On spectral approximation. Part 1. The problem of convergence
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 12 (1978) no. 2, p. 97-112
@article{M2AN_1978__12_2_97_0,
     author = {Descloux, Jean and Nassif, Nabil and Rappaz, Jacques},
     title = {On spectral approximation. Part 1. The problem of convergence},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     publisher = {Dunod},
     volume = {12},
     number = {2},
     year = {1978},
     pages = {97-112},
     zbl = {0393.65024},
     mrnumber = {483400},
     language = {en},
     url = {http://www.numdam.org/item/M2AN_1978__12_2_97_0}
}
On spectral approximation. Part 1. The problem of convergence. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 12 (1978) no. 2, pp. 97-112. http://www.numdam.org/item/M2AN_1978__12_2_97_0/

1. P. M. Anselone, Collectively Compact Operator Approximation theory, Prentice-Hall, 1971. | MR 443383 | Zbl 0228.47001

2. J. Descloux, Two Basic Properties of Finite Elements, Rapport, Département de Mathématiques, E.P.F.L., 1973.

3. J. Descloux, N. Nassif and J. Rappaz, Spectral Approximations with Error Bounds for Non Compact Operators, Rapport, Département de Mathématiques, E.P.F.L., 1977.

4. J. Descloux, N. Nassif and J. Rappaz, Various Results on Spectral Approximation, Rapport, Département de Mathématiques, E.P.F.L., 1977.

5. T. Kato, Perturbation Theory of Linear Operators, Springer-Verlag, 1966. | MR 203473 | Zbl 0148.12601

6. J. Nitsche and A. Schatz, On Local Approximation properties of L2-Projection on Spline-Subspaces, Applicable analysis, Vol. 2, 1972, pp. 161-168. | MR 397268 | Zbl 0239.41007

7. J. Rappaz, Approximation of the Spectrum of a Non-Compact Operator Given by the Magnetohydrodynamic Stability of a Plasma, Numer. Math., Vol. 28, 1977, pp. 15-24. | MR 474800 | Zbl 0341.65044

8. F. Riesz and B. Z. Nagy, Leçons d'analyse fonctionnelle, Gauthier-Villars, Paris, 6e éd., 1972. | Zbl 0064.35404

9. G. M. Vainikko, The Compact Approximation Principle in the Theory of Approximation Methods, U.S.S.R. Computational Mathematics and Mathematical Physics, Vol. 9, No. 4, 1969, pp. 1-32. | MR 257771 | Zbl 0236.65038

10. G. M. Vainikko, A Difference Method for Ordinary Differential Equations,U.S.S.R. Computational Mathematics and Mathematical Physics, Vol. 9,No. 5, 1969. | MR 280027 | Zbl 0233.34021