Near-best approximations to the solution of Fredholm integral equation of the second kind
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 16 (1982) no. 2, p. 129-141
@article{M2AN_1982__16_2_129_0,
     author = {Levin, David},
     title = {Near-best approximations to the solution of Fredholm integral equation of the second kind},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     publisher = {Dunod},
     volume = {16},
     number = {2},
     year = {1982},
     pages = {129-141},
     zbl = {0483.65073},
     mrnumber = {661452},
     language = {en},
     url = {http://www.numdam.org/item/M2AN_1982__16_2_129_0}
}
Levin, David. Near-best approximations to the solution of Fredholm integral equation of the second kind. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 16 (1982) no. 2, pp. 129-141. http://www.numdam.org/item/M2AN_1982__16_2_129_0/

[1] C. T. H. Baker, Numerical solution oj integral equation, L M DELVES, J WALSH eds Clarendon Press, Oxford, 1974.

[2] D. Levin, Near-best approximations to some problems in applied mathematics, Report TR/66, Department of Mathematics, Brunei Umversity, 1976.

[3] D. Levin, Corrected collocation approximations for the harmonic Dirichlet problem, aths Applics, 26, 1980, 65-75. | MR 594343 | Zbl 0467.65063

[4] S. A. Pruess, Estimating the eigenvalues of Sturm-Liouville problems by approximat ferential equation, SIAM J Numer Anal, 10, 1973, 55-68. | MR 327048 | Zbl 0259.65078