Finite element subspaces with optimal rates of convergence for the stationary Stokes problem
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 16 (1982) no. 1, p. 49-66
@article{M2AN_1982__16_1_49_0,
     author = {Mansfield, Lois},
     title = {Finite element subspaces with optimal rates of convergence for the stationary Stokes problem},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     publisher = {Dunod},
     volume = {16},
     number = {1},
     year = {1982},
     pages = {49-66},
     zbl = {0477.65084},
     mrnumber = {648745},
     language = {en},
     url = {http://www.numdam.org/item/M2AN_1982__16_1_49_0}
}
Mansfield, Lois. Finite element subspaces with optimal rates of convergence for the stationary Stokes problem. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 16 (1982) no. 1, pp. 49-66. http://www.numdam.org/item/M2AN_1982__16_1_49_0/

1. M. Bercovier and M. Engelman, A finite element for the numerical solution of viscous incompressible flows, J . Comp. Phys., 30 (1979), 181-201. | MR 528199 | Zbl 0395.76040

2. G. Birkhoff, Tricubic polynomial interpolation, Proc. Natl Acad. Sel 68 (1971),1162-64. | MR 299982 | Zbl 0242.41007

3. G. Irkhoff and L. Mansfield, Compatible triangular finite éléments, J . Math. Anal Appl., 47 (1974), 531-53. | MR 359353 | Zbl 0284.35021

4. J. H. Bramble and M. Zlamal, Triangular elements in the fînite element method, Math. Comp., 24 (1970), 809-20, | MR 282540 | Zbl 0226.65073

5. P. G. Ciarlet and P. A. Raviart, General Lagrange and Hermite interpolation in R n with applications to finite éléments methods, rch. Raîional Mech. Anal, 46(1972), 177-99, | MR 336957 | Zbl 0243.41004

6. P. G. Ciarlet and P. A. Raviart, The combined effect of curved boundaries and numerical intergration in isoparametric finite element methods, The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations, A. K. Aziz, ed. Academic Press, New York, 1972, pp. 409-74. | MR 421108 | Zbl 0262.65070

7. M. Crouzeix and P. A. Raviart, Conforming and nonconforming finite element methods for solving the stationary Stokes equations, R.A.I.R.O., 7 (1973), 33-76. | Numdam | MR 343661 | Zbl 0302.65087

8. V. Girault and P. A. Raviart, Finite Element Approximation of the Navier Stokes Equations, Lecture Notes in Mathematics, vol. 749, Springer-Verlag, 1979. | MR 548867 | Zbl 0413.65081

9. P. Jamet and P. A. Raviart, Numerical solution of the stationary Navier-Stokes equations by finite element methods, Lecture Notes in Computer Science, Springer Verlag, 10, 192-223. | MR 448951 | Zbl 0285.76007

10. L. Mansfield, Higher order compatible triangular finite elements, Numer. Math., 22 (1974), 89-97. | MR 351040 | Zbl 0265.65011

11. L. Mansfield, Interpolation to boundary data in tetrahedra with applications to compatible finite éléments, J. Math. Anal Appl., 56 (1976), 137-64. | MR 423757 | Zbl 0361.41002

12. A. H. Stroud, Approximate Calculation of Multiple Intégrais, Prentice Hall, Englewood Cliffs, N. J., 1971. | MR 327006 | Zbl 0379.65013