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ERROR ESTIMATES
FOR SOME MIXED FINITE ELEMENT METHODS
FOR PARABOLIC TYPE PROBLEMS (%)

by Claes Jounson and Vidar Taomee (1)

Abstract — We consider a class of mixed finite element methods for second order elliptic problems
introduced by Raviart and Thomas and generalize or gwe alternatwe proofs of previously known error
estumates for such methods We then extend these results to the corresponding parabolic problems
thereby obtaining estimates sumilar to those previously known for conventional fimte element methods
for parabolic problems We also obtain corresponding results for a mixed finite element method for the
stationary and evolutionary Stokes’ equations

Résumé — On considére une famille de methodes d’éléments fims mixtes pour les problémes
elliptiques du second ordre introduite par Raviart et Thomas, et on presente des généralisations, ou de
nouvelles démonstrations, des estimations d’erreur connues auparavant pour ces méthodes On étend
ensuite ces résultats aux problémes paraboliques correspondants, et on obtient de cette fagon des
estimations semblables a celles deja connues pour les méthodes d’éléments fims conformes pour les
problémes paraboliques. On obtient auss: des résultats correspondants pour une méthode d’éléments
finis mixtes pour les équations de Stokes, dans les cas stationnane et d’evolution

INTRODUCTION

Mizxed finite element methods for elliptic problems have been proposed and
analyzed by several authors (see e. g. [6, 13, 16, 14, 12] and others). The main
purpose of this paper is to prove some error estimates for a class of such mixed
methods when applied to the corresponding parabolic problems. These error
estimates are similar to those obtained previously for conventional finite element
methods (¢f. e. g. [4] and work quoted therein). We shall analyze in detail the
effect of the finite element discretization 1n space and comment only briefly on
time-discretization.

An outline of the paper 1s as follows: in Section 1 we consider a class of mixed
finite element methods for second order elliptic equations introduced by Raviart
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42 C. JOHNSON, V. THOMEE

and Thomas [13] and prove some L , and maximum-norm error estimates for
such approximations. Hereby we extend or give alternative proofs of results by
Raviart and Thomas [13], Falk and Osborn [9], and Scholz [14]. In particular,
we introduce second order elements with one curved edge which makes it
possible to handle the case of a domain with smooth curved boundaries. Then in
Section 2 the results of Section 1 are extended to the corresponding parabolic
problems. We consider both the case of a nonhomogeneous of homogeneous
equation with a smooth solution and the case of a homogeneous equation with
initial data onlyin L ,.In both situations we show optimal order error estimates,
in the latter case for ¢t bounded away from zero. In Sections 3 and 4 we carry out
the same program for an analogous mixed method introduced in [12], applied to
the stationary and evolutionary Stokes’ equations.

1. THE ELLIPTIC PROBLEM

In this section we shall consider the model problem
—Au=f in Q, u=0 on T,

where Q is a bounded domain in the plane, with boundary I'. Introducing the
gradient of u as a new variable this problem can also be formulated

—dive=f, o=Vu in Q, u=0 on I. (L.1)

V=L,(Q) and H={yeL,(Q)* divyeL,(Q)},

we note that a solution (¢, 6)e V' x H of (1. 1) may be thought of as a solution to
the variational problem

(divo, v)+(f, v)=0, YoeV, (1.2a)
(o, x)+(u, divy)=0, VyeH, (1.2b)

where (., . ) denote the usual inner products in L , (Q)", m=1, 2. Note that the
boundary condition u=0 is implicitely contained in (1.2b); using Green’s
formula (with n the exterior normal to I'),

J udivydx= J uy-ndx— J Vu-ydx,
Q r Q

we obtain, formally, 6=Vu in Q and u=0on I'.

R.A.I.R.O. Analyse numérique/Numerical Analysis



MIXED METHODS FOR PARABOLIC PROBLEMS 43

With ¥V, and H, certain finite dimensional subspaces of ¥ and H we shall now
consider the following discrete analogue of (1.2): find (u;, o,)e V, x H, such
that

(divo,, v)+(f, v4)=0,  Vu,eV), (1.3a)
(On> Xn)+ (uy, divy,)=0, Vun€ Hy. (1.3b)

More precisely, we shall use pairs of subspaces V', and H, introduced for this
purpose by Raviart and Thomas [13] which we shall now proceed to describe.

We consider first the case of a polygonal domain Q which for simplicity we
take to be convex andlet 7 ,= { K } be a quasiuniform regular triangulation of Q
by triangles of diameter at most k. Let r be an integer =1 and set

Vh"__{UEV;D|Kegr—1lK}’

where 2; denotes the set of polynomials of degree at most j. Notice that no
continuity across interelement boundaries is required of the functions in V. In
order to define H,, let K be the reference triangle in the &-plane with vertices
(0, 0), (1,0) and (0, 1) and let, with » as above, H denote the space of
functions § =(%,, %.)€ 2?2 on K of the following form: for r even

X1=Pr-1(€)+ oo+, 17 B+, BV EY?,

X2=r-1(E)+Bol5+PB1 &1 EL ... + B2 ET2EY?,
with
r{2 ri2

Y (~1a= Y (~1)8;=0,
j=0 j=0
and for r odd
=P 1)+l oy ETT &+ ... 0y Y TIRES TV,
X2=ar-1 () +Bo €3 +B1 &1 E 1 +. . B2 &Y TIREG T2,
with
(r—1)/2 .
Y, (=1)Y(o;—B;)=0,
=0

vol. 15, n°1, 1981



44 C. JOHNSON, V. THOMEE

where p,_;, q,-; denote arbitrary polynomials in 2,_,. Let now for given
Ke7,, Fy be an affine mapping of K onto K,
x=Fy(§)=Bg&+bg,

where By is a 2 x 2 matrix and by e R? and set

H,(K)= {7 =(det By)"' By g oF¢' where 1¢K,},
and finally
Hy={x€H; y|xeH,(K),YKeT,}.

It follows from these definitions that dim H,(K)=r (r + 2) and that the normal
component x-n of  reduces to a polynomial of degree r —1 on each edge S of a
triangle K e 7 ,,. Recall that the condition y € H in the definition of H, requires
divy e L, (Q)which in turn is equivalent to requiring - n to be continuous across
interelement boundaries. We also recall that y € H , is uniquely determined by the
following degrees of freedom:

(i) the values of x-n at r points on each edge S of 7, (3r conditions for each
K);

(i1) the value of the moments J x*y dx for o] £r—2 on each K (r(r—1)
K
conditions for each K).
In our analysis we shall need the following lemma. Here and below we denote
by Il the norm in H3{(Q), with s sometimes omitted when zero. For other

spaces X [for instance the Sobolev spaces W3 (Q)] we write ||| .

LemMa 1.1: There exists a linear operator T, : H — H, such that

(diVHhX3 Uh)=(diVX, U}l)s VUhEVha XEHy (1.461)
Ix—xll =Chlixlls  for 1s=s=r, (1.4b)
L =Cllxllwie- (L4c)

The operator IT, may be defined by requiring that:

(@) jsf(l'l,,x—x)_-nds=0 for j<r—1 for each edge S of 7 ;
S

(i1) fx“(H,,x—x)dx=0 for |a|Zr—2 tor each KeZ,.
K

R.A.LR.O. Analyse numérique/Numerical Analysis



MIXED METHODS FOR PARABOLIC PROBLEMS 45

The condition (1.4 a) follows by Green’s formula applied to each K, (1.4 b) by the
Bramble-Hilbert lemma and the boundedness via a trace theorem of the

interpolation operator on the reference triangle as an operator H* (K)- L,(K),

and (1.4 c) similarly by its boundedness from Wi (K)to L, (K).

We shall also use the orthogonal L , projection P, : ¥V — V, for which as is
well known,

1Pyo—vll, @SCh|vllp;q for 0Zs<r. (1.5a)
1t follows easily from this that

1

HPhU"UHLm(Q)§ChS(1Ogh

1/2
) Hollsss for 0<s<r. (1.5b)

In fact, using a bounded extension operator E : H*"1(Q) - H**! (R?), setting
v=E v and defining v, =(v y,) " where y, is the characteristic function of the set

{& €] <h '} and A and v denote Fourier transformation and its inverse we
have, by (1.5a),

”th—UHL,(n)éChs”Uo ||W;(R2)+C||U—UOHL,((RZ),

from which (1.5b) follows since simple computations yield

A A

15=voll,_ &= 1T Q=1 @ SCll Dot —xa) Il
§Chs||5||s+1 §Chs“v”s+1:

and similarly

: 1\
oo llws w5y S Cl Z gath"L,(Rl)§C<10g—> Hollssq-
|

al s h

Notice that y,eH, implies divy,eV, and that (1.4a) shows that
divIl,y =P,divy so that in particular

Ildiv(IL,x—x) | SCh*|divylly  for O=s=r. (1.6)

Recall also that by the quasi-uniformity of 7, we have the inverse estimate

[l vn ||Lx(n)§Ch_2/p” UhHL,(n) for v,eV,, }

1.7
l=p=oo. (L.7)
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46 C. JOHNSON, V. THOMEE

We now return to the elliptic problem (1.2) and its discrete counterpart (1.3).
Existence, uniqueness and error estimates for this problem were discussed in
Raviart and Thomas [13] and Thomas [16] using the general theory of Brezzi [6]
and somewhat more precise estimates have been derived in Falk and Osborn [9]
and for the maximum-norm in Scholtz [14]. We present here a simple error
analysis which shows L ,-error estimates for u, and o, under minimal
smoothness assumptions on u, and in addition a maximum-norm error estimate
for u,. The analysis of the error in u,, is based on the following two lemmas which
are proved by the analogue in the present context of the standard duality
argument.

Lemma 1.2: Let 1 Sp< 0. There are constants C, and C such that if w,e V',
and we L*(Q)* satisfy

((Da Xh)+(wha diVXh)=0, VxheHh’ (18)
then
Nwill,,@=C,lloll i p<oo, (1.9)
and
1
Hnll, @ =Clog ll@ll. (1.10)

Proof: Let p<oo and let yreL ,(Q) where p™*+q '=1. Let 3>Q be a
domain with smooth boundary and extend \ by zero in O\ Q. Let ¢ be the
solution of

Ap=Vy in Q, ¢=0 on 33,
and recall the elliptic regularity estimate (¢f. Agmon, Douglis and Nirenberg [1]):
lellw:@=CallVil.,@=Call Vil q- (1.11)
We have then, using (1.4 a), (1.4¢), (1.8) and obvious estimates
(i, ¥)=(wy, divV @)=(w,, divI], V)= —(o, I,V ¢)
S ol I ILVell =Clloll.IVelly: e
sCllolllellp:@=CCqlloll. VLo
which proves (1.9). It order to show (1. 10), note that for g close to 1 (or plarge)

the constant C, in (1.11) satisfies

C

fIA
lIA

Cp.

q

<
qg—1
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MIXED METHODS FOR PARABOLIC PROBLEMS 47

This follows by tracing the dependence of C, upon ¢ in the proof of (1.11)in [1]
to the Calderon-Zygmund lemma [7] in which such an estimate is valid. Using
the inverse assumption (1.7) we therefore have with C independent of p,

Hwh”Lm(Q)éc;l;zzpnwhHL,,(Q)écph_HpH(DH .
The conclusion now follows by choosing p=1logh™".
LemMma 1.3: There is a constant C such that if (w,, ®)€ V', x H satisfy
(o, x4)+ (w4, divy,)=0, Yyx,eH,, (1.12a)
(divo, v,)=0, Yo,eV, (1.12b)
then

lw,ll SC{hllo|l +h*||divall}.

Proof: Let yre L ,(Q) and let ¢ € H*(Q) be the solution of

Ap=Vy in Q, ©=0 on T,

so that, recalling that Q is convex,
lell2=ClIVll.
We have then, using (1.4 a) and (1.12 a),
(wy, V)=(w,, divV @)=(w,, divII,V @)
=—(0, I1,Vo)=—(0, [1,Vo—-Vo)—(0, Vo)=1I,+1,.
Here
I | S loll 1T, Ve-Vel SChllall.lIVell,=Chilo|l[Vl,

and using Green’s formula and (1.125),

I,=(divoe, ¢)=(dive, ¢— P, 0),
so that

LI < ldivel.lle—Pyell SCh?*|[ol;lldivell =Ch* || ]l.][dive]l.

Altogether
[y, V)| SC R0l +R?[[divol) [V,

which proves the lemma.

We can now state and prove the following:

vol. 15, n°1, 1981



48 C. JOHNSON, V. THOMEE

THeorReEM 1.1: The discrete problem (1.3) has exactly one solution
(up, op)eVyx Hy,. With (u, &) the solution of (1.1) we have

Nup—ull =Ch*|jully,  for 2=s=zr,

llos—ocll SCh |lulls+y  for 1Zs=r,
and
o 1
”uh*u“Lm(Q)-ECh IOg‘P;”u”ﬁ-x for 1=s=r. (1.13)
Proof: In order to show existence it is clearly sufficient to prove uniqueness.
Thus let f=0. We obtain by setting v,=u,, =0, in (1.3),
” Cn ”2 = __(uh’ d]V cSh)=0$

so that 6,=0. By lemma 1.2 we conclude at once that u, =0 which completes the
proof.

In the error analysis we shall begin with the estimate for 6, —c. We first show
that:

llow—ocll = l[Tyo—0l|l. (1.14)
In fact, by (1.2a), (1.4 a) and the discrete equation (1.3 a) we have
(le (Hh S Gh), U;,) = 0: vUhe ;/h’ {1 15)

so that since div(Il,6 —c,)e V,, div(Il,c —o5,)=0. But by (1.2b) and (1.3b)
we have

(op—o, xu)+w,—u, divy,)=0, Vy,€Hy, (1.16)
so that, in particular, with y,=11,6—o,,
(Gh_ca o.h'“nh 0)20:

which shows (1.14). The desired estimate for ¢;,— o now follows by (1.4 b).
We now turn to the maximum-norm estimate. Since (1. 16) may be written

(on—0, xu)+(uy—Pyu, divy,)=0,  Vy,eH,,
we conclude by Lemma 1.2 and the above estimate for o, — o,
ity Pyull,, SClogy [yl SChlog,llullyes.
By (1.5b) this shows (1.13).

R.A.LLR.O. Analyse numérique/Numerical Analysis



MIXED METHODS FOR PARABOLIC PROBLEMS 49

It remains to show the L, error estimate. For this purpose, notice that the
error equations may be written

(oh~0, xn)+uy—Pyu, divy,)=0, Vxs€Hy,
(div(c,—0), v,)=0, Yv,eVy,

so that we may apply Lemma 1.3 to obtain

lun=Pyull SC{hfloy—o|| +h*||div(c,—o)ll},

and hence in view of (1.4b) and (1.6),
lun—Puull SC{F|lull+ R |ldivell—o} SCh|lull

for 2 < s £ r. Together with the obvious estimate for u — P, u this completes the
proof of the L, estimate and thus the proof of the theorem.

In order to be able to conclude maximal order rates from Theorem 1.1, we
need to know that the solution is appropriately smooth. For polygonal domains
this is in general not the case so the conclusions are in practice relatively weak.
We shall therefore now discuss the elliptic problems (1.2) and (1.3) in a convex
domain Q with smooth boundary I'. We shall consider extensions to Q of the
elements described above in the case r =2 and carry out the error analysis for this
situation. For a corresponding analysis of the case r=3, see [10].

Let 7,={K } be a quasi-uniform regular triangulation of Q such that the
polygonal domain Q, determined by UK has its vertices on I'. For a boundary
triangle K let K be the obvious extension to a triangle with one curved edge, and
set for convenience K =K for other K. We define

Vi={veV;v|ge? (g, v=0in O\Q,},
and
Hy={xeH; xlge P3|z, 2IxeH2(K)}.

Thus, ¥, consists of the piecewise linear functions on Q,, without continuity
requirements across interelement boundaries, extended by zero, and H),, of the
corresponding functions on Q, which are simply extended to Q by using the same
polynomial on K as on K.

We shall need the fact that the conclusions of Lemma 1.1 are valid after this
modification. In fact, let IT, be defined as above locally on each triangle K, which
now defines I1,y for xeH on all of Q by the extension from K to K in the
definition of H,. Clearly (1.4 a) still holds since it holds on each K and v,

vol. 15, n° 1, 1981



50 C. JOHNSON, V. THOMEE

vanishes outside Q,. Further, similarly to the case of straight triangles we have
for boundary triangles with possible curved edges

IMyx—xll,6SCP X lpg — for 1=s=2,
so that (1.4 b) is valid as before. Since it is easy to see that
Nl SClxnll,y VKET h
we conclude that (1.4 ¢) still holds. We also note that similarly
| div x| = ClIdiv I, % |l @, =Cll Py div x || =C |Idiv x|l (1.17)

Notice that in the present situation y,e€ H, does not imply div y,€ ¥V}, but
instead we have div y, € 7, where

Vy={veV;v|gand v|ze?, |}

In our error analysis below it will be convenient to use the following associated
modification of the L,-projection P, used above for polygonal domains.

LemMA 1.4: Let P, : V — V, be defined by

(ﬁh v, Eh):(v’ Eh)7 VEhe I’7h- (1 18)
Then
”ﬁhv—UHLP(Q)§Ch2”UHWﬁ(ﬂ) for 2§P§°3,\ \
. (1.19)
if v=0 onT,
and

-~ 1\?
nP,,v—unL,méChZ<1ogz> lolls,  if v=0 on I.  (1.20)

Proof: Note first that (1. 18) defines P, uniquely. We shall compare P, tothe L,
projection P, : ¥V — V, which satisfies

(th5 vh):(v) Uh)’ Vuhe Vln

and for which as is well known

”th_v”L,,(Q)§ChZ”U”Wf,(m- (1.21)

We obtain for v, e V,, with 7, the associated element in ¥, defined by 17,,! K= Unixo>
VKe7 ,, that

(Pyo—Pyv, v,)=(P,v—P,v, v,)=(v, Eh)L,(Q\Q,,) = “U”LZ(Q\Qh)“Uh||L2(Q\Qh).

R.A.LR.O. Analyse numérique/Numerical Analysis



MIXED METHODS FOR PARABOLIC PROBLEMS 51
Notice now that for each K,
H Eh “L,(k\K)éC”;h“L,(K)a
and hence
“5h “L,(Q\Q,,)éc th“Lz(Qh)=C”vh“-
This shows

| Prv—Pyo|l §C||U||L2(n\nh)-

In view of the inverse estimate (1.7), this yields with C independent of p,
| Pyv—Pyoll L) SCh™1=@ iy L, (@\Q,) =Cllvl| L,(Q\Q,)°
and since
Hv||L‘,(Q\Qh)§ChZI|U”W:,(Q\Q,,) when v=0 on T,
we conclude for such v,
I FhU_PhU”LP(Q)éc h? ”v”w;(m- (1.22)

Together with (1.21) this completes the proof of (1.19).
In the same way as for the case of Q polygonal we have

1\/2
||th—v||1,,((z)§Ch2<1°gﬁ) lolls,

which implies (1.20) since by (1.22),
“ﬁhv_PhU”L,‘(Q)éc R ||vll s

This completes the proof of the lemma.

We may now immadiately state and prove:

THEOREM 1.2: Under the present assumptions about Q, V,, and H,, the discrete
problem (1.3) has a unique solution (u,, c,). If (u, c) denotes the solution of (1.2),
we have

lup—ul|l SCh?||ull,,
loy—ocll=C hz“””m
and

1
lup—ullz, @< Ch? log - llulls.-
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52 C. JOHNSON, V. THOMEE

Proof: We first note that in view of the properties of the operator II, as
described in Lemma 1.1, the proof of Lemma 1.2 remains unchanged (in fact,

this time we may choose Q@ =Q). As in the proof of Theorem 1.1 this shows the
uniqueness and hence the existence of a solution (u,, ¢,) of (1.3). In order to
show the error estimates, we follow the lines of the proof of Theorem 1.1. We
first notice that (1. 15) again implies div (I, c —5,)=0 on Q, and hence on Q so
that

lon—oll=llI,o—cl|SCh|lcll,=Chllull,+,,  1=55=2.(1.23)
This time we have instead of (1.16),

(Gh —0, XI:)+(qu_}~)lx u, div Xh)=0, VXGH;,,

so that by the modification of lemma 1.2,
~ 1 1
”uh—Phu”L,(Q) = Clogﬁ lo,—oll < Chlegz lulls.

Recalling (1.20) this completes the proof of the maximum norm estimate.
Finally, applying Lemma 1. 3 (the proof of which remains unchanged except that
P, is replaced by P,), (1.17) and Lemma 1.1, we have

luy—Pyull £C{hlloy—oll +h*||div (c4—0) I}
sCh (ol +lidiv e l)sCh* [lull,.

In view of (1.19) this completes the proof.

For given fe L ;(Q) we may think of the solution (i;, ;) of (1.3) as the result
of a pair of operators (T}, S,) : L, (Q)— V, x H,defined by T, f =u,, S, f =0,
Setting similarly for the exact solution u=T fwith T : L, (Q) — H?(Q) we prove
for later use the following lemma. The properties stated are used in e. g. [3], (4]
and [2] to analyze discretizations of eigenvalue problems and parabolic
problems, respectively. ‘

LemMmA 1.5: The operator Ty, : L,(Q)— V,, is positive semidefinite on L, (Q)
and positive definite on V, considered as an inner product space with inner product
(.,.). Further

T f=TfINSCh I flls-2  for 2=s=r. (1.24)
Proof: The discrete problem may be written

(div Sy, f, v,)= —(f, v, Vo,eVy,
(Shf; X}1)+(Thf; d]V Xh):Os theHh'

R.A.LR.O. Analyse numérique/Numerical Analysis



MIXED METHODS FOR PARABOLIC PROBLEMS 53

Now by these relations

(fi> Twf2)=—(div S, f1, T1 f2)=(Su f1, Su f2)s Y f1, /26 L,(Q),

which shows that 7, is selfadjoint and positive semidefinite on L, (Q). Let now
fx€V, be such that T, f,=0. Then S, f,=0 and hence

| full*= = (fa, div S, £1)=0,

so that f;, =0 which shows that T}, is positive definite on V. The estimate (1.24)
now follows at once by Theorems 1.1 and 1.2 depending on the case considered,
since

I Twf=T fll = luy—ull SCh*||ulls=CH|| fls-2-

This completes the proof of the lemma.

2. A PARABOLIC PROBLEM

Let us now consider, with Q and T" as above, the initial-boundary value
problem
u—Au=f in QxR,,

u=0 on I'xR,, 2.1)
u(.,0)=g in Q,

where u, = du/dt and R, =(0, o). Introducing again ¢ =V u this may be written
in variational form: find (u, ¢) : R, — V' x H such that

(u,, v)—(div o, v)=(f, v), VYveV, teR,,
(o, x)+(u, div )=0, VyeH, teR.,
u(0)=g,
where V and H are as in Section 1. With V', < V and H, < H as before it is

natural to consider its semidiscrete analogue: Find (4, 6,): R, — ¥V, x H, such
that

(tn, s V) —div G, V)=, vp), Vo,eV,, teRy, (2.2 a)
(Gln Xh)+(uh7 le Xh)zoa V'X,hEHha t€R+a (22 b)
uh(o):gh: (22 C)

where g, is some approximation in ¥, of g. Note that u, (0) determines o, (0) by
the second discrete equation (2.2 b).
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54 C. JOHNSON, V. THOMEE

Introducing bases in ¥, and H), this problem may be written in matrix form as
AU,—BZXZ=F,
B"U+DX=0,

with U (0) given, where 4 and D are positive definite. After elimination of X, this
may be thought of as a linear system of ordinary differential equations in U with
a positive definite coefficient of U, and therefore this system has a unique solution
for t=0.

Recalling the definition of the operator T, above, (2.2) can be written

Tyup, Auy=T,f for t20, u,(0)=g,.
Since T, is positive definite on V, this again shows that (2.2) has a unique
solution u, (t)e V;, for t 0. Once u,, has been determined, o, may be found from
(2.2b). The above representation of the semidiscrete problem, with o,
eliminated, and the corresponding form of the continuous problem,

Tu,+u=Tf for t=0, u(0)=yg,

with T the inverse of — A can be used to deduce error estimates for u, (¢f. [4]). This
approach will be taken in theorem 2.3, which deals with the homogeneous
equation (f =0). Furthermore, this representation of the semi-discrete problem
could be used to formulate fully discrete analogues of (2.2) based on rational
approximations of the exponential (¢f. [2] in the case f=0).

Our next purpose is to derive error estimates for both u, and &, in the general
case of the nonhomogeneous problem (2. 1) and its semidiscrete analogue (2.2).
In doing so we shall treat simultaneously the situation covered in the elliptic case
by Theorem 1.1 when Q is polygonal and the order of accuracy r is arbitrary, and
by Theorem 1.2 when Qis smooth and » =2. The analysis by the energy method
uses an analogue in the present context of the ““elliptic projection” of the exact
solution, which we define here to be (i, . 6,)=(—T, Au, =S, Au), the solution of
the discrete stationary problem (1.3) with f= —div 6 = — Au. We shall use for
discrete initial data — 7, Ag which we may then think of as an elliptic projection
of g into V.

THEOREM 2.1: Let u, (0)= — T, Ag be the elliptic projection of g. Then for t =0,
2<s<r (‘with s=r=2 in the case that T is smooth),

[l (£) —u(2) ] éChs{Ilu(t)lld- [l Huzllsdt}- (2.3)

Further 0

t 1/2
HG;.(I)—G(I)IIéCh‘*{llu(t)llﬁﬁ(J IIlttllde) } (2.4)
0
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and

t 1/2
lup()—u(®)l,, @ =Ch* IOg%{IIU(t)Ilm +<J Hutllidt> } (2.5)
0

Proof: Let (u,, G;) be the elliptic projection of (1, ), and set
ey=U,—Uy,  E€,=C,—OCp  P=U—Uy,.
We may then write the error equations in the from
(en, 1» vp) —(div &4, v,)=(py, V), VV,EV,, (2.6 a)
(&n> An)+(en, div ;) =0, Ve H,. (2.6 b)

Notice that e, (0)=0 and that hence also €,(0)=0 or 6,(0)=0o,(0). Recall also
from Theorems 1.1 and 1.2 that for 2<s<r,

Pl = lu(t)—u, ()| SCh*||u(t) ], (2.7)
lo () —cu(®) | SCh* fu(t)lls+1, (2.8)
and
1
el @=Ch logzllu(t)llm. (2.9)

Now taking v,=e;, xr=¢, in (2.6) and adding, we obtain

1d
5 gillentl?+ el = (o, e,

and hence

t t
lten()Il = J Il ptlldtéafj llullsdr.
0 0

Since
llun () —u@) I Sl p @)l + el

(2.3) follows from (2.7).
In order to show the estimate (2. 4) we differentiate (2.6 b) with respect to ¢, set
V=@ 1, Xn=Enx, and add to obtain this time

1

1d 1
3 al|8h||2+lleh,tl|2=(pn eh,,)§§||pr||2+§||eh,tllz,

so that

t t
|l8;.(t)llzéjfllptllzdféal“j Il |13 dr.
0 0
In view of (2.8) this shows (2.4).
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