Brève communication. Sur la commande en temps minimum du système
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 7 (1973) no. R2, p. 83-89
@article{M2AN_1973__7_2_83_0,
     author = {Gerbier, Yves},
     title = {Br\`eve communication. Sur la commande en temps minimum du syst\`eme},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     publisher = {Dunod},
     volume = {7},
     number = {R2},
     year = {1973},
     pages = {83-89},
     zbl = {0302.49026},
     mrnumber = {365310},
     language = {fr},
     url = {http://www.numdam.org/item/M2AN_1973__7_2_83_0}
}
Gerbier, Yves. Brève communication. Sur la commande en temps minimum du système. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 7 (1973) no. R2, pp. 83-89. http://www.numdam.org/item/M2AN_1973__7_2_83_0/

[1] Dauer (J.P.), Perturbations ofîinear control Systems. S.I.A.M. J. Control, vol. 9, n° 3, August 1971,p. 393-400. | MR 299300 | Zbl 0222.93007

[2] Hermes (H.), The generalized differential equation x ˙R(t,x), Advances in Mathematic, 4, 149-169 (1970), p. 149-169. | MR 252722 | Zbl 0191.38803

[3] Hermes ( H.) et Lasalle (J.), Functionnal analysis and time-optimal control, Academic Press (1969). | MR 420366 | Zbl 0203.47504

[4] Krener (A.), On the équivalence of control Systems andthe Unearization of nonlinear Systems (Toappear). | Zbl 0243.93009

[5] E. B. Lee et L. Markus, Fondations of optimal control theory, J. Wiley andSons, N.Y.(1967). | MR 220537 | Zbl 0159.13201

[6] Lobry(C), Thèse, Université de Grenoble (1972).

[7] Neustadt(L.), The existence of optimal controls in the absence of convexityconditions, J. Math. Anal. Appl., 7 (1963), p. 110-117. | MR 154768 | Zbl 0115.13304