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RJ.R.O.
(3e année, N° 16, 1969, p. 17-34)

ON THE CONVERGENCE
OF OPTIMIZATION ALGORITHMS

par E. POLAK

Department of Electrical Engineering and Computer Sciences, University of California,
Berkeley and Institut Biaise-Pascal, 23, rue du Maroc, Paris (19e)

Résumé. — Cet article présente un théorème de convergence pour une classe ^algo-
rithmes de recherche de « point désirable », qui convient particulièrement à la synthèse et à
Vobtention de bornes qualitatives de sensibilité des procédures de recherche. Pour illustrer
son aptitude à la synthèse de nouveaux algorithmes, il est utilisé pour obtenir de nouvelles
variantes des algorithmes de direction réalisable, gradient projeté et décomposition duale.

INTRODUCTION

One of the greatest frustrations in the study of optimization algorithms is
the almost total lack of a gênerai theory. This lack is possibly due to the fact
that algorithms are inventions and that their convergence proofs are usually
done on an ad hoc basis. In response to this challenge, however, a few papers
[1]> PL [3] have appeared in the last two years, in which attempts were made
to extract, from available proofs, a number of principles governing the conver-
gence of certain classes of algorithms.

The present paper is less concerned with the process of extracting gênerai
principles hidden in published convergence proofs than with the construction
of a theory of algorithms which can be used to synthesize new methods or
modify old ones. Specifically, it shows that certain forms of necessary condi-
tions of optimality are particularly suitable for utilization in algorithms. Also,
it présents a new convergence theorem (somewhat akin to theorems in [2] and
[3], a particular case of which first appeared in [4] and which is particularly
easy to use in the synthesis of new optimization algorithms. To illustrate its
applicability, a few modifications of feasible directions [5] and gradient pro-
jection [6] algorithms are presented, as well as a new hybrid type algorithm
and a new dual type algorithm. Its applicability to other algorithms is des-
cribed in [4], [7], [8]. Thus, this convergence theorem opens up a new possi-
bility for a unified study of a broad class of algorithms.
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L PRELIMINARY RESULTS

We shall restrict ourselves in this paper to the following canonical problem.

(1) Problem : Given continuously differentiable fonctions f°, ƒ*,..., fm from
Rn into Rl, find a vector x € Rn satisfying f\x) < 0 for i = 1, 2,..., m, such
that

(2) ƒ•(*) = min { f°(x) | f(x) < 0, î = 1, 2,..., m } .

To be sure that (2) makes sense, we shall assume that either the
set £1 = {x | f1 (pc) < 0, i = 1, 2,..., m } is compact, or else that for every
oc € Rl the set { x | /°(x) < a } is either bounded or empty.

(3) Définition : We shall call the éléments of the constraint set O feasibley

and we shall say that a vector x € £ï is optimal if it satisfies (2).

We begin by recalling a few characterizations of an optimal vector x. These
characterizations will subsequently be used in algorithm stop rules (see [10],

(4) The ore m : If x is optimal for (1) and S is any compact subset of Rn

containing the origin in its interior, then

(5) min max < V/(*), A > = 0,
h€S i€Jo(x)

where, for a ^ 0 and any x € Ü,

(6) JJpc) = { 0 } U { i | f\x) + a > 0, i € { 1, 2,..., m } } .

Proof: Suppose that (5) does not hold at an optimal x, then there is a
nonzero h* e S such that

(7) min max < Vf\x), h > = max < V/(x), h*> = — §
h€S i€Jo(x) i€Jo(x)

where S > 0. Hence there exists a X* > 0 such that

ƒ *(£ + XA*) < 0 for / € J0(x) and X € (0, X*],
(8) C)

fXx + X/z*) — f{x) < 0 for / € J0(x) and X € (0, X*],

Le. any x = x + XA*, X € (0, X*] is feasible and results in a lower cost than Je,
which contradicts the optimality of x. Q.E.D.

(9) Remark : If Ci has no interior, then (5) is satisfied at ail x € O, which
makes (5) a useless condition in this case.

(1) 79{x) dénotes the complement of J0(x) in 0, 1, 2,..., m.
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(10) Corollary : If x is optimal for (1), then there exist multipliers £6 < 0,
< 0, ..., lm < 0, not all zero, such that

(ii)

Proof: Let F be a matrix whose rows are Vƒ *(x), z 6 /0(*)> anc* let p be the
cardinality of /0(x). Then, by (5), the subspace FRn = {y \ y = Fx, x € i?n }
must be separated from the convex cone {y \ y ^ 0 } C RP9 i.e. there exists
a nonzero vector Z,€Rp such that

< Ç, j ; > ^ 0 for ail .y ^ 0, y € ^ ,
(12) < Ç, Fx > = 0 for ail x € *".

Assuming that the components of y € Rp and Ç € i£p are numbered with
indices from J0(x), rather than consecutively, (12) yields

(13)
Z

Setting ll = O for all i€J0(x), we now get (10) and (11). Q.KD.

(14) Theorem : Suppose, in addition to the assumptions stated in (1) that
the functions ƒ', i = 0, 1, 2,..., m are convex and that Q. has an interior. Then
any vector x € Q satisfying (5) is optimal.

Proof: Suppose (5) is satisfied at a non-optimal Je € O» and let x0 be any
point in the interior of Q. Then there exists a x* € Q. such that /°(x*) < /°(Jc),
and, for some X e (0, 1), the point xx = Xx0 + (1 — X)x* is in the interior of
the set { x | ƒ °(x) — ƒ °(x) ^ 0, f\x) ^ 0, i = 1, 2,..., m }. Hence, by con-
vexity of the ƒ i we obtain

\ij) \ y J \Xj9 X\ — x / 5̂  j yx^j — j yx) ^ u ïor j

But a(xj —Je) G 5 for some oc > 0, and hence (15) contradicts (5). Q.E.D.

(16) Corollary : Under the assumptions of theorem (14), any x € Cl which
satisfies (11) for some multipliers £° < 0, Ç1 < 0,..., Çm < 0 (note ^ ° ^ 0 ! )
is optimal.

The proof of the above is trivial and therefore omitted.
In order to establish the convergence properties of the algorithms we are

about to present, we shall need the following new theorem. The reader should
note that it belongs to the same family of convergence results as theorems by
Topkis and Veinott [3] and Zangwill [2], However, the theorem below is more
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direct and more gênerai than the Topkis and Veinott result and is easier
to apply, though not quite as gênerai as the Zangwill result.

(17) Theorem : Let Tbe a subset of Rn, let c: T-* Rl be a « stop » function,
and let a: T—* T be a « search » function. Suppose that : (i) Tcontains désirable
points which can be characterized by the fact that x € T is désirable if and
only if

(18) c(a(x)) < c(x) ;

(ii) Either cQ) is continuous at all non-desirable x £Tor else c(x) is bounded
from above for x € T;

(iii) For every non-desirable x € T there exists a s(x) > 0 and a S(x) > 0
such that

(19) c(a(x')) — c(x') > S for all x' € T, \\x — JC'|| < s.

Let { Xi } be a séquence in !T constructed according to the rule

(20) xi+1 = a(xt), i = 0, 13 2,...

and satisfying

(21) c(^;£+1)

Then, either { xf } is finite and its last element is désirable, or { xt } is infinité
and every accumulation point of { xt } is désirable.

Proof: Suppose that { x{ } is finite and that xs is its last element. Then the
construction of new éléments must have stopped because c[a(xs)] ^ c(xs), i.e.,
because xs is désirable.

Now suppose that {xt } is infinité and that xt —> x* for / 6 K9

K C { 0, 1, 2,..., }, with x* not désirable. Then there exist e* > Oand S* > 0
and an integer k€Ksuch that for all i ^ fc, i €K,

(22) | | * , -** | | < s*
and

(23) ^ £ + 1 ) - c ( ^ ) > S * .

Hence, for any two successive points xi9 xi+j, i, i-\-j&K, i ^ k, of the
subsequence, we have

(24)

— c(xf)] > 8*.

But, because of (21) and (ii), c(xf) —v c* < oo for i eK, i ->- co, which is
contradicted by (24). Hence each accumulation point of { xt } must be dési-
rable. Q.E.D.
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We shall now show how the above theorem may be used to prove the con-
vergence of some well known algorithms. It will be seen that the nature of
theorem (17) is such that not only does it permit us to pfove convergence of
these algorithms but that it also enables us to establish certain qualitative
bounds on déviations from the idéal subprocedures making up these algorithms,
which are compatible with convergence. It will also be seen that it provides
guidelines for the dérivation of new algorithms from old ones.

H. METHODS OF FEASIBLE DIRECTIONS

In this section, we shall consider a class of methods introduced by Zou-
tendijk [5] together with some new modifications. We shall assume that the
set Q has an interior, since otherwise these methods make no sensé as we shall
soon see.

(25) Définition: For a ^ 0, let q>a: Q -+ R1 be defined by

cpa(x) = min max < V ƒ*(*), h >
h€S i€Ja(x)

where JJix) is defined as in (6), and S is any given compact set containing the
origin in its interior (note that when Q has no interior <pa(x) = 0).

(26) REMARK: TO evaluate cpa(x) we solve
minimize G

(27) subject to <r — < V ƒ'(*), h > ^ 0 for i € JJx), h € S.
The optimal pair aa(x), hjpc) for this problem satisfies

?aW = <*«(*), <*JLx) = max < V ƒ'*(*), hjpc) > .
t€Ja(x)

In solving (27), we shall always set hjx) = 0 whenever ajx) = 0 and ha(x)
is not unique. Note that a sensible choice for S would be S = { h \ \hl\ ^ 1 },
o r S - { / * | ||A|| ^ 1}.

The algorithm we are about to present in the form of an idealized computer
program will find points x € O such that <po(x) = 0. Note that these algo-
rithms are parametrized by the particular choice for the set S.

(28) Algorithm : Suppose that a x o e û ( * ) and s > s' > 0 are given.
Step 1 : Set s(x0) = e [We shall use the abbreviated notation s0 = e(x0)].

(1) To find a xQ e fi, solve, using the algorithm (28), the problem

min { o | ƒ<(*)— o < 0,i = 1,2,..., m } ,

with initial feasible point x\ a' where x' is arbitrary and

o' - max {ƒ<(*') 11 = 1, 2,..., m }.

Since the optimal value à for this problem satisfies ô < 0, (28) will construct a x0 e Cl
in a finite number of steps, provided O has an interior.
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Step 2: Compute 9£o(x0) and hZQ(x0) by solving (27) for a = s0, x = x0.

Step 3: If <peo(xo) < — so> set h(x0) = /z£o(xo) and go to step 4.
If> 9e0(*o) > — so and e0 ^ e' compute 9o(*o)-

If 9o(*o) = °5 set x0 = x0 and Stop.

If <Po(*o) < 0, set e0 = eo/2 and go to step 2.

If <peo(xo) > — s0
 a n d eo > e', set s0 = so/2 and go to step 2.

iSte/> 4 : Compute X(x0) > 0 such that

X(x0) = max { X | f\xQ + ah(x0)) < 0 for all oc e [0, X] and i = 1, 2, ...3 w }

Step 5 : Compute [i(x0) € [0, X(x0)] to be the smallest value in that interval
such that

(30) ƒ °(x0 + (Ji(xo)A(xo)) = m i n { /O(*o + ^(^o)) k € [0,

6: Set x0 = x0 + H.(xo)A(xo) and go to step 1.

(31) Theorem : Let x0, xu x2i... be a séquence in Q. constructed by the
algorithm (28), i.e. xu x2,... are the consécutive values assigned to x0 in step 3
or step 1. Then, either the séquence { xt } is finite and its last element, say xky

satisfies 90(
xfc) ™ 0 or else { xt } is infinité and every accumulation point JC in

{ xt } satisfies <p0C*) — 0-

Proof: Obviously, the algorithm (28) defines a map a : Q —• Cl. We shall
show that this map together with the map — ƒ °(— ƒ° taking the place of c
and O the place of T) satisfy the assumptions of theorem (17). For the purpose
of applying theorem (17) we shallagree tocallapointx € O désirable if<po(x) = 0.

First we must show that the characterization (18) is satisfied. Thus, suppose
that x0 € ü satisfies 9o(^o) = 0. Then, since for all e0 > 0, JeQ(x0) 3 Jo(xo)>
we must have — s0 < 9o(*o) < 9s0(

xo)- Hence,after a finite number of halving
of s0 in step 3, the algorithm will find that 9o(*o) = 0 a n d will set x0 = x0,
i.e. a(x0) = x0. This is in agreement with (18).

Now, given a point x0 e Q5 the algorithm can only construct a new point xx

such that f0^) ^ f°(x0). Hence, suppose that the algorithm sets xx = x0

(i.e. x0 = x0 in step 3 or step 6). If x0 was reset to x0 in step 35 9o(*o) = 0.
Suppose x0 was reset to x0 in step 6, i.e. yt.(xo)h(xo) = 0. But this implies that
9eo(x0) = 0, i.e. 9E0(X0) ^ — s0

 : a condition in step 3 which does not permit
a continuation to step 6. Thus x0 can only be reset to the value x0 in step 3
and then it satisfies 9o(^o) = 0.

We shall now show that condition (19) is satisfied. Let x0 € Q> be any point
such that 9o(*o) < 0. Then, from (30)

(32) f(x0 + ii(xo)h(xo)) - f°(x0) ^ - So
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where §0 > 0- Now, from (6) it follows that there must exist a p' > 0 such that

(33) Jeo(x) C /eo(xo) for ail x € A(x0, p'),

where A(x0, p
7) = {x \ x €Ü, ||x — xo\\ < p' } and s0 is the value of s(x0)

used in Computing À(x0) in step 2. Let M: Rn —> Rl be defined by

(34) M(x) = min max < V ƒ'(x), A > .
h€S i€Je0(*0)

Then M is continuous C1) and there is a p" > 0 such that

(35) \M(x) - <pEo(x0)| < eo/2 for ail x € A(x0, p").

Let p = min { p', p" }, then, because of (33) and (35) and the fact that
— £o> we have, for ail x € A(x0, p), that

(36) ?«,(*) < M ( x ) < — e o / 2 .

But JH}2{x) C /eo(x)? and hence, for ail x € ^(x0 , p)5 we have

(37) ?£o/2(*)< 9«oW<—eo /2.

PFe therefore concîude that f or ail x € ̂ 4(x0, p) *Ae algorithm (28) wz7/ w ê Û
) ^ so/2 /« Computing h(x) in step 2, i.e. for ail x € ̂ 4(xOî p) and for

ail 1 € J£(jc)(x), < V ƒ '(x), h{x) > ^ - eo/2.
Now, for any x €A(xOi p) and i = 0, 1, 2,..., m, we have, by the mean

value theorem, that

(38) f\x + lh(x)) - ƒ '(je) + X < V ƒ \x + Vi(x))9 h(x) >,

where Ç € [0, X], Since the functions < V ƒ*(•), • >, 1 = 0, 1? 2,. . . , m, are uni-
formly continuous on A(x0, p)xS, for each i € {0, 1, 25..., m }, there exists
a X1" > 0 such that

(39) |< V f \ x + C*(x)), A(x) > - < V /
for ail Ç € [0, X£]. Similarly, since the functions ƒ l*(*) are uniformly continuous
on A(x0, p) and since S is compact, there exist X* > 0, i = 1, 23 . . . , w, such
that

(40) \Ax + Wx))-A*)\< eo/2.
Now, for each x 6 A(x0, p) and for each 1 € /e(x)(x), < V ƒ f(x), /z(x) > ^ — so/2,
and for each x € ̂ (x0 , p) and for each 1 € /e (x )(x), ƒ l(x) ^ — so/2- Hence,
setting ÎL = min { X°, X1,..., Xm, X1, X2,..., Xm }, we have, for any x € A(x0, p)

f\x + £h(x)) — f\x) < — (Xeo/4 for ail i € / . ( x )(x);
(41)

ƒ ^ + |ïfc(Jc)) ^ 0 for ail i € /

(1) Proposition : Let M(x) = min g(x, j') where g: iî* x Rn^> R1 is continuous and

r c J?" is compact. Then £ƒ(•) is continuous.
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Since for all x e A(x0, p) we must have [i(x) ̂  jï9 we are led to the con-
clusion that

(42) - f\x + ii(x)h(x)) - ( - ƒ °(x)) > jïco/4, for all je G ^(*0, P),

i.e. that condition (19) is satisfied. This complètes our proof.
We have already observed that by setting S = { x e Rn | \x*\ < 1 }, wecan

compute 9e(,)(x) and /*(x) by solving a linear programming problem, i.e. these
quantities are obtainable by finite step procedures. Thus, the weak link in the
algorithm seems to be the requirement of solving équations of the
form f %x + 7Ji) = 0 and of minimizing the function ƒ °(.) along the linear
segment { x j x = x0 + y.h(xo)9 p € [0, X(x0)] }. The following propositions which
are obvious in the light of theorem (17), shows to what extent these opérations
may be approximated without affecting the convergence properties of the
algorithm.

(43) Proposition : Suppose that in step 6 of the algorithm (28) x0 is reset
to x0 + {LoK

xo)> where, for a fixed \i € (0, 1), \i0 satisfies

(44) ( ƒ °(*o) - ƒ °(^o + M(*o))) > vU*(x0) - f°(x0 + |i(*o)*(*o)).

Then theorem (31) remains valid.

(45) Proposition : Suppose that the ƒ*(•) are convex, that the sets
{ x | fl(x) ^ 0 } are bounded for i = 1» 2, ..., m and that steps 4 and 5 of the
algorithm (28) are replaced by the steps 4', 5' below. Then theorem (31) still
remains valid.

Step 4' : Compute X° > 0, X1 > 0, X2 > 0,..., Xm > 0 to satisfy» for
any 0 < S < 1/2,

(1 _ S)X° < V ƒ °(xo), Kx0) > < f\x0 + \%{xQ)) - f

^ < V f\xo\ h(x0) > ^ ƒ \x0 + \'h(x0)) - f W < - ƒ W

for i =£ 0, i € Jgjfro);

— XfS < f\xQ + Vhixo)) < 0, for i e J,0(x0).

Step 5' ; Set [i(x0) - min { V | i € { 03 1, 2,.... m }}.
The introduction of s0 iato the algorithm (28) ensures that for each non-

optimal x0 6 ü, there exists a p > 0 and a Xm > 0 such that for all x € £1,
\\x — xo\\ < p, we have x + 7Jt(x) € Q. for X € [0, XJ5 i.e. it ensures a minimal
step size about each non-optimal x0 € Ü. This effect is obvious from the proof
of theorem (31).

A second important, but not entirely independent, effect of using e0 in (28)
is to ensure that we do not solve Systems of simultaneous équations of the
form ƒ l(x) = 0, i € I, for points on the intersection of surfaces when these
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points are not optimal. The solution of such a System of nonlinear équations
by gradient methods requires an infinité number of opérations and hence
solution points would become convergence points of a séquence x0, xu x2, ...
constructed by an algorithm not using an s procedure. Thus, an algorithm
would jam (or zigzag) without « the antijamming précautions » defined by the
use of s0 in the algorithm (28).

m. GRADIENT PROJECTION METHODS

We shall now consider two variants of Rosen's gradient projection method [6].
These methods are particularly attractive when the constraint set Q is a convex
polytope with interior and ƒ °Q is convex. When £i has no interior, one simply
restricts oneself to the linear manifold containing Q.

(46) Assumption : We shall suppose that the cost function ƒ °Q is convex
and that the constraint functions ƒ'(•), i = 1, 2,..., m are of the form

(47) ƒ'(*) = < ƒ * * > - * ' ,

where ft € Rn and bleRl. We also assume that the set

Q = {x\ ƒ '(*)< 0,f = 1, 2,..., m }
has an interior.

(48) Définition : For every x € £i and a ^ 0 let

4 W = { i |< ft, * > - b% + a ^ 0, i € { 1, 2,..., m }}.

(49) Assumption : We shall suppose that there exists a a* > 0 such that
for every x € fi and a € [0, a*] the vectors fi9 i € Ia(x) are linearly independent.

(50) Définition: For every a € [0, a*] and x € fi let

(51) ^)a(x) — (fi)i€I<x(x)

be a matrix whose columns are ƒ;, / € /a(x) (ordered linearly on /)• Let P/a^) be
the matrix which projects Rn into the subspace spanned by the vectors ft,
i€la(x), and let Pfa(x) C) be the matrix which projects Rn into the subspace
orthogonal to all the/J, i € /«(A;), i.e.

(Note that matrices Pia^9 Pfa(x) a r e symmetrie and positive semidefinite.)

Consequently, for every x £ Q and a 6 [0, a*] we have

(54) V f°(x) = P / a W V ƒ°(x) + Pi-8(ï) V ƒ °(*) = F,, ( l )Ux) + PfaM V ƒ °

(1) When Ia{x) is empty, we shall assume that Pia(*) is the zero matrix and that
is the identity matrix.
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where

(55) W) = (*£« ^
It now follows directly from corollaries (10) and (16) that x is optimal if

and only if

(56) Pf0(x) V ƒ °(x) = 0, Ço(£) ^ 0.

We make one more observation before stating an algorithm. Consider
the expansion (54) and let j € IJx). Then, from (54) (since

(57) / tw-J V /°W = UfàPÎaM-jfj + fiai*) V /°W.

and, since (57) is a décomposition into orthogonal components,

(58) \\PUy-j V /°(x)||2 = <&*))* | P U - y / J a + ll^(x, V A*)| |2 .

Finally note that

(59) <fp PJaix).j V f\x) > = Ùx) < ƒ„ P t ^ / i >•

(60) Algorithm : Suppose we are given a e € [0, a*], with a* as in (49),
a e' € (0, s) and a x0 € Q.

Step 1 : Set s(x0) = s [We shall use the abbreviated notation s0 = S(JC0)].

5/e/7 2 : Compute

(61) hZo(x0) = PJEoixo)Vf°(x0).

Step 3 : If ||*eo(x0)||2 > eo? set A(JC0) == — ASo(x0) and go to step 6,

If ||/Ï£()(XO)||2 ^ £0 and e0 < s \ compute Ao(^o) [as in (61)] and Ço(*o) [as
in (55)].

If ||/*o(*o)||2 = 0 and £o(*o) ^ 03 set x0 = x0 and stop (x0 is optimal).

Otherwise, set h(x0) = — heQ(x0) and go to step 4.

If ||^eo(*o)||2 < £o and s0 > e' go to step 4.

Sta?/? 4 ; Compute Çeo(x0) [as in (55)].

If ££o(x0) ^ 0 set h(x0) = — hH(x0) and go to step 5.

If ^zpc) > 0, compute

(62) hH(x0) = Pio(xo)-j V ƒ °(x0)

such that

(63) P
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Set h(x0) = — ̂ ( ^ o ) a n d B° t o s t eP 5-
Step 5: If |/*(xo)||2 < e0, set s0 = to/2 and go to step 2.

If I/*(*<,) ||2 > s0 go to step 6.

Step 6 : Compute [i>(x0) > 0 to be the smallest value satisfying

(64) ƒ °(x0 + n(xo)h(xo)) = min { ƒ °(x0 + |A*(X0)) \ (x0 + ^ ( J C 0 ) ) € Û }

Step 7: Set x0 = x0 + jx(xo)/z(x0) and go to step 1.

(65) Theorem : Let x0, xu x2,... be a séquence in Q constructed by the
algorithm (60), i.e. xu x2,... are the consécutive values assigned to x0 in
step 7. Then, either { xt } is finite and its last element is optimal, or else { xt }
is infinité and every accumulation point of {x t } is optimal. (When ƒ° is
strictly convex, the problem has a unique optimal solution JC and then xt —> Je.)

Proof: We shall again make use of theorem (17) under the assumption that
T = Ü, a: O - • O is defined by the algorithm (60), and c = — f°. We begin
by showing that the characterization (18) is satisfied. Suppose x0 is optimal.
Then ho(xo) = 0 and £o(*o) ^ 0. Now? for any e0 > 0, IEQ(x0) 310(x0) and
hence

(66) LMo) $ 0
and

(67) ||/JEO(XO)| = ||Ao(x0)|| = 0.

Consequently, after a finite number of halvings of s0 in step 5, the algorithm
will stop in step 3, ressetting x0 to its original value. This satisfies (18).

By construction, the algorithm stops setting x0 = x0 in step 3 if and only
if x0 is optimal. This is the only possible condition for setting x0 — x0, since
it is not possible to have yi(xo)h(xo) = 0 in step 7 for the following reasons.
First, h(x0) = 0 is not allowed in step 6 and hence in step 7. Second, if h(x0) ^ 0
then [i(x0) ^éz 0, since for all

i € /eo(^o), < Kxo),ft ><0 and < V / ° ( * 0 ) , h(x0) > = — \\h(xo)\\
2 < 0.

We must now show that (19) is satisfied, i.e. that if x0 G O is not optimal,
then there exists a p > 0 and S > 0 such that

(68) — (f°(x + [i(x)h(x)) — f\x)) ^ S for all xeQ, \\x — xo\\^ p .

Let s0 be the last value of e(#0) (i-e- just before being reset again in step 1).
Then, either

(69) K(*o)| |2 > e0)

or else

(70) ||Âeo(*0)||
2 >
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Suppose (69) took place, i.e. that h(x0) = — hH(x0). Then there exists a
p' > 0 suchthat

01) Ili^oco) V ƒ °(x)||2 > So/2 for all x € A(x0, p')

(where, as before, A(pc0, p') = {x | x €& ||x — xo|| ^ p' }),

Let p" > 0 be such that Izpc) C 7eo(x0) for all x € 4(JC0, p") and let
p = min { p', p" }. Then, for all x € A(x0, p) and a € [0, e0],

(72) IIP^V / V ) | > ||<oWV /°(x)| > iPUöV A*)B > W2.
We therefore conclude that if (69) took place, then for all x € A(x0, p) the
algorithm will use a final value of z(x) ^ so/2.

Now suppose that (70) took place, i.e. that^(xo) = —KQ{pc0). Then,
eifher ||^0(x0)|| > 0 or ||A„(*0)|| = 0.

Suppose [|Aeo(̂ o)l| = S' > 0. Let p" > 0 be such that ï£Q(x) C IH(x0) for
ail x e A(x0, p"). Then there exists a p € (0, p"), such that for ail x e A(x0, p)
and for ail a € [0, e0],

(73) \\ha(x)\\ > \

and hence for ail x e A(x0, p), the algorithm will set e(x) > [S'/2] > 0 0).

Now suppose that \\hm(x0)\\ = 0. Then V/°(x0) = £ Se0(*o)/( a n d i n

ie/eo(xo)

this représentation the coefficients are unique. Now let

8, = min { H P / V / V O ) ! I ̂ c /«(*o), l|^V/°(xo)|| > 0 }

(74) and

S2 = min { max \\Pf_,V/°(xo)|| | / C IJpc0), \\Pf Vƒ°(xo)|| = 0 } .

Obviously, Sj > 0 and S2 > 0. Let S' = min { s0, S1; S2 h
 an(i> again,

let pff > 0 be such that 7e0(x) C IE0(xo) for ail x € A(x0, p"). Then there exists
a p € (0, p") such that for ail x € A(x0, p) and ail x € [0, e0], either

(75) or
max

We therefore conclude that if (70) took place, then for ail x G A(x0, p), the
algorithm will use a final value of s(x) ^ [872] > 0.

(1) Let k be an integer such that e/2**1 > d' /2> e/2&. Then we define [s72] = 2*+t.
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Now, for all x € A(x0, p), and for ail i € Ie(x)(x), < fi9 h(x) > ^ 0 [see (59),
(61)], and so, as far as these constraints are concerned, one can displace oneself
an arbitrary amount in the direction h(x) from x without violation. We now
conclude (as in the case of the feasible directions algorithm) that there exists a
^ > 0 such that x + XA(JC)/||A(JC)|| G Q for aU X G [0, XJ and xeQ,
\\x — xo\\ ^ p.

Next, we note that < V f%x)9 h(x) > < — eo/2 (or — [S'/2]) for ail
x e A(x0, p) and that there exists a y such that || A(JC)|| ^ y for ail x € A(x0, p).
It now follows, by means of an argument essentially identical to the one fol-
lowing (31), in the proof of the feasible directions algorithm, that (68) is
satisfied for some S > 0. This complètes our proof.

Since < V/(x), h(x) ) = — ||^W||2s one may wish to accelerate the algo-
rithm (60) by increasing \\h(x)\\ as much as possible at each step. The following
accélération procedure is very easily seen as not affecting the convergence
properties of the algorithm (60). (To account for it we need to modify the proof
of theorem (65) only very slightly.)

Step r : [Accélération procedure, to be inserted between step 1 and step 2
of(60)]:

Compute ZH(x0)9 hH(x0) [as in (55), (62)].

If lH{x0) ^ 0 go to step 3.

If

Çeo(xo) > 0 and ||Âeo(x0)|| ^ 2 ||A^(xo)|| set h(x0) = heo(x0)

and go to step 5.

If Çeo(*o) > 0 and \\hBo(xo)\\ < 2 \\h^xQ)\\9 go to step 2.
This concludes our discussion of the convergence of gradient projection

methods. We shall next discuss methods which are a cross between gradient
methods and methods of feasible directions.

IV. METHODS OF FEASIBLE DIRECTIONS
WTTH PROJECTION OPERATORS

In the algorithm (28), to obtain a « feasible direction » h(x0) we had to
solve a minimization problem. In the algorithm (60) this process was replaced
by the computation of a projection operator which, generally, is easier to cal-
culate. However, algorithm (60) is only applicable to problems with linear
inequality constraints. We shall now present a modification of (60) which
applies to more gênerai situations. This modification was inspired by a closely
related heuristic algorithm described in [9].
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(76) Assumption : We shall suppose in this section that all the functions ƒ *,
i = 0, 1, 2,..., m in (1) are convex and that the set

Q = { * | / « ( x ) < 0,i = 0,1,2, . . . ,m}
has an interior.

(77) Assumption : We shall suppose that theie exists a a* > 0 such that
for every a € [0, a*] and x £ Q, the vectors V ƒ*(*), i € /a(x) are linearly inde-
pendent [where IJx) was defined in (48)].

We shall retain in this section the notation introduced in the preceding one
with the following, rather obvious modification. For every a € [0, a*] and
x € Q we shall let

(78) FIaM =

be a matrix whose columns are the V f l(x)9 i € Ia(x) (ordered linearly on ƒ).
The projection matrices Pia(X)> ^/a(x) w^l still be defined by (52) and (53),
respectively, with the matrix F/ot(x) now defined by (78), etc.

(79) Algorithm : Suppose we are given a s € [0, a*] with a* as in (77), an
s' €(0, s) and a x o c f i ,

Step 1 : Set s(x0) = £* [We shall use the abbreviated notation e0 = e(x0).]

Step 2: Compute

Step 3: If |)/zeô(x0)[|
2 > £o5 set h(x0) =—h£o(xo) and go to step 6.

If |(/zeo(x0)||
2 < £0 and s0 < e' compute ho(xo) [with e0 = 0 in (80)] and

Ç0(x0) [as in (55)].

If ho(xo) = 0 and Ço(
xo) ^ 0, set x0 = x0 (x0 is optimal).

Otherwise set h(x0) = — hSo(x0) and go to step 4.

If ||^e0(x0)||
2 < s0 and e0 > s' go to step 4.

: Compute £eo(x0)-

c0) ^ 0 set h(x0) = —hZo(x0) and go to step 5.

If ££o(x0) > 0, compute

(81) hH(x0) = P,

such that

(82) ||^eo(xo)|| = lûax

Set h(x0) = — hsQ(xo) and go to step 5.

Step 5 : If ||/*(xo)||
2 < s0 set s0 = eo/2 and go to step 2.
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If ||^(*o)||2 > e0 goto step 6.

Step 6: Set KH(x0) = /eo(xo) when h(x0) = — heo(xo) and set

when A(#o) = —hSQ(x0). Compute

(83) v(x0) x $(xo)h(xo) + FK^^Fl^^F^^y't

where f = — £00> 1,..., 1) and P(x0) ^ 1 is the smallest positive scalar such
that

(84) fc

for k = 0 when h(x0) = — hSo(xo) and for k = 0, 7 when /*(x0) = — hH(x0).

Step 7: Compute X(x0) > 0 such that

(85) X(x0) = max { X | ƒ *[JC0 + Kv(x0)] ̂  0» £ € [0, X], z = 1, 2, . . . , m } .

Step 8: Compute \i(x0) to be the smallest value satisfying

(86) ƒ V o + n(*oM*o)l = min { f°[x0 + yLv(x0)] \ p € [0, X(x0)] } .

Step 9: Set x0 = x0 + yt-(xo)v(xo) and go to step 1.
(87) REMARK : Note that the above algorithm differs from the algo-

rithm (60) only in the opérations defined in step 6.

(88) Theorem ; Let xQ9 xl9 x2,... be a séquence in Cl constructed by the
algorithm (79), i.e. xu x2,... are the consécutive values assigned to x0 in
step 7. Then either { xt } is finite and its last element is optimal, or else { xt }
is infinité and every accumulation point of { xt } is optimal. (When either ƒ °
is strictly convex or Cl is strictly convex, or both, there is a unique optimal
solution for the problem (1), and hence a unique accumulation point for the
séquence { xt }, when infinité.)

Proof : Again, we shall simply show that the assumptions of theorem (17)
are satisfied. We omit a démonstration that condition (18) is satisfied since in
this case it is identical to the one given for algorithm (60) in the proof of theo-
rem (65).

We shall now show that for every non-optimal x0 € Cl, there exist a p > 0
and a S > 0 such that

(89) - (ƒ °(x + ii(x)v(x)) — f°(x)) > S for ail x € A{x0, p).

First, proceeding as in the proof of theorem (60), and, in addition, using
the fact that the ƒ * are continuously differentiable, we can show that if x0 e Cl
is not optimal, then there exists a p > 0 and a S' > 0 such that for ail
x € A(x0, p)

(90) \\h(x)\\ 5



i.e. e(x) ?
x € A(x09 p)

(91)

and, if Kz(x)(:
(92)

E.

i [8'/2], for all x e A(

< V/°(x), Ü(JC) >

«) 7^ /«(»)(*) (say ^E(J[

Furthermore, for all i 6 üTe(x)(x).
(93) <V/'(x),t<*)>

POLAK

x0, p). Next, we find t

<-E(x)^-[S'/2]

yy-^J lz(x)\yçj ])•>

<—e(x)<—[8'/2].

, * € Û , | | J C — * o | | < P

= -S(x)<-[S'/2]

Finally, an inspection of (83), (84), (61) and (62) indicates that there exists
p €(0, p] and a M€(0, 00) such that ||t;(x)|| < Af for all JC €A(X09 p). The
proof may now be completed by following the steps after (37) in the proof
of theorem (31).

(94) REMARK : The accélération step Y proposed for algorithm (60) can
also be utilized in the present algorithm.

We now turn to an entirely different type algorithm whose convergence
can also be proved by means of theorem (17).

V. A DECOMPOSITION ALGORITHM

So far, we have presented a number of algorithms whose convergence was
proved by setting c = —ƒ ° in theorem (17). In order to show that c may have
to be chosen differently, we present a simple décomposition algorithm which
is in the class discussed extensively in [7].

Consider the particular problem
(95) minimize ||xj|2 subject to A

where x € RN, \\x\\2 = ]T (x1)2, A is a n X N matrix with N > «, of rank nT
i=x

and D C Rn is defined by

(96) Q = { z € Rn I f\z) < 0, i - 1, 2,..., m }

and is assumed to be strictly convex and compact.
(97) Définition : Let S = {z eR» \ \\z\\ = 1 } and let v : S-+Ü be-

defined by < z — v(s\ s} < 0 for all z e ü.
(98) Définition : Let T= {s eS | < j , t<j) > ̂  0 }. Let ciT^R1 be

defined by
(99) c(s) = min { ||x||2 |< j , Ax — v(s) > = 0 } ,

and let w : T^> Rn be defined by
(100) w(s) = ̂ x(5),

where x(^) € Rn is such that c(,y) = \\x(s)\\2
9 i,e. JC(J) = c(j)i4T
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(101) REMARK : It is shown in [7] that v, w, and c are continuous maps.

(102) Algorithm : Suppose that a s0 € T is given.

Step 1 : Compute v(so%
 c(so)> a n d wC^o)-

Step 2: If v(s0) = w(s0), stop. [c(s0) is the minimum cost for (95) and
x(s0) is the desired solution, i.e. w(s0) = .4JC(J0)].

If v(s0) ^ w(so)> compute a(so)9 where a : T-> Tis defined by

(103)

dis) € o"w/ ~ \ s Ç. J, s = A5 -j-

c(a(s)) = max { c(s') | j ' 6 a(s) }

and ||s — a(s)\\ is minimized (to make a(s) unique).

Set ,y0 = a(s0) and go to step 1.

(104) Theorem : Let s0, sl9 s29..., be a séquence of points in T generated
by the algorithm (102), then either { st } is finite and its last element, sk9 is such
that c(sk) = min { ||x||2 | Ax e ü } and x(sk) is optimal for (95), or else {st }
is infinité and st -^ s, where c(s) = min { || x||2 | Ax e Q } and x(s) is optimal
for (95).

It is shown in [7] that the map (ca) : T~> R1 is continuous and hence that
the maps c and a as defined by (99) and (103) respectively, satisfy the condi-
tions of theorem (17).

For practical aspects of algorithms such as (102), i.e. methods of Computing
v(s) and the effect on convergence of finitely calculable approximations to
v(s) and a(s), the reader should consult [4] and [7].

CONCLUSION

In presenting a unified approach to optimization algorithms, we have
mostly used as examples variations of well known nonlinear programming
algorithms. However, this approach is also fruitful in application to optimal
control algorithms such as those in [7], to unconstrained optimization algo-
rithms [8] (modified Newton methods, conjugate gradient methods), and to
penalty fonction algorithms such as [12]. Thus, the scope of the approach
presented in this paper is quite large, and it is hoped that it will lead to new
developments.

The research reported herein was supported by the National Aeronautics and
Space Administration under Grant NsG-354, suppl. 4 and 5.
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