate (3 12) of Theorem 3 1 for k = 1,2 Since A'(0) = 0,
we obtain that Iim A,(0) = O, by (3 18), there exists ¢; > U such that, for 2

h—0

small enough, | A;(t) | = ¢, | t]| < t;, consequently there exists h, > 0 and
for h < h, an umque t, € (— t,, t;) such that A,(¢t,) = 0, furthermore, we
have the estimates

16,1 < c|20)] = ¢|A0) — M(0) | < ¢ | x0) — ¥(©0) |, (3 21)

M(0) = Ny(ty) — (M) 1 + 0(87) = hy(t,) + 0(17) (3 22)

In order to prove (3 20),letz, € Y, suchthat | y, — z, | = mf |y, — z ||
zeYn

By (3 14), 3 15), (3 19), a(D, F(ho, up), yo) # 0 and consequently, by
(3 17), we shall have that | a(D, F(A, up), z,) | = ¢ for h small enough By
(3 16), a(F(X,(0), u,(0)), z,) = a(F,(\,(0), u,(0)), z,) = 0 and by Taylor’s
expansion we have

0 = a(F(1,(0), %,(0)), z,) — a(F (Ao, o), 2,)
(A(0) — o) a(Dy F(ho, up), z) + a(D, F(ho, ) (u,(0) — u), z,) +
+ 0(ll x,(0) = x, 11%),
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APPROXIMATION OF BRANCHES OF NONLINEAR EQUATIONS 329
by (3 19),
a(D,, F(ho, o) ,(0) — uo), 2,) = a(D, F(ho, o) (uy(0) — uo), (z4 — o))
and, for h small enough, we deduce the estimate
| 20) = Ao | < e | x,(0) = o || (1 3,400) = xo Il + 124 — yo Il), (3 23)
combinmng (3 21), (3 22) and (3 23), we obtain (3 20) ]

Remark 3 2 (3 21) and (3 22) are independent of the fact that F, 15 a
Galerkin approximation of F, whereas (3 23) 1s independent of the condition
A@0) # 0

4. BIFURCATION POINTS

Let X and Y be two real Banach spaces, F X — Y be a C? mapping with
p = 2 and x, € X be such that F(x,) = 0 We suppose that x, 1s a critical
pownt of order n > 1 1n the following sense

a) F'(x,) X - Y 1sa Fredholm operator of mndex 1, 41
b) codimension Range F'(x,) = n 4 2)
Hypotheses (4 1), (4 2) imply that X, = Ker F (x,) has dimension n + 1

and, if we set Y, = Range F'(x,), there exist two closed subspaces X, < X
and Y, < Y such that

X=X,0X,, Y=Y,0Y,, @ 3)

clearly dimension Y, = » and the restriction of F'(x,) to X, defines an 1so-
morphism from X, onto Y,

Let Q Y- Y,and I-Q Y — Y, be the projectors associated with the
decomposition Y = Y, @ Y,

In order to approximate the solutions of the equation F(x) = 01n a netghbor-
hood of x,,, we consider a famuily { F, }, of C¥ operators F, X — Y, where h
1s a positive parameter tending to zero, m applications, F, will appear as a
suitable extension of a function defined on a finite dimensional subspace X,
of X with values 1n a finite dimensional subspace Y, of Y We suppose

¢) forany 0 < k < p — 1 and for any fixed x, &,, ,§, € X, we have

}11—1}(1) ” F(k)(x) (éb gb H ék) - Fi(nk)(x) (Fal’ éz’ 3 &.rk) “ =0 > (4 4)

d) there exist the positive constants 8 and ¢ such that

[ FOx) | <c¢ VxeX with | x —x, | <8, Vh, 1<k<p, (45)
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e) QF;(x,) is an isomorphism from X, onto Y, with uniformly bounded
inverse with respect to . 4.6)

(4.4) is a relation of pointwise convergence which can be interpreted as a
condition of consistency whereas (4.6) will appear as a condition of stability
which will allow, in Theorem 4.1, the Lyapunov-Schmidt procedure for F,;
clearly (4.4) and (4. 6) are analogous to Hypotheses (3.5) and (3. 7) introduced
in the preceding section.

THEOREM 4.1 : We suppose that Hypotheses a) to e) are satisfied. Then there
exist positive constants hy, G, o, K and two unique maps v : B(0,() < X, —» X,,
v, :B(0,{) = X, » X, such that :

QF(xo + 0 + v(0)) =0, |ov(o)| <a VYoeB(0,(), 4.7
QF(xo + 0 + 1,(0)) =0, |uv0)| <a VYoeB(0,(), Vh<hy; (4.8)

v and v, are C? mappings with bounded dervatives of order 0, 1, ..., p where the
bounds are uniform with respect to ¢ € B(0,C) and h < hy; furthermore, we
have

lim sup | v®(c) — vP(c)| =0, k=01,.,p—1, (4.9

h—0 o B(0,0)

k dj
| ¥¥(c) — (o) | < K Y s QF,(xo + o + v(o)) ||, (4.10)
Jj=0
O<k<p-1, cecBOL, h<h,.

Proof : We apply Theorems 2.1 and 2.2to G : X, x X, —» Y, and G,, :
X, x X, > Y,, where G(c, v) = QF(xy + 0 + v), G,(o, v) = QF,(xy + G + v)
from which (4.7), (4.8) and (4. 10) follow immediately ; then (4.9) is a conse-
quence of Theorem 2.3, of (4.10), of Hypotheses (4.4), (4.5) and from the
fact that X, is finite dimensional. [ ]

By Theorem 4.1, the equations F(x) = 0 and F,(x) = O are reduced, in a
neighborhood of x,, to the equation f(c) =0 and f,(c) = 0 in a neigh-
borhood of 0, where f and f;, are the bifurcation functions defined by :

f:BO,5)~Y,, flo)=(U-Q)Fx, + c + v(0)), (4.11)
S :BO,0) > Y,, fi(6)=I-Q) F,(x, + o + n0)). (4.12)

The following relations are either obvious or easy to verify :

v0) =0, v(0)=0, f0)=0, f(O)=0, (4.13)
F'xg)E =0 VEeX,, (I-Q)F'(xy) = 0. 4.14)
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We now mtroduce the following new hypotheses p > 4, there exist 6, € X,
and the integer g with 2 < g < p/2 such that

NP0 =0 2<k<qg-1, @ 15)
9) f90)och =0, (4 16)
h) the relations ¢ € X;, f@(0)c% ' o = 0 mply the existence of te R
with ¢ = 10, 4 17)
) f90)=0 0<k<q-—1 4 18)

Remark 4 1 Consider theconditions o) (I-Q) F¥(x,) = 0,2 <k <g—1,
B) the restriction of F®(x,) to X¥ vamshes for 2 < k < g — 1, then 1t 1s
easy to verify that o) or B) 1s a sufficient condition for obtaining (4 15), fur-
thermore, 1f a) or B) 1s satisfied, then f@(0) 1s equal to the restriction of
(I-Q) F9(x,) to X¢, which allows to express (4 16) and (4 17) in terms of F
directly

Remark 4 2 We could replace (4 18) by the more general hypothesis )
there exists ), € X, such that 11n(1) N, = 0and fP(n,) =0for0 <k < g -1,
h—

n fact, with mmor modifications, all the following results of this section would
remamn vahd However, 1t 18 possible to reduce y) to (4 18) in the following
way, let z, =, + v,(n,) and Fy(x) = F,(x + z,), then by applying Theorem
4 1 to F, we obtamn a map @, B(0,{) = X, » X, such that

QF,(xo + 6 + 7 ,(c)) =0

and a new bifurcation function f,(c) = (I-Q) F,,(xo + o + 7,(0)), 1t 1s possi-
ble to venfy that f,(c) = f,(c + m,) and consequently, by y), f#(0) = 0 for
0 < k < g — 1,notealso that F,(x,) = 0

Under the above hypotheses, we shall show the existence of a C?~4 branch
of solutions of the equation F(x) = 0 passing through x, and of a correspond-
ing approximate branch for the equation F,(x) = 0, the « exact » branch will
be parametrized by a function x(t) € X such that x(0) = x,, x'(0) = o, To
this end, let {, € X * be such that { oy, ¥, > # 0, where X * denotes the dual
of X and < ., . > the duality pairing between X and X *, we mtroduce the
following mappings

90.6) = (<o~ o0¥0 . ). @ 19)

90) = (€0 = 00,0, 5 (), @ 20)
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% and ¥, (h small enough) are defined on some neighborhood Q « R x X,
of (0, o) with values in R x Y, ; Q is independent of & ; by (4.13) and Hypo-
theses (4.15) and (4.18), ¥ and ¥, are C?~? mappings where we recall that
Pp—q=2.

THEOREM 4.2 : We assume that Hypotheses a) to i) are satisfied. Then there
exist positive constants hy, ty, B, M and two unique maps o(.) : (— to, to) = X,
o,(.) 1 (— to tg) = X such that

{éh(t, Gh(t)) =0, " G,(t) — oy “ < B, [tl<ty, h<hy; (4.22)
o(.)and ,(.) are C?~ 2 mappings with bounded derivatives of order 0, 1,....p — q

where the bounds are uniform with respect to | t| < t, and h < hy; furthermore
%0,0,) =0and we have for 0 < k <p—2q +1:

lim sup
h—=0 |t]<to

dk
o (to(t) — to,(t)) ” -0, (4.23)

sup
lt]<to

L (t0(0) — 10,(0)

k+g—1
<M Y sup
j=0 ltl<to

’ ;}%fh(tc(t)) “
4.24)

Proof : By(4.13)and (4.15)wehaveforanyc e X, :

D ?(0 0'0)(5—(<0' ‘l’O)( 1)|f(q)(0)0q ! )’

by (4.17) and the fact that { oy, Vo > # 0, we see that D, %(0, 5,) is injective ;
since X, and R x Y, have the same finite dimension n + 1, we conclude that
D, %(0, o,) defines an isomorphism between these two spaces. Moreover, by
(4.13), (4.15) and (4.16), we have 9(0, 5,) = 0. By (4.4), (4.5), (4.9) and
Theorem 2.3, we obtain

lim sup || fYc)— fP0)|| =0, 0<k<p-1; (4.25)

h=0 oeB(0,)

furthermore £’ is bounded on B(0, {) uniformly with respect to & ; by (4.13),
(4.15), (4.18) and Taylor’s formula, we obtain :

4(t,0) — 9,(t,0) = O,—l— 1(1 — 5)1 1 (f9D(sto) — f¥@(sto))o%ds);
@—-10'}

(4.26)
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together with (4.25), this proves
lim sup |9%(0) - 491 0)| =0, 0<k<p-—qg—-1, (4.27)

h—0 (1,6)eQ
and that 479 is bounded on Q uniformly with respect to A. In particular we
have : lim | D, (0, 5,) — D, %,(0, 5,) || = O, which shows that, for 4 small
h—0

enough, D, %,(0, o,) is an isomorphism from X, onto R x Y, with inverse
uniformly bounded with respect to h.

In the following, ¢ will denote a generic constant independent of h. By using
the above preliminary results, in particular (4.25), we can apply the implicit
function Theorem 2.1 to 4 and 4,, from which we deduce (4.21), (4.22)
and the boundedness of the first (p — q) derivatives of o(.) and of ,(.).
Applying furthermore Theorem 2.2 to %,, we obtain, for 4 small enough,
0<k<p-gq~—1and|t] <t the estimate

J
(6 o)

| 6®(t) — o) | < c Z ‘ (4.28)
J=0

since % (t, o(t)) = 0, 1t follows that { o(t) — o, Vo > = 0 and consequently
that %,(t, o(t)) = (0, t ~% ¢,(t)), where we set ¢,(t) = f,(to(t)); then, by (4.28),
we have for h small enough, 0 < k< p—-g— land || < ty:

c{m

'z

(1o(0) ~ 10,0) gft— (&)

IS

l}; (4.29)

” dr¥

dk

(t 79 e,(t)) arF (t797 e, (1)) “

gg, 0

using once more Hypothesis (4. 18) and Taylor’s formula, we have for0 < m < g
and, in particular form =g — I, m = ¢q :

1
L) gy [0 as,

by replacing this expression in (4.29), we obtain the desired estimate
4.24). [ ]

We now can define the parametrizations of the two above announcéed
branches of solutions for the equations F(x) = 0 and F,(x) = 0. We set :

x(.) 1 (= to, o) = X5 x(t) = x4 + to(t) + v(to(t)); (4.30)
X,(0) 1 (= to, to) = X5 x,(t) = xq + 16,(t) + v(to,(t)), (4.31)
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where the mappings v(.), v,(.), o(.) and c,(.) are defined by Theorems 4.1
and 4.2.

THEOREM 4.3 : We assume that Hypotheses a) to i) are satisfied; let x(.)
and x,(.) be given by (4.30) and (4.31). Then there exist positive constants
hy and L such that

1) x(.) and x,(.) are CP~? mappings with uniformly bounded derivatives
(withrespectto|t| < toand h < hy)oforder0,1,...,p — q > 2;

il) F(x(t)) = 0, Fy(x,(t)) =0, | t| < ty, h < hg; x(0) = xq; X'(0) = 5,;

i1) lin(l) 'Slup [ x®@) — xP@) | =0, 0<k<p-2q+1; (4.33)
h— t{<to

W) for 0 < k< p—2q+ 1 and h < hy, we have the error estimate

1

k+g—1
Islup | x®@) — xP@)| <L ) |S}lp " F(x(1))
t =0 |t

‘ (4.34)

Proof : Clearly, by Theorems 4.1 and 4.2, we have to verify only (4.34).
In the following, ¢ will denote a generic constant independent of k. By using
the boundedness of the derivatives of v, of order < p (Theorem 4.1), we can
writeforO < k< p—2q + 1:

|40 = 500 | < { | £ ot0 — ,00) “ | i bt — aieot0)|

7 000 — wieo) | | @.39)

N H %‘; (oato(t) — v,(to,(1)) h }s c{ N T (t0(0) — t0,()

As for the proof of Theorem 4.1, we now apply Theorem 2.2 to
G:X, x X, > Y,, G(o,v) = QF,(x, + 6 + v); with §(t) = v,(tc(¢)) and
5(t) = v(to(t)), we obtain, for 0 <j < p —q and |t| < ¢, the estimate

H Edti, ((ta(t)) — vy(to (1)) “ <c g

ORl)| <

< cl;o ”EI—,F,,(x(t)) “ (4.36)
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By (4.24), the definition (4.12) of f, and (4.5), we have :

Llio) - 10,0) 5l + 100 + o) | <

k+g—1
<c ZO sup
Jj= |t |<t

+g—
l z sup

Jj=0 |t|<to

W(x(D)

4F l+ sup “ o) — ,(t0@) “}

(4.37)
(4.34) is then a direct consequence of (4. 35), (4.36) and (4.37). n

Remark 4.3 : If o, # 0 satisfies condition (4.16), we shall say that o, is a
characteristic ray ; if o, satisfies conditions (4.16) and (4.17), we shall say
that o, is a non-degenerate characteristic ray. Let £ < X, be the set of cha-
racteristic rays with norm 1; by using a compactness argument bounded to
the fact that X, is finite dimensional, it is easy to establish the following result :
if all characteristic rays are non-degenerate, then X is a finite set.

Remark 4.4 : Let us denote by P, and P, the projectors associated with
the decomposition X = X, @ X, ; let

F={x]tI<t}, Ty={x0)]t] <ty}

be the branches of solutions given by Theorem 4.3 ; for the constant B intro-
duced in Theorem 4.2, we consider the cone

C={oceX,| "(C’o"l/o>c—<°',\|»’o>co” <BlI<o, Vo> 1};

by the uniqueness of the maps o(.) and o,(.) in Theorem 4.2, it is fairly easy
to establish the existence of positive constants y and h,, such that

{xeX|F(x)=0, |x—x,ll <y, Pix—x0)eC} T,
{xeX|F(x)=0, |x—x <y, Pi(x—x0)eC}<T,, h<h,.

Furthermore, let X be the set of characteristic rays with norm 1 and suppose
that all characteristic rays are non-degenerate ; by Remark 4.3, T is a finite
set with elements &, &,, ..., &, say; by Theorem 4.3, to each £, corresponds a
branch of solutions I', of the equation F(x) = 0and a branch I, of the equation
F,(x) = 0, for h small enough ; note that for each i corresponds j such that
£ = —¢&,sothatl', =T and T, = T',; it is then possible to show by ele-
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mentary means the existence of positive constants y and h,, such that

(xeX|F(x)=0, i|x—x0]!<y}cl_31r,,
(xeX|F() =0, Ix=xl<v}<UTa h<h

We shall conclude this section by discussing the particular case of simple
bifurcation pomnts, 1¢ essentially the case n = 1, g = 2 Note that our analysis
will include implicitly the treatment the « double limit bifurcation point » [5]
Specifically we shall suppose, from now on, that

J) n = codimension Range F'(x,) = 1,p = 4, (4 38)

with g = 2, then Hypothesis (4 15) 1s void, furthermore, by Remark 4 1,

S"OEM) =0~ Q)F'(xg) € mn) for all § neX,, so that (4 16) and
(4 17)are equivalent, 1n ths case, to the existence of 6, € X such that

kY I — Q) F"(xo) (09, 59) = 0, (4 39)
1) the relations oce X, (I — Q) F"(x,) (0o, 0) = 0 mmply the existence
of te Rwith 6 = 15, (4 40)
X, = Ker I'"{xo) has dimension 2 and Y, has dimension 1, lete;, e, be a
basisof X, andletg # Obeanelementof Y, ,foranyc = ¢, e, + g, ¢, € X,

g, and g, € R, we can write

J"0)(c,0) = — Q) F"(xo) (0,0) = R(ey, 85) 9 » (4 41)

where R R? - R 1s a quadratic form, as easily verified, (4 39) together
with (4 40) are equivalent to the property that R 1s indefinite and non-dege-
nerate, 1e that the determmant of the matrix associated with R 1s negative,
consequently, (4 39) and (4 40) imply the existence of a non-degenerate
characteristic ray o, hinearly independent of o, such that any characterstic
ray 1s parallel to ¢, or to o,

In connection with Remark 4 2, we state the following result

THEOREM 4 4 Let Hypotheses a) to e) and j) to 1) be satisfied , we suppose
the existence of two C* mappings x(.) and x,(.) (— to, to) = R > X, 15> 0,
such that F(x(t)) = F,(x,(t)) = 0 for [ t] < to, x(0) = x4, X'(0) = o,,

Im sup | x®@) — xP(t)|| =0 for k=0,1

h=0 |t]<to
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|

Then there exist positive constants hy and 0 and, for h < hy, an unique pont
M, € X such that

” T]h l: < 67 f;x(nh) = 07 f;:(nh) = 0 for h < hO and }'1_1}(1) nh = Ov

4 42)
furthermore, there exists a constant ¢ such that

Imall <c| £0)] (4 43)

Proof Recalling the definitions (4 11)and (4 12) of f and f,, weset ® = f”
and o, = f, B(0,{) » £(X,,Y,), the non-degenerancy of the quadratic
form R m (4 41) implies that o'(0) e L(X,, £(X,, Y,)) 1s an 1somorphism,
by using (4 25), which 1s valid under the sole Hypotheses a) to ¢), (4 13) and
Theorems 2 1,2 2, we obtain for h small enough and 1n some neighborhood of
0 the existence of an unique n, € X, satisfyng the relation o(n,) = f'(n,) =0
and the estimate (4 43) It remams fo show that f,(n,) = 0, to this end, we
decompose x(t) m the form x(t) = x, + 06(t) + w(t) where 6(¢) e X,,
w(t) e X, , since F'(xy) x'(0) = 0, we have w'(0) = 0 and 8'(0) = o, 1n the
same way we write x,(t) = xo + 0,(t) + w,(t), 8,(t) € X, w,(t) € X, and we
set ©,(t) = £,(0,(t)) & where £ € X, 1s a fixed element linearly mdependent
of 6o, by (4 13), (4 25) and (4 40) we have },1_{% 0,(0) = 0,

m 0;(0) = f"(0) (&, o0) # 0,

since ©;, and o, are bounded 1n a neighborhood of 0, uniformly with respect
to h, there exists, for i small enough, ¢, such that o,(t,) = 0 with lmé t, =0,
h—

clearly f,(6,(r)) = 0 which implies that f;(6,(z,)) 6,(z,) = 0 and £,(6,(z,)) = 0,
since lim 6,(1,) = o, 1t follows that f£(0,(z,)) = 0 for h small enough, by
h-0

the uniqueness of n, we have n, = 6,(t,) for & small enough n

Remark 4 5 In Theorem 4 4, the existence of the map x(.) 1s clearly
msured by Theorem 4 3, the existence of the map x, can be obtamned, in
« practical » situations, m two cases a) when x(.) parametrizes a « trivial
branch » and then x,(¢) = x(t), b) 1n presence of symmetries (for more details
see [3], [8])

THEOREM 4 5 Let Hypotheses a) to e) and j) to ) be satisfied and let f,

be defined by (4 12), we suppose the existence, for h small enough, of n, € X,

such that f,(m,) = 0, fi(n,) = 0 and lim n, = O Then, for some t, > 0 and
h—0

hy > 0 we have
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1) there exist C*~2 mappings x,(.) : (— ty, ty) = X, i = 0, 1, such that
F(x(t)) =0, |t] <tg, x0) = xq, x1(0) # 0, i =0,1, x,(0) # x,(0);
4.44)
ii) there exist CP~ 2 mappings x,(.) : (— to, t,) = X,i = 0, 1, such that
Fix,(6) =0, |t|<ty, h<hy, 1=01, (4.45)
lim sup | x®(t) — xPe)| =0, 0<k<p-—-3, i=0,1; (4.46)

h=-0 |[t|<to

iii) there exists a constant c such that

1 1 d’
Inl<ey 3 |5 R leo|s h<hy  @.47)
1=0 ;=0

1v) there exists a constant ¢ such that for 0 < k <p —3,1=0,1;

sup || x(r) — xP(1) | <

lti<to

k+1 dj
Scilmll+ Y sup |5 Fux@)| ¢, h<hy. (4.48)
350 ltl<to dt

Proof : In the following, ¢ will denote a generic constant. Following Remark
4.2, wesetz, = n, + v,(M,), F,(x) = F,(x + z,), where v, is defined by (4.8);

since lim m, = 0, F, will satisfy the same Hypotheses c), d) and ¢) as F,, for h
h<0

small enough ; by applying Theorem 4. 1 to F,, we obtain a bifurcation function
f such that f,(0) = 0, £7(0) = 0. By (4.39) and (4.40), there exist two lineary
independent characteristic non-degenerate rays o, and o,. By applying
Theorem 4.3 to F and F), 5, and o,, we obtain C?~2 mappings x,(.), %,(.) :
(— to, to) = X, i = 0, 1 verifying (4.44), x/(0) = o, and the relations

F(%,() =0 for |t|<ty, i=0,1;

furthermore, for 4 small enough,0 < k < p — 3andi = 0, 1, we have

lim sup [ x®(t) — X§A(r) | =0, 4.49)
h=0 |t|<to
k+1 d! o~
sup || x2() = ZR@) | < e ¥ osup == Fyx@)).  (4.50)
It)<to ,50 i<t || dt

Let us define the C”~2 mappings x,(.) :(— to, ts) = X,i = 0,1,by
X (t) = %(0) + 2,, 1] <ty, 1=0,1; (4.51)
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clearly (4 45)1s then satisfied By (4 10),

" v, (M) — v(M,) H <c “ Fy(xo + 1,

since v(0) = 0 (4 13), with Hypothesis (4 5), we obtain the estimate

loama) | < e {Imull + | Fulxo) Il }

and consequently | z, | < ¢ { | m, || + || Fy(xo) Il }, m particular, by Hypo-
thesis (4 4), we have lim z, = 0 , then (4 46) and (4 48) follow immediately
h—0

from (4 49) and (4 50) It remains to prove (4 47), clearly the hypotheses of
Theorem 4 4 are satisfied and by (4 43), 1t suffices to estimate | f;

since 6, and o, form a fixed basis of X, the proof of Theorem 4 5 will be
achieved, if we show, for & small enough, the estimate

| fi©® o, | < i -Fy(x,(0) =0 |, 1=0,1, 4 52)

we prove (4 52) for 1 = 0, by (4 30) and (4 32), x,(t) 1s of the form

xo(t) = x(t) = xo + to(t) + v(to(t)),

with ¢(0) = o, by definition (4 12) of f, we have

| 50) 00| = | 5 Ato@) lzo | < ¢ | 4 Fyfxo + t0(t) + 8,t0) I

<c¢

@ 53)

by using the estimate (4 36) (which 1s valid without Hypothesis 1)), we easily
deduce (4 52) from (4 53) [ ]

5. AN EXAMPLE

Let Q = (0, 1) x (0, 1) be the umt square in R2.H} = HJ(Q) will denote
the set of square integrable functions on Q, vanishing on dQ and possessing
square integrable first partial derivatives

We consider the classical nonlinear eigenvalue problem of finding
(A, u)e R x H{ such that

—Au—tu+uP=0mQ 61
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Let us introduce the symmetric bilinear forms a and b by

a H} x H - R, a(u,v) =J (Oudw + d,udp), (5 2)
Q

b L? x L? 5> R, b(u,v)=fu.v, (5 3)
o

clearly (5 1) 1s equivalent to the problem of finding (A, u)e R x H{ such
that

aw, v) — Abu, v) + b ,v) =0  Vve H} 54

For n, positive integer, we divide the closure Q of Q 1 n? closed equal
squares of side h = 1/n, let &, be the set of these squares and

V,={feH fleQ, VKeG,}, 55

where Q, 1s the set of polynomaials of the form axy + bx + c¢v + d We mtro-
duce the a-projector II,, the interpolatory projector P, and the symmetric
bilinear form b, defined by

I, H > V,, al,u—uv)=0 YoeV,, ueHg, (5 6)

2
2] <n_—1. ueC?
S 2 = ~uo

73]

Val!l B A — 1dih 1
1y Lo — I’/h N (Ph u) (H’L,Jn} = w{ph,‘,h), 1 < t, ]
5 7)
4] 0 —
by Cx CO~R, byu) = J Py(u.0), (5 8)

Q

here, C& = C(C2) denotes the set of contmuous functions on Q, vanshing on
0Q As an approximation of (5 1) or (5 4), we consider the problem of finding
M ueR x V, such that

a(u, v) — Ab,(u,v) + b3, v) =0 YveV, 59

Note that, if fe CJ, we have

f Bi=h"S fGhh), (5 10)
Q

tyj=1

so that (5 9) 1s equivalent to an explicit system of (n — 1) nonlinear equations
for the (n — 1) + 1 unknowns A, u(ith, jh), 1 < 1,7 < n — 1
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In the following, we shall be concerned with the approximation of solutions
of Problem (5.1) in the neighborhood of (A, u,) = (STI%, 0)e R x H{; let
Y, = H} be the two-dimensional subspace spanned by

i-sinl'[xsinZl'Iy, (pz(x,y)=isin2ﬂxsinl'[y: (5.11)

(pl(x’y)=\/7\_o \/?\«—0

as easily verified, we have a(9;, 0,) = §,,1 < i,j < 2; furthermore X, = 5 12
is a double eigenvalue of the problem of finding (A, u) e R x H{ such that
— Au = Ju; Y, is the corresponding eigenspace. Concerning the approximate
problem of finding (A, u) e R x ¥V, such that

a(u, v) = Ab,(u,v) YveV,, (5.12)
we have the following result :
THEOREM 5.1 : There exists € > 0 and, for h small enough, there exists an

unique eigenvalue A, € (Ay — €, Ay + €) of Problem (5.12) ; A, is a double eigen-
value with error estimate : | Ly — A, | = O(h?).

For convenience, we shall first present all the results, and delay a sketch
of their proofs to the end of the section.
We define by Lax-Milgram Theorem the operators T and T, as

T:L?> > H}, a(Tu,v)=>buv) YveH}, Yuel?, (5.13)
T,:Cd->V,, a(T,u,v) = byu,v) YoeV,, YueCd; (5.14)

then (5.4) is equivalent to the equation
u+T(—Mm+u’)=0, MueRx H},

whereas (5.9) is equivalent to the equation u + T,(— Au + u®) = 0,
(A, u)e R x V,; since the range of T, is V,, (5.9) is also equivalent to the
problem of finding (A, u) e R x HJ such that

u+ T,(— M, u + (IT,u)?) = 0;

in this last expression, note that it is not possible to suppress the introduction
of the projector IT, defined in (5.6) ; indeed T, is defined in C§ and H{ is not
imbedded in CJ.

In order to use the results of Section 4, we set X = R x HJ and Y = H;.
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Following Sattinger [14], we introduce, for { = + 1, the functions
F X>Y, Fx)=u+ T(= (g + 5% u + 1),
x =(s,u), (515
F, X->Y, Fx)=u+ T,(—Q, + ¢, u+ (II,u)?),
x =(s,u), (516)

clearly, by the change of variable A = A, + (s?, solving (5 1) 1s equivalent
to solve the equation F(x) = Ofor{ = 1 and { = — 1, 1n the same way, by
the change of variable A = X, + s, solving (5 9) 1s equivalent to solve the
equation F,(x) = 0for{ = 1 and { = — 1, since, by Theorem 5 1,

A — A, = O(h?),

1t 1s reasonable to compare, separately for { = 1 and { = — 1, the solutions
of F(x) = 0 with the solutions of F,(x) = 0 i the neighborhood of x, = 0

THEOREM 5 2 F and F, are C® mappings from X wmto Y For any k > 0
and any bounded subset B = X, we have

m sup || D* F(x) — D* F,(x) | = 0 (5 17)

h—0 xeB

We consider Y = Hj as a Hilbert space equipped with the scalar product
a('a ')
Let Y, be the orthogonal complement of Y, in Y where Y, s defined 1n
(5 11)
Let®, = (1,0, ®, = (0,0,),®, = (0,0,)eR x Hj = XandletX, = X
be the three-dimensional subspace spanned by ®,, ®,, ®, Setting
X,={0}xY,cX,

weseethat X = X, @ X, FmallyletQ Y — Y be the orthogonal projector
from Y onto Y, By (5 15) we have

F'O)(sp,uy) =uy — Ao Tuy, Yis,u)eX, (5 18)

since T, defined by (5 13), 1s selfadjoint in H} with respect to a(., .), we imme-
diately obtain

X, = ker F'(0), Y, = Range F'(0) (5 19)

Clearly, for x, = 0, F satisfies Hypotheses (4 1) and (4 2) of Section 4
with n = 2, furthermore Theorem 5 2 msures that F and F, venfy Hypo-
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theses (4.4), (4.5) and (4.6). Consequently, we can apply Theorem 4.1 and
define maps v(.) and v,(.) satisfying (4.7) and (4.8) ; we deduce the bifurcation
functions f and f, defined by (4.11) and (4.12).
THEOREM 5.3 : a) f®(0) = 0, £(0) = 0,k = 0, 1,2, h small enough ;(5.20)
b) foro = s®, + 1, ®, + N, O, € X, we have

f7(0) o’ = (ACSZ n; + an + Cn, n%)% +
+ (ACs* n, + Bnj + Cniny)o,, (5.21)

where

6 27 18
A:—— = e—— C=.—.
P 2037 A§

We remark that (5.20) implies that Hypotheses (4.15) and (4. 18) are satis-
fied with g = 3.By using (5.21), it is now easy to solve the equation f(0) 5> = 0
and to determine a maximal set of linearly independent characteristic rays
(see Remark 4.3); using the notation o = (ry, r,, r,) for

c=r,®y+r, P, +1,0,,
we obtain :

L= —1:00 =(1,0,0); (5.22)
C=1:00=(1,0,0), 0o =(Le0), 5o = (I, —0),
Gor = (1,0, ), §p, =(L,0, —a), oo =(1,B,B),

So3 = (1, — B, — B), (5.23)

0-04=(1_Bal3)’ 604=(15B7_ﬁ)’

2 /4%
“23\/7“0’ B = _2_0;

it is also easy to check that all the rays given in (5.22) and (5.23) are not
degenerated, i.e. they satisfy Hypothesis (4.17).

where

THEOREM 5.4 : Let 6, € X, be one of the characteristic rays given in (5.22)
and (5.23). Then there exist positive constants sy, hy and the C® mappings
u(.), uy(+) 1 (= sgs So) = H{ such that by setting

x(s) = (s, u(s)), x,(5) = (s, u,(s)) e X,
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we have
a) F(x(s)) = 0, Fy(x,(s)) =0, |s] <o h<hy, x(0) = x,0) =0,
%(0) = 5, (5 24)

b) foranyk = 0,1,2, ,u®(.)and u®(.) are uniformly bounded with respect
tosand h,

¢) for any k =0, 1, 2, , we have

sup | 4) ~ 106) sy = OO (5 25)
Consider u(s) and u,(s) defined by Theorem 5 4 and set A(s) = A, + (5%,
My(s) = A, + {s? where A, 18 given by Theorem 5 1, clearly, by defimitions
(5 15), (5 16) of F and F,, (A(s), u(s)) and (A,(s), u,(s)) e R x Hg will be
respectively solutions of our original problems (5 1) and (5 9) If 6, = oy,
with { = — 1, we obtain the branch { (A, 0) | < A, } and the approximate
branch { (A, 0)|A < X, }, if 64 = G4o With { = 1, we obtain respectively
the branches { (A, 0) | A = %, } and { (A, 0) | A = A, }, together, this gives the
trivial branch, solution of both the exact and approximate problems Suppose
now that u(s) and u,(s) correspond to 6, and let ii(s) and #,(s) correspond to
&y, , from the relations

J66P + Ny @ + My @y) = f(= 5@y + My @y + M, P,),
Jo5Py + Ny @y + Ny @y) = fil~ 5@, + M, @, + 1, @,)forans, n,n,eRr,

we deduce that, for s small enough, u(s) = #(— s) and wu(s) = in,(— ),
consequently the branches parametrized by (A, + s2, u(s)), (A, + 5% u,(s)),
|'s| < sg, are respectively identical to the branches parametrized by

(Ao + 5%,8(s), (A + 5% 5,()), |s] <5

The same argument works for the paus 6, 6, ¢ = 2, 3, 4 so that each of the
original exact and approximate problems possess 1n fact four non-trivial
branches 1n the neighborhood of (A, 0), 1t 18 easy to verify that these four
branches are different and supercritical , that the problems possess no further
solution 1s a consequence of Remark 4 4 By Theorem 5 4, we then deduce
our final result

THEOREM 5 S5 In a neighborhood of (Ay, 0)e R x H,, the exact problem
(5 1) and the approximate problem (5 9) possess each four non-trvial bran-
ches which can be parametrized respectively wn the form (Ay + s2, u(s)),
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(A + 52, uy(s)), | s| < sgo i =1, 2, 3, 4, where u, and i, : (— so, 5o) = H¢

are C*® mappings such that

sup || u®(s) — u®) | = 0h), i=1,234, k=0,1,2,..

[sl<s

As announced, we shall only sketch the proofs of Theorems 5.1 to 5.5 which
essentially rely on the results of Section 4. To this end, we need some preli-
minary lemmas.

We first introduce some further notations. Forue H! = H(Q),

1/2 1/2
bl =(J u2+(axu>2+(ayu>2) , =(J (axu)2+<ayu>2) .
0 Q

ForuelL? = LP(Q)and 1 < p < o0,

1/p
nun,,=(f w)
Q

As before Q; is the set of polynomials of the form axy + bx + cy + d.
P : C%Q) — Q, is the interpolatory operator at the four vertices of Q. Further-
more, ¢ will denote a generic constant.

LEMMA 5.1 : Let u,eQ,, 1 < i < 4; then

r 4 4 4

a) P< u,) <c]] lul,, where 3 % = 1 (c depends on p,);
Jo =1 =1 1=1 1

(5.26)

roo4 4 4

b) Hu;—jP<H“,) <c Y lul [T Nhulss (5.27)
Ja =1 O =1 1=1 J#1
n

c) uluz‘JvP(uluz)<C]”1|]“z|- (5.28)
Jo Q

Proof : (5.26) is a consequence of the equivalence of the norms in finite
dimensional spaces and of Hoélder’s inequality. Let p, be the mean value of

u,ie g, = J u,; we have | u, — p, ||, < c|u,| (see for example Ciarlet [4],
[

page 115) ; then we deduce (5.27) from (5.26) and from the relations

4 4
j‘ 1:[1 u, — fp<u ”1) = j(“l — H)upuzu, + J‘M(“z — W) uzu, +
+ o+ ‘[ul Mo B3y — Ho) — JP((ul = W) Uy U3 )
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_ = JvP(ul My Ha(ug — 1y))

+ (j K1 Ky M3 By — JP(ul Mo B3 u4)>,

since the last parenthesis vanishes. In the same way, (5.28) follows from the
identity

Jul 4y — JP(ul uy) = j(ul )y — ) — JP((ul ) (s — )+

+ (J Hi(uy — py) — J1 Puy(u, — Hz))) + (J Hauy — JvP(Hz “1)> >

since the two last parentheses vanish.

By the standard argument of the « reference element » (see Ciarlet [4]) and
the continuous injection of H! in I7 (1 < p < o), we deduce easily from
Lemma 5.1 :

LEMMA 5.2 : Let u,, u,, u5, v €V, ; then

a) | byluy up uz,0) | < cllug | lup l usll Hol,
|byu,v) [ <cllu I lvll, (5.29)
b) | b(uy uy uz, v) — byluy uy uz, v) | < chfiug i gl Huslh hol,
(5.30)
) | bluy,v) — blu,v) | < ch® lu | [ol. (5.31)

It is well-known that T, defined mn (5.13), maps continuously L? into
H? = H?*(Q) : by using the standard techniques of finite elements in connec-
tion with numerical integration, we obtain by (5.30) and (5.31).

LEmMmA 5.3 :
| Ty uy us) = Tyluy up us) | < chlluy | Hug |l Huy |
Yuy, uy uz € Vy; (5.32)
| Tu — Tyull <ch|ul YueV,. (5.33)

Proof of Theorem 5.1 : By Lemma 5.3 and classical results on spectral
approximation (see for example [6], p. 140), there exist exactly two eigenvalues
(repeated following their multiplicity) A, and A,, of Problem (5.12) which
converge to A, ; from symmetry arguments, it is easy to show that, in fact,
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Aip = Ay, for h small enough and we set A, = A,, By [6], again, there exists
an eigenfunction o,, € V,, corresponding to A, such that a(o,,, ©,,) = 1 and
| ©, — oy, || = O(h), where ©, 1s given m (5 11) Let o = Ag', u, = A1,
we have p, a(0,, v) = b(o,v) Yve Hj and p, a(0,,, v) = by(0,,, v) Yve V,
from which we deduce

My — Mo = by(0y4 ©4) — o a(0y,, ©4))
= (by(014 1) — b0y, ©4,)) + (bl — ©y, 01, — @) —

— po a(0y, — 0,0y, — 0,)),

by(5 31), weobtamp, — p, = 0(h?)and consequentlyh, — A, = O(h?) [ ]

Proof of Theorem 5 2 The fact that F 1s a C* mapping 1s well-known , 1t 1s
based on the continuous, 1 fact compact, injection of Hj mto L?, 1 < p < oo
Since V), if finite-dimensional, the restriction of F, to V,, equipped with the
norm | . ||, 1s clearly a C* mapping, since II, 1s a continuous linear operator
m Hy, F, 1s also a C® mapping Let J H{} — L° denote the mjection and
J* (L°)* - H} be its dual operator, J and consequently J* arc compact ,
for any ue Hy, }‘III('I) I, u = u, m Hj equipped with the scalar product a(., .),

II, 1s selfadjont, by a classical result, 1t follows that (I — IT,) J * and conse-
quently 1ts dual operator J(I — IT,) converge in norm to zero, 1 e

ll_l:l{l) | I — I0, | gy ey = O (5 34)
Setting x = (s, u)asm(5 15),(5 16), we can write
| D F(s,u) — D* Fyfs, u) | < | D*F(s,u) — D* F(s, I, u) || +
+ | D*F(s, T, u) — D* F,(s,u) ||, (5 35)

with (5 35), (5 34) and Lemma S 3, we can deduce (5 17) by elementary cal-
culations [ ]

Proof of Theorem 5 3 By (4 13), f(0) =0, f'(0) =0, since F"(0) = 0, we
also have f'(0) = 0, by Remark 4 1, f”(0) 1s equal to the restricion of
(I — Q) F"(0) which allows to obtain (5 21) by elementary calculations In
the same way, we have F,(0) = 0, F;(0) = 0 which imply that f,(0) = 0,

w(0) = 0, by Theorem 5 1, the kernel of F,(0) 1s two-dimensional from
which follows that £,;(0) = 0 ]

Proof of Theorem S 4 F, F, and o, satisfy Hypotheses a) to 1) with g = 3
of Section 4 at x, = 0, we apply Theorem 4 3 and remark that the parame-
trization by t 1s determmed by the choice of Y, e X* 1n (4 19), (4 20), by
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(5 22) and (5 23), we can choose Y, such that { @, Yo > = 1, { D@, Y4 > =0,
1 = 1, 2, then, for x(t) = (s(¢), u(t)) and x,(t) = (s,(¢), u,(¢)) gven by Theo-
rem 4 3, we obtam s(t) = s,(¢) = ¢t It remains to verify the estimate (5 25),
by (4 34), 1t suffices to prove that foranyj = 0,1,2, ,we have

sup
Is]<so

dl
ZS-;Fh(X(S)) l. = Isslu<pso

L)~ Feto) | = o), (5 39

since T maps continuously L? mto H? for any k > 0, u®(s) 1s uniformly
bounded 1n H? with respect to | s| < s, , by standard approximation results

(see Crarlet [4]), Is|up | (I = I1,) u®(s) || = O(h), together with Lemma 5 3
and the arguments already used in the proof of Theorem 5 2, the estimate
(5 36) follows easily [ ]
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