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AN IMPROVED ALGORITHM FOR THE SOLUTION
OF INTEGER PROGRAMS BY THE SOLUTION
OF ASSOCIATED DIOPHANTINE EQUATIONS

by G. MITRA, D. B. C. RICHARDS and K. WOLFENDEN (*)

Résumé. — Valgorithme du type « Cutting plane » qui est élaboré ici semble avoir
quelques avantages sur les algorithmes actuels du même type. Cet algorithme se sert d'un
autre, le « Positive Diophantine », qui donne la solution d*une équation diophantine à variables
non négatives. De ceux-là se développe une nouvelle méthode, méthode directe, qui donne
les solutions des programmes avec des valeurs entières. Trois exemples détaillés illustrent la
technique, ̂ algorithme « Positive Diophantine » se trouve à Vappendice.

INTRODUCTION

In the course of gênerai studies on techniques of integer programming an
algorithm of the cutting plane type has been developed which appears to offer
certain advantages over existing algorithms of the same type ([21, [3]). This
algorithm makes use of another, « Positive Diophantine », for the solution of
diophantine équations in non-negative variables. Together these have led to
the development of a further method, a direct method similar to the technique
outlined in [5].

1. THEORY

1.1. The basic problem

Consider the problem of maximizing

*o = «oo + Ê aoj{— Xj) (1.1.1)

(1) University of London Institute of Computer Science.



48 G. MITRA, B. RICHARDS, K. WOLFENDEN

subject to
n

X UijXj < ai0 i = 1, 2,..., m (1.1.2)

and

x, ^ 0, xj = 0 mod (1) j = 0,1,2, ...5 »,

where for convenience it is assumed that ail a^ = 0 mod (1).

Introducing slack variables

xt = 0 mod (1), xt > 0, i = n + 1, » + 2,..., n + m,

and adding a set of trivial équations Xj = — (—Xj),j = 1, 2,..., n, leads t a
the Tucker-Beale System

= 0 + E — .. n

*i = £̂0 + S ö0'(— ^j) I = « + 1, » + 2, ..., H + W,

where SSJ. is the Kronecker delta.

(1.1.3)

1.2. The continuous solution

Let C(Â) represent the continuous optimum solution to this problem as
obtained by a simplex algorithm. This solution is contained within the
form

Dx0 = 50 0

Dxt = 5,.o

(1.2.1)

where B dénotes the set of indices of the vectors forming the current basis,
namely, the basis of the optimal program C(Â). The coefficients D> the modulus
of the determinant of the current basis, and âtj, the éléments of the matrix Â,
are all intégral. Setting the non-basic variables xp to zero, the continuous
optimum solution is x( = 5|O/D.

Let I(Â) dénote the optimal integer program of the stated problem. If
ai0 & 0 mod (D) for any / — 0, 1, 2,..., m + n, then 1(2) & C(A).
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1*3* Catting plane steps

Let e be the index of any row of the system (1.2.1) such that aep & 0 mod (D)
for at least one p $B. For such a row define the fractional éléments

and D

D

piB, sothat

0 < /o < 1.

1,
(1.3.1)

As in [3] this leads to the introduction of the reduced inequality

fo< YsfpXp 0-3.2)

which must be satisfied by any feasible solution to the problem. However, if
the fractional parts are expressed as ratios of integers with common denomi-
nator Z>, then under certain conditions a stronger inequality can be constructed.
From (1.3.1) we can obtain non-negative integers dOi dp such that

f _ "0do
. = - , o d09 dp < D,

and substituting in (1.3.2)

(1.3.3)

(1.3.4)

Of course, this is just one of a series of parallel « cuts » given by

do + rD^ X dvxv r = 0, 1, % ..., (1.3.5)
P&B

and such that the larger the value of r the deeper the eut into the convex
région (1.1.2). It would appear désirable, therefore., to be able to détermine
the largest possible value of r such that the corresponding eut does not exclude
any feasible lattice point. However, the best that can be done is to find the
minimum value of r for which the diophantine équation

do + rD = X
P$

has a non-negative integer solution in the variables xp. Note that in the case of
a primary eut (r = 0) the diophantine équation always admits of solution in
integer variables unrestricted in sign.

Formally, the problem now is to find minimum r and xp = 0 mod (1),
0 h h0 such that

(1.3.6)
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A dynamic programming solution has been proposed in [2] which, though
conceptually elegant, is hardly computationally efficient. An alternative
approach is provided by the algorithm « Positive Diophantine » (Appendix).
The aim is to locate lattice points on the finite parallel planes (1.3.6) within the

bounds 0 ^ xD < -2—= • In most cases where cuts with r > 0 (secon-

L d Jdary cuts) have been found to exist, the convergence to I(A) has been more
rapid than with primary cuts. Computationally worthwhile improvement has
been observed in a number of test problems (Table 1), only two taking more
itérations than with Gomory's method.

1.4. Direct détermination of I(Â) from C(Â)

It is possible to proceed from C(Â) to I(Â) in the manner of [3] and at each
eut génération stage to apply the process outlined in the previous section.
However, the additional pivoting involved can be avoided by taking advantage
of the search technique of Section 1.3.

Let X = { xt | x( = âi0/D, i çB ;xt = 0,i $£}

dénote the solution C(Â) of the continuous problem. Then corresponding to
an optimum integer solution X1, there exists a non-negative integer vector of
n components xp = G mod (î), p i B, such that X1 can be expressed ([5]) as

X1^ {x;\xl = âiOfD+ Z &ipID)(— xp),i <=B; x! = xp,i = p $B X

(1.4.1)

where of necessity x\ = 0 mod (1) and x\ ^ 0, i = 1, 2,..., n + m. From(lAl)
it follows that to obtain the integer program directly we need to détermine the
components of this ail important «-vector of the variables xp, p $B. To do
this we can use the objective row of Â without extracting the eut and investigate
the parallel hyperplanes corresponding to different values of r until a feasible
lattice point can be located on one of them. If, from the objective row of the
matrix Â we extract the congruence

(D)

and rewrite it in the form

do + rD= X âOpxp xp = 0 mod (1), x, > 0 (1.4.2)
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then, it is to be noted? (1.4.2) poses the same problem as (1.3.6), namely, solu-
tion in positive integers of a diophantine équation with positive coefficients (âOp

are all non-negative integers, since the optimal tableau is of necessity dual
feasible (*)). For a fixed value of r, (L4.2) defines a finite plane in the w-space
of xp, p $B, and all the lattice points on this plane are generated by the search
« Positive Diophantine ». These in turn are substituted in the relation (1.4.1)
and the results x\, i € B, are checked for non-negativity and integrality.

Assuming C(Â) is not dual degenerate, that is, the objective row of A does
not contain any zero element, an algorithm for obtaining I{Â) from C(Â) is
outlined below.

1. Extract (1.4.2) from (1.2.1) and set r = 0.

2. Apply the algorithm « Positive Diophantine » to explore whether there
exist xp = 0 mod (1) and xp > 0, p $ B, which satisfy the equality of (1.4.2).

3. Is the present hyperplane exhausted? If yes then r : = r + 1 ; go to
step 2.

4. xp > 0,p £ B, are the components of an integer vector satisfying (L4.2).
Does this vector substituted in (1 Al) satisfy the integrality and non-negativity
requirements of X1! If yes then go to 6.

5. Go to 2.

6. Output the optimal integer solution and stop.

Note that the algorithm can be simply modified to produce alternative
optima if they exist. Feasibility or otherwise of the current program for each
successive value of r can likewise be established with little extra effort.

2. EXAMPLES

2.1. Generaüzed eut

Consider the problem (taken from [6]) :

Minimize x2

subject to 33*! + lx2 > 715

— 41xA + 14x2 > 653 (2.1.1)

Xj == 0 mod (1) and Xj > 0 7 = 1,2.

(1) For the time being we assume that öoP > 0 for all p&B. The problem of dual
degeneracy is dealt with in Section 2.3.
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Writing the tableau in the Tucker-Beale form and applying the dual sim-
plex pivot rules we obtain the continuous optimum as follows :

Itération 0

Note :

x2
X3

0
0
0

— 715
— 653

0
— 1

0
— 33*

41

x4 dénote slacks ; pivot element is

Itération 1

D =

x0

xt

x2

* 4

0
715

0
0

— 50 864

= 33

— x3

0
— 1

0
— 33

41

Itération 2

D =

x0

x1

* 3
XA

— 50 864
5 439

50 864
0
0

= 749

x3

41
— 14
— 41
— 749

0

1
0

— 1
— 7
— 14

starred.

— x2

33
7

— 33
0

— 749*

— xA

33
7

— 33
0

— 749

Continuous optimum.

Using the objective row to generate the eut, we have by relation (1.3.5)

68 + 749r ^ 41x3 + 33*4 (2.1.2)

Taking r = 0 for this and all the subséquent cutting planes (Gomory's
method [3]), the optimum integer solution was obtained after 32 pivots steps.
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However, applying «Positive Diophantine» to (2.1.2) as described in Sec-
tion 1.3 we obtain min(r) = 2 , and append the corresponding generalized
eut to Itération 2.

Itération 2

D = 7 4 9

— x.

x0
X,

x2
x3
x4

*1

— 50 864
5 439
50 864

0
0

— (68 + 2 x 749)

41
— 14
— 41
— 749

0

— 41

33
7

— 33
0

— 749

— 33*

Note : A random choice is made to break the tie for the sélection of pivot
column.

Itération 3

D =33

x0
Xi

x2
x3
x4

— 2310
225

2 310
0

1566

— (27+5 X 33)

0
— 1

0
— 33
41

— 32*

33
7

— 33
0

— 749

— 7

Note : Second row is used for eut extraction. Applying « Positive Dio-
phantine » we obtain min (r) = 5 for which there exists a solution in positive
integers for x3 and st.

Itération 4

x0

x2

— 2 240
224

2 240
192

1280

0
— 1

0
— 33
41

32
7

— 32
7

735
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Note : The optimum integer solution obtained in 4 itérations is

2 240 _
mm x2 = —^~ = 70

224

192
12= 6

1 280 .n

-^2~ = 4 0

2.2. Direct method

Consider the continuous optimum tableau of the previous problem (2.1.1).

D =749
X3 — X4

x0
*1
x2

*4

W e extract the équation

68

- 50 864
5 439
50 864

0
0

+ 749r

41
— 14
— 41
— 749

0

= 41*3 +

33
7

— 33
0

— 749

33x4 (2.2.1)

from this tableau as explained in Section 1.4 (note that this is the same as the
eut extracted from the objective row in the first cutting plane step of the last
section). Applying the algorithm of Section 1.4 to équation (2.2.1) we obtain
min (r) = 2 and the corresponding solution

68 + 2(749) = 41(6) + 33(40),

i.e. x3 = 6 , JC4 = 40.

Substituting this in the continuous tableau as in (1.4.1) we have

749(AT0) = — 50 864 — 41(6) — 33(40) = — 70(749) = 0 mod (749)

749(xx) - 5 439 + 14(6) — 7(40) - 7(749) = 0 mod (749) ^ 0

749(x2) = 50 864 + 41(6) + 33(40) - 70(749) = 0 mod (749) ^ 0

749(x3) = 0 + 749(6) + 0 - 6(749) = 0 mod (749) > 0

749(x4) = 0 + 0 + 749(40) - 40(749) = 0 mod (749) ^ 0

and the solution I(A) has been obtained directly from C(Â).
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Consider next the application of this direct method to another problem
from [6] :

Minimize x3

subject to 5xt + 8x2 — 7x3 > — 89

3xt — 5x2 + 2x3 > 29

Itération 0

= 0 mod (1),
7 = 1,2,3.

0

X0

X6

0
0
0
0
89

— 11
— 29

0
— 1
0
0

— 5
6

— 3

0
0

— 1
0

— 8
5*
5

1
0
0

— 1
7

— 1
— 2

x2

x6 —

Itération 1
D = 5

x0

xx

x2

x6

~— "V* ^ ^ _ "V*
JC5 JÇ 3

0
0
11
0

533
0

— 200

0
— 5
— 6

0
— 73

0
12

0
0

— 1
0

— 8
— 5
5

5
0
1

— 5
43
0

— 15*

Itération 2
D = 15

X5 — Xg

— 200
0
7

200
— 121

0
0

15
— 15
— 15
— 15
— 90*

0
0

5
0

— 2
— 5

19
— 15

0

5
0
1
5
43
0

— 15
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Itération 3

D = 9 0

X4. X$ X

x2

— 1 321
121
79

1321
0
0
0

15
— 15
— 15
— 15
— 90

0
0

49
— 19
— 31
— 49

0
— 90

0

73
— 43
— 37
— 73

0
0

— 90

Continuous optimum

Extracting the équation (1.4.2) from the objective row,

29 + 90r = 15*4 + 49x5 + 73x6,

and applying the algorithm of Section 1.4, we obtain the minimum r for which
there exists a solution, namely min (r) = 3. Then

29 + 3(90) = 15(2) + 49(4) + 73(1),
i.e.

x4 = x5 = 4,

Substituting in the above tableau :

90(x0) = — 1 321 — 15(2) — 49(4) — 73(1) -

900*0 = 121 + 15(2) + 19(4) + 43(1) =

90(x2) - 79 + 15(2) + 31(4) + 37(1) -
90(x3) = 1 321 + 15(2) + 49(4) + 73(1) -
90(x4) - 0 + 90(2) + 0 + 0 -
90(x 5 )= 0 + 0 + 9 0 ( 4 ) + 0 =
90(x 6 )= 0 + 0 + 0 +90(1) =

— 18(90) s 0 mocl (90)
3(90) = 0 mod (90)
3(90) s 0 mod (90)

18(90) = 0 mod (90)
2(90) = 0 mod (90)
4(90) = 0 mod (90)
1(90) s 0 mod (90)

0
0
0
0
0
0

which is the solution I(A) to the integer problem.

Lastly, to bring out the relationship between the proposed method and
dynamic programming, we consider a cargo-loading problem taken from [l].

Maximize

27x4 + 20x5 + 50x6 + 85x7 + 96x8

12x4 + 10x5 + 16x6 + 22x7 + 24x8 ̂  100,
0 and xu x2,..., x8 = 0 mod (1).

72xH
subject to

20x t-f

- 60x2 -f

- 18x2 +

xt x2,

•40x 3

• 14x3
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Using the reduced tableau, that is, omitting the unit rows, we have

Itération 0

D = 1

0
100

—X1

— 72
20

— x2

— 60
18

— 40
14

— x4

— 27
12

— 20
10

— 50
16

—• x7

— 85
22

— x8

— 96
24*

9 600
100

— xt

192
20

— x2

288
18

Itération 1

Z>=24

-xs _ * 4

384 504
14 12

- * s

480
10

-x*

336
16

72
22

— x9

96
1

We now investigate by ' * Positive Diophantine ' * the problem of minimizing r
subject to non-negative intégral solution of

0 + r(24) = I92xx + 288x2 + 384JC3 + 504x4 + 480;t5
+ 336x6 + 72x7 + 96x9.

It is found that no such solution exists for r = 0, 1, 2 whereas for r = 3
the solution (0, 0, 0, 0, 0, 0, 1, 0) is unique. Substituting in the constraint
équation we have

x8 = 100 — 22(1) = 78 ̂  0 mod (24).

Next, r = 4 has the solution (0, 0, 0, 0, 0, 0, 0, 1) but again the integrality
xequirement of the constraint équation is not satisfied,

xs = 100 — 1(1) = 99 & 0 mod (24).

The cyclic process of incrementing r, determining lattice points and testing
the constraint is continued until r — 16. The solutions of the diophantine
équation are now (2,0,0,0,0,0,0,0), (1,0,0,0,0,0,0,2), (0,0, 0, 0, 0, 0, 0, 4).
The first two solutions do not satisfy the integrality condition for x8 but the
last one does,

x8 = 100 — 1(4) = 9 6 - 0 mod (24).
Hence

x8 =4, x1 = x2 = ... = x1 = 0

is the optimum solution to the problem with x0 = 384.
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2.3. Results and Conclusions

In ail some 30 problems were tackled by both the optimum eut method
and Gomory's Method of Integer Forms on the ICT Atlas at the Institute
of Computer Science. These problems, taken from a number of sources, have
all been rated as difficult integer programming problems in some sense or
other. Several variants of the two main Fortran programs were written to
accommodate different eut generator sélection rules. Complete results for a
matched pair of programs are given below; overall exécution times for the
optimum eut method and Gomory's Method were 65.0 secs and 85.7 secs

TABLE l

j
PROBLEM'

Np.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

x-zuwLcrN

Constraints

4
4
4
4
6
6
4
4
6
4
7
7
3

15
2
3
2
3
3
2
2
2
8
2
3
5
3
2
5
3

Variables

5
5
5
5
5
5
5 '
5
6
5
7
7
4

15
2
3
2
3
3
2
2
2
8
2
2
2
3
5
2
3

NO. OF ITERATIONS TO INTEGER SOLUTION
(including the continuous stage)

Gomory's Method

25
18
43
13

1431
80

> 2 004
89

558
8
9

25
17
41
37
30
13
15
55

200
305
298

46
10
5
8
4
4

12
9

Optimum Cut Method

8
18
19
7

397
80

557
81

469
8
9

25
19
29
35
7
4
6

33
200

89
86
48

6
5
8
4
4

12
5
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respectively, the latter including a problem which remained unsolved after the
imposed limit of 2 000 itérations.

Although our expérience with both the optimum eut method and the rela-
ted direct method is limited (program development with the direct method is
as yet incomplete) the following points should be noted.

1) The D-number can become too large for single length arithmetic even
before the continuous optimum C(Â) is reached, thus inhibiting the application
of either method. To combat this an adaptative eut génération technique [4]
which attempts to restrain the growth of D might be applied.

2) In the direct method, if the continuous optimum solution is dual dege-
nerate then there will exist an infinity of solutions for the diophantine équa-
tion extracted from the objective row, namely

d0 + rD = a01xx + â01x2 + ... + âOnxn (2.3.1)

For if âOi — 0 for at least one i, 1 < i ^ n, x% can assume any non-negative
intégral value. This difficulty might be resolved by holding the already deter-
mined components of a solution to (2.3.1) at their current values and varying
the parametric values of the indeterminate components (corresponding to
âOi — 0) in a lexicographically ordered search on the successive équations.

APPENDIX. THE ALGORITHM "POSITIVE DIOPHANTINE"

Consider the congruence

= a0 mod (D) (A.l)

where af = 0 mod (1) and af > 0, xt E= 0 mod (1) and xt > 0, i = 1, 2,. . . , n.
For convenience let us assume that the coefficients are ordered, so that

a t ^ oc2 < a3 ... < an.

Let the diophantine équation

£ «i*,. = a0 + rD = 0)n (A.2)

define the problem Pn. Then set xn — —- L so that the remaining JCj must
L a- J

satisfy
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defining the problem Pn-t. Répétition of the procedure leads to

<&2 — a2

defining the problem Pu and we define

If at any stage 3>fc is zero, the congruence (A.1) is satisfied by the xt already
set for i > k + 1, and xt — 0 for i < fe. If the entire séquence i\-, / = «,
« — 1, ..., 1, is produced and <I>0 ̂  0, then a new subsequence must be defined,
starting at the last i for which xt > 0. Suppose this was i = k, then reset
xk ~ xk— 1 ^n(i ^fc-i ~ ^fc-i + ak a f ld proceed with the new sub-
problems Pi9 i = k — 1? k — 2,..., 1. Whenever Of = 0, the corresponding
«-vector is a lattice point on the hyperplane defined by (A.2). The recursive
process can be continued until the search over the finite hyperplane is complete,
that is, the components xni xn^u ..., x2 are reduced to zero.
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