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NUMERICAL STABILITY
IN DYNAMIC ELASTIC-PLASTIC PROBLEMS (*)

by Tetsuhiko MIYOSHI (X)

Commumcated by P A RAVIART

Abstract - The purpose ofthis paper is to prove the conjecture based on the engineering intuition
that the plasticity has no influence on the numencal stabihty of step-by-step intégration schemes to
solve dynamic problems We consider a typical formulation of the elas tic-plastic vibration problem and
gim angorous pzoofofthis conjecture for a^certain qpproximating scheme which is widely used in the
practical computation

Résumé - Le but de cet article est de démontrer la conjecture (basée sur Vintuition des Ingénieurs)
selon laquelle la plasticité n'a pas d'influence sur la stabilité numérique des schémas d'intégration pas à
pas pour résoudre les problèmes dynamiques On considère une formulation type du problème de
vibration élastoplastique, et on démontre rigoureusement cette conjecture pour un schéma
d'approximation très couramment utilisé dans les calculs pratiques

INTRODUCTION

For simplicity we consider two-dimensional problem. Let Q be a bounded
domain m (x x, x 2) plane with boundary ÔQ and Tthe time interval (0, 7"). We use
the notations utJ and u to dénote the derivatives with respect to x3 and time t,
respectively.

By u, £, a and a we dénote the displacement (u i, u2), the strain (e ! x, e 2 2 » e 12),
the stress (c r 1 1 > a 2 2 J ^ i2) a n d the parameter representing the center of the yield
surface (otu , a2 2 , a1 2) .

The dynamic elastic-plastic problem is formulated by the following
conditions.

(1) Equation of motion:

j

where p is a positive constant and
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176 T. MiYOsm

(2) Initial'boundary condition: For simplicity we assume

ut{0,x) = Q, ii((0,x) = u?(x),

ui(t,x) = 0, xeT0>

£a o (£ , x) cos (n, Xj) = 0, x€Tlt
j

where dQ = T0 u I \ and n is the outward normal to dû, We assume that To

consists of closed curves with positive length. {uf(x}} are given fonctions
vanishing on F o .

(3) Strain-displacement relation: We assume that the strain is small.

£ l l = W i , i , £22 = ^2,2 , e i 2 = « l , 2 + W2,l-

(4) Yield condition: We employ von Mises' condition:

/ 2 ( a - a ) - = ( o 1 1 - a 1 1 ) 2 + ( a 2 2 - a 2 2 ) 2

- ( a 1 1 - a 1 1 ) ( a 2 2 - a 2 2 ) + 3 ( a 1 2 - a 1 2 ) 2 = rg>

where r0 is a given positive constant.

To introducé the flow-hardening rule we use the following notation.

3/ Sf Ôf

Also we use * to dénote the transpose of a vector. (3* J3' and || P ||+ dénote the
inner product and the norm of vectors. The inner product and norm of (vector)
functions in L2(Q) are denoted by (p, PO and || p | | , respectively.

Now let de, dep, dee and da be the total strain incréments, plastic strain
incréments, elastic strain incréments and the stress incréments. Then we assume
the followings,

(5) Flow rule [4]:

dep = de-d£e= -dfdf* do,

where r| ( > 0) is assumed to be constant, for simplicity. The relation between da
and d&e is given by Hooke's rule da — Ddze, where
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DYNAMIC ELASTIC-PLASTÏC PROBLEMS 177

(6) Hardening rule: We assume Ziegler's hardening rule [5]. In this rule the
center a must satisfy

da = (a — a)d\i,

where d\i is a non-negative function.

The function d\i is determined automatically by the condition that the stress
point must be on the yield surface during the plastic flow. Because, if a remains
on the yield surface, then the vector da — da must be orthogonal to the normal of
the surface at this point:

3/* (da- da) = 0.

Substituting the équation on da into this equality we have

óf * da

^ ~ ( a - a ) * 3 / '

Therefore the hardening rule is wrrtten as fottows:

Óf* da
= {a-a)

(a-a)* df

The matrix D is symmetrie and positive definite. Hence da can be explicitly given
in terms of de as

Ddfdf* D
da = (D-D')dz, D' J J

r\+df*Ddf'

The identity (a-a)* df = f holds. Hence, taking time t as the parameter of the
incréments, our problem is to solve:

j

a—De, à = 0 in elastic région,

df* à
= {D-D')e, a = (a-a)—-— in plastic région,

under the strain-displacement relation and the initial-boundary condition.

1. A FÏNITE ELEMENT APPROXIMATION

The concepts "elastic" and "plastic" are not yet defined for the problem
formulated above. We can, of course, introducé some physical définitions.

vol. 14, n°2, 1980



178 T MIYOSHI

However, mathematically, these concepts are very diffïcult to define Because, to
define them we need a certain information about the solution before seekmg it
On the other hand, for getting information about the solution, the problem ïtself
must be posed already This dilemma anses especially when we pose the
problem beyond the moment when yielding (or unloadmg) occurs This will be
one reason why the variational mequahty is mtroduced m [1] (see, however, [3])
For a certain discrete Systems, however, this dilemma does not occur

We consider one of the simplest fmite element methods For simphcity, we
assume that Q is a polygonal domam By Cl we dénote a regular triangulation ol
the closure of Q We assume that the end point of Fo is always the node of Û Let
{cpp } be the piecewise hnear finite element basis which takes 1 at the node p The
approximate value of ux at the time step n( = 0, 1, 2, ) is sought m the form

peP

where P is the set of nodes in Q — Fo

The équation of motion is approximated as foliows

)ful(n),(Pp)+I(orlJ(n),cpp;) = 0, peP, (1 l)

where Dt and Dt dénote the forward and backward différence operators with
time incrément At, respectively

T h e initiai condition is a p p r o x i m a t e d by wI(0) = 0, ul{l)\p = Atuf(p) T h e

strain-displacement relation is the same as that given before, so that the
approximate stram is constant over each element Approximate stress and
function a are also constant on each element, as defmed later

To introducé a discrete stress-stram relation, let us take an arbitrary element e
and consider things on it

DÉFINITION 1 (1) By the yield surface of step (0) (or the initial yield surface) for
element e, we mean the elhpsoid in E3 defined by

(2) We say {a (n + 1), a (n 4-1)} is determined by the elastic rule, if a (n) is in or
on the yield surface of step (n), and { a (n+1, a(n+1)} and the yield surface of
step (n+ 1) are determmed by the foliowing rule

(2b) Dta(n) = 0,

(2C) The function definmg the yield surface of step (n+1) is

R À I R O Analyse numenque/Numerical Analysis
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(3) We say { er (n +1), a (n +1)} is determined by the plastic rule, if a (n) is on
the yield surface of step (n), and if { a(n+1) , a(n+1)} and the yield surface of
step (n+1) are determined by the following rule.

(3 f l ) DMn)=dfSJLEEtoM ) f S
(3b) DMn) = (°(n)

(3C) The function defining the yield surface of step (n+ 1) is

where fn and dfn are the values of/and df at { a, a } = { G (n), a(n)}} respectively.
(4) Assume that er (n) is in the yield surface of step (n) and the point a (n +1)

determined by the elastic rule from {a (n), a(n)} is outside of the yield surface of
step (n). If dfö (a (n +1) — a_(n)) ^ 0, then {_a (n +1), a(w + 1)} is determined by
the following rule. In this case we say that it is determined by the elastic-plastic
rule: Choose 9„ ( > 0) so that the point

a(n))f (1.2)

cornes on the yield surface of step (n). Define

Jn ~J |{ara} = {â(n),a(n)} >

dfn =

Clearly ö/„* (à (n + 1) - a (n)) > O^Then { a (n +1), a (n +1)} is determined by the
following rule. Put i (w) = E (n) + C (CT (n) — a (n)).

(4.,

(4.) ^ . p ^

(4C) The function defining the yield surface of step (n+1) is

REMARK 1 : Let the symmetrie matrix D ' (n) be defined by

- Dffff*D

vol. 14,n°2, 1980
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Then, (4a) is written aiso as foliows.

(4fl0 Dto(n) = [D-(l-Qn)D'(n)]

To see this, we first remember the foliowing relations:

Inverting relation (4 J we have

Substituting the identity o (ri) —G (ri) = Z) (i (n) — e (ri)) into this equality, we have

a(n+l)-o(ri)=D(e(n+l)-e(ri))-Df(n)(e(n + l)-l(n)).

Sincee(n+l)-ê(n) = (l-en)(e(n+l)-e(n)), (4fl,) follows.

REMARK 2: The cases G„ = 1 and 0„ = 0 stand for the elastic rule and the plastic
rule, respectively.

REMARK 3: When the elastic-plastic rule is applied, the vector a (n +1) — a (n) is
transversal to the yield surface at the stress point a (ri). This is the case also for the
vector cr(nH-l) — â(ri). This is proved as follows:

sgn df* (a (n +1) - ô (n)) = sgn df* (o (n +1) - a (ri))

Dôf»df»*D

= sgn ôf*DDMn) = sgndf*\D-

L
= sgndjn* [D-Df(n)]Dte{n)

The relation between the stress and strain incréments is given by:

Discrete stress-strain relation :

Naturally, a(0) = a(0) = 0.

(A) Let {à(tt-h 1), a(n+1)}(n^O) be determined by the eiastic rule as far as
a (ri) is in the yield surface of step(n). If 5(n+1) is still in the yield surface of
step (H), then, we define

R.A.I.R.O. Analyse numérique/Numerical Analysis



DYNAMIC ELASTIC-PLASTIC PROBLEMS 181

(B) Assume that a (n) is in the yield surface of step (n) and that o (n -f 1)
determined by the elastic rule comes on or outside of the yield surface of step (n).
Then, { O(K+1) , oc(«+ 1) j is determined by,

(BJ the elastic-plastic rule if df%(o(n+ l ) -a (n) )^0 , and otherwise by the

elastic rule, Le.,

(Bb) ( a (n+ l ) , a(n + l)} = {CT(n+l), a (n+l )} .

The subséquent relations are given by the folio win g procedure.
(C) If a(n +1) is on the yield surface of step(n + 1), then détermine {â(n
5(H + 2)} by the plastic rule and

(CJ define{<T(n + 2),a(n + 2)} = {S(n + 2), S(n + 2)} if

and otherwise

(Cfr) détermine {a(n + 2), a(n + 2)} anew by the elastic rule.
(D) If cr(n+l) is in the yield surface of step(n+l), then return to the
procedure (A) -> (B), replacing n b y n + 1 .

REMARK 4: There are three cases that the elastic rule is applied.

(1) a (n) is in the yield surface of step (n) and a (n +1) determined by the elastic
rule is so too.

(2) a (n) is on the yield surface of step (n) and a (n + i) determined by the piastic
rule satisfies

3/*(S(n+l)-a(n))<0. (1.4)

This case corresponds to unloading.
(3) a (n) is in the yield surface of step (n) and a (n +1) determined by the elastic

rule is outside of this yield surface. Ho we ver, the folio wing inequality holds.

REMARK 5: Suppose that { a (n +1), à (n +1)} is determined by the plastic rule
and the condition (1.4) holds. Then unloading occurs and { a (n + 1), a (n +1)} is
determined by the elastic rule. In this case the following inequality again holds.

2. STABILITY OF THE FINITE ELEMENT SCHEME

In the preceding section we posed a discrete initial value problem. A discrete
solution (u(n), <y (H), a(n)} (n^l) is thus determined step-by-step. We seek a
criterion to ensure the stability of this solution, by means of the energy method.

vol 14, n°2, 1980



182 T. MIYOSHI

LEMMA 2.1: (1) The vectors df and u — a satisfy

, 2 - 1 0

fdf = S(o-a), 2S= ( - 1 2 0

V 0 0 6

(2) For any n^O, holds

1 „

(3) If a (n + 1) is determined by the plastic rule, then

d/*(Z>ta(«)-D,a(n)) = 0.

(4) ƒƒ a (w+1) is determined by the elastic-plastic rule, then

where a (n) and ôfn are those defined by (1.2) and (1.3).

(5) The yield surface expands monotonically.

(6) Letf' and df' be the values off and dfat { a , a} = {o', a'} respectively,
and put k = f/f'. Then

(a-a)* df1 = k{o' -a.')* df.

Proof: We prove (5) and (6). During the elastic déformation, the yield surface
is unchanged or expanding. If { a{n +1), a(n+1)} is determined by the plastic
rule, then we have

The first term of the right side vanishes by (3) of this lemma. Hence fl+y^fl-
The situation is the same in the elastic-plastic case too. This proves (5). By (1):

Therefore we have

which proves (6).

REMARK 6: The expansion of the yield surface is inévitable as far as we employ
Ziegler's formula as it is, exept one-dimentional case (vibration of a rod). The

R.A.I.R.O. Analyse numénque/Numerical Analysis
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situation is the same for Prager's rule (see the last remark on this rule). Since we
assumed so called the kinematic hardening, this may have some influence on the
accuracy of the computed solutions. We think, however, that it does not harm
the solution desperately by the reasons that (a) if the computed solution is stable,
the expansion of the radius of the yield surface is at most of O(y/Ât) in
totality (b) it is proved that, as At -» 0, the computed solution will converge to
the solution of a semi-discrete system (the case that "time" is continuous). We
also remark that the expansion due to elastic déformation [the case (3) and
possibly (2) of Remark 4] will be negligible, since such case will be rare in the
practical computation.

We want to show that a certain quadratic quantity with respect to Dt u and the
strain is bounded by the initial energy and this quantity can be regarded as an
measure of the energy of the system. By \\u\\l we dénote £ ( p u ; , ut)-

LEMMA 2.2: For any n (^1) holds

( ( ) ( ( ) ) ( ( ) ( ) ) j (2.1)

Proof: Replacing cp p by (D t + D7) u t (ri) in the both sides of (1.1) and adding on
f, we have

Thus, taking into account (2) of lemma 2 .1 , we have

0 = - (a (n) , (Dt + D7) e(n)) + - (a(w), S(D t + Dr) a(n))

The problem is thus to show that the second term of the right side is non-

negative. Defme (u, v)e= u*vdx and put

for an arbitrary element e. We shall show that Qe^0 holds always.

(1) Both a (ri) and a (n+1) are determined by the elastic rule. In this case,
clearly g e = 0.

vol. 14, n°2, 1980
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(2) Both a (n) and a (n + 1) are determined by the plastic rule. By (3) of lemma
2.1, we have

(o(n)-a(n), df^J^ioin-V-OLin-l), dfn-x)e7i0.
Therefore

Qe = {o(n)-ai(n), dfn)edfïDto(n)
+ (a(n)-a(n), d/tt_x)e d / * ^ D t a ( n - l ) ^ 0 .

(3) a (ri) is determined by the elastic (resp. plastic) rule and <j(n+l) by the
plastic (resp. elastic) rule. QL>^0 is proved samely as in the case (2).

(4) o(n) is determined by the elastic rule and o(n+l) by the elastic-plastic
rule. By (6) of lemma 2.1, we have

(a(n)-a(n), dfn)e = kn(ô(n)-a(n), Ôfn)e

= kn(o(n)-a(n),

Therefore, by remark 3, we have

(5) The case that a (n) and a (n+1) are determined by the plastic and elastic-
plastic rule, respectively, does not occur.

(6) a (ri) is determined by the elastic-plastic rule and a (n +1) by the plastic
rule. We have the identity

(a(n)-a(n), dfa.x)e = (à(n-l)-OL(n-l), Ô/^J.

This is non-negative, since the first term of the right side is non-negative and the
second term vanishes by (4) of lemma 2.1. Therefore

+ (o(B)-a(n),

(7) The case that a (ri) and a (n+ 1) are determined by the elastic-plastic and
elastic rule, respectively, is now evident. Hence the lemma is proved.

Let us introducé En and Rn defined by

R.A.I.R.O. Analyse numérique/Numerical Analysis
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where ||er(|^ =(C<T, a), ||a||s
2 —(Sa, a). Then inequality (2.1) is written as

(2.2)

In order to prove that En — Rn is a positive quadratic form, we first prove the
following inequality.

(2.3)

Let us introducé the quantity D' (n) defmed by

Then the stress-strain relation and a-strain relation are written respectively as

Dta(n) = (D-Df(n)) Dts{n),

if we take 0n and â (n) suitably (see remarks 1 and 2). We shall substitute these
relations int o Rn and dérive the desired estimate. Let us start from the identity

- ^ RH = T\ || S - 1 CD'(n) Dt£(n) | | | +1| (D-D'(n))DtE(n) \\£.

Expanding the second term of the right side we have

(C(D-D'(n)) Dts(n), (D-l)'(n)) Dte(n))

= {DDtz{n)> Drs(n))-2(D'(n) Dte(n), Dte{n))

(5'{n) CD'(n) Dts(n), Dte(n)).

Let us put

S^llS-1 CD'(n) DMn)\\ï-2(D'{n) DMn), Dte(n))

>'(n) CD'(n) Dtz(n)t öfe(n)).

W) C5" 1 CD'(n)-2D'(n)

vol. 14, n°2} 1980
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so that

Sn is non-positive. To prove this, put An = r\+df*Ddfn. Then, since

B-cMi-ej^^Sëï (2.4,

and Ô / / S - 1 dfH = df*(â(n)-a{n))/fH=l, we have

Therefore S„ can be written as foliows:

Since D' (n) is non-negative defmite, the first term of the right side is non-positive.
This is the case for the second term too. Because, substitute (2.4) into this term.
Then we have

second term- — — Ui —GJ \ " M [3/n*/)Z)te(rc)]2g0.

S„ is hence non-positive, and inequality (2.3) holds well.
The next theorem is our final conclusion.

THEOREM : Let h be the maximum length of the sides of all triangles of Cl. There
are positive constants E, and c such that if

- „ At2 „

thenfor any n (^1) holds thefollowing inequality:

R.A.I.R.O. Analyse numérique/Numerical Analysis
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Proof; It is known that there is a positive constant E, such that

(DDte(ri), Dtz{ri))S£> — y | | ^ t M ( w ) | | p - (2*5)

Therefore

Put c=l-ÇÀ£2 / f t2 and use (2.2) and lemma 2.2 to get the conclusion.

REMARK 7: As is already seen in the above proof, the stability in the sense of
energy is independent of the existence of the plasticity. The constant £, appearing
in the condition (2.5) is estimated in [2].

REMARK: On Prager's hardening rule.

If we assume Prager's hardening rule

where y is a positive constant which characterizes the material, then the
associated flow rule changes the form slightly.

Let us assume that the plastic part of the strain incrément is parallel to the
normal of the yield surface, Le.,

dep = dfdX. (2.7)

The function dX can not be chosen arbitrary. Because, if the stress point
remains on the yield surface, the following condition must be satisfied.

ÔP (da- da) = 0. (2.8)

Therefore, substituting (2.6) and (2.7) int o this identity, we have

,, df*da

The flow-hardening rule takes the following form in this case.

j . ^ Ddfdf*D 1 J
d<5 = \ D ,. . . . — ^ r* ^ ^ r "e>

We can dérive an fmite element scheme based on this rule which is similar to
that analyzed in this paper. It is important that the stability criterion given in the
above theorem is a sufficient condition also for this scheme. The plasticity has no
influence on the numerical stability (in energy) in this case too.
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