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ON QUEUEING WITH
REGULAR SERVICE INTERRUPTIONS

by P. ROBILLARD (!) and P. Naor (?)

Résumé. — Une situation de file d’attente est prise en considération dans laquelle les
arrivées des clients se font selon la loi de Poisson ; le processus est stationnaire et les temps
de service sont distribués d’une fagon indépendante, identique et selon la loi exponentielle.

Dans Poccurrence, le poste unique du systéme interrompt et renouvelle ses activités de
service d’une maniére réguliére et périodique. Les longueurs moyennes des files d’attente a
des époques diverses et pendant des périodes différentes sont obtenues par dérivation a I’aide
de procédés d’approximation. Un nombre de rapports exacts entre ces grandeurs a été établi.

I. INTRODUCTION

In industrial, traffic, military, medical (hospital) and other practice queueing
situations are frequently encountered in which the service station discontinues
and resumes its operation intermittingly. Thus, for instance, the station may
physically break down and repairs have to be carried out before resumption
of service; in the meantime a queue is being built up. Or again a train of high
priority customers may seize upon the station and effectively displace an accu-
mulating queue of low priority customers from service for some time. In both
of these types of station breakdown (and in some others) it is not unreasonable
to assume that the disruption of service was brought about in some Poissonion
fashion. Models of this character have received rather extensive treatment in
some recent communications, e. g. in studies by Gaver (1962) and by Avi-
Itzhak and Naor (1963).

A number of cases presents itself in which the mode of interruption possesses
a different character. Thus, for instance, the discontinuation of service (for
some time) may be associated with some savings as well with additional expense
due to increased average queue size. Hence if a decision maker is able to exer-
cise detailed control an optimal policy may be to close down the service station
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when no customers are in the system and reopen it after a queue of prescribed
size has accumulated. A rather general model pertaining to such a situation
(as well as optimisation procedures) was presented by Yadin and Naor (1963).
However, it may not always be possible to control the system in the fashion
described above. The « next best » procedure appears to be installing a periodic
cycle made up of prescribed service and shutdown phases. This is also a very
reasonable course of action whenever the decision maker has to apportion the
time of the service station to a number of « mutually exclusive » customer
streams. This set of problems is easily exemplified by an intersection where the
various streams of vehicles are regulated by a « fixed-cycle » traffic signal.
The fixed-cycle traffic signal has been approached and discussed from various
viewpoints; suffice it to quote two recent papers [Buckley and Wheeler (1964)
and Newell (1965)] in which — additional to the original contribution presen-
ted — older work is extensively reviewed and discussed. One view that has
emerged in a number of papers is that many results are not very sensitive to
distribution assumptions of arrivals and departures. If that is indeed the case
it appears to be advantageous to study the queueing system with regular
service interruptions under those distribution assumptions which are most
easily amenable to mathematical analysis, to wit : Poisson arrival and negative-
exponential service. Surprisingly enough this approach appears not to have
been taken before. Poisson arrivals have been considered in this context but
most authors assumed the departure pattern to possess deterministic character.
This latter assumption is neither warranted on using experimental evidence
from a traffic intersection nor is it mathematically convenient.

One purpose of this communication is to derive properties — some exact,
some approximate — of a queueing system in which the (single) station is
interrupted from time to time in a fixed-cycle mode. It is not assumed that the
model under discussion is a faithful representation of vehicular traffic passing
through an intersection regulated by a fixed-cycle traffic signal. Rather it may
serve for the purposes of approximation and bounding when such a traffic
situation is evaluated. Again in contexts other than traffic — allocation of
times to various computing jobs, say — the apportioning of uninterrupted
service times within a general cyclic arrangement may be of some interest.

No optimisation procedures will be presented here since they depend,
perforce, on two additional assumptions : a) a cost structure relating to the
waiting time of differing customer streams; b) dead time due to reorientation
and/or switching costs.

II. SOME BASIC RELATIONS

The notation and the nomenclature will be introduced as the occasion will
warrant. They will be (more or less) in conformance with the general usage
in the literature on queueing theory.
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Consider a cycle of duration T. Each cycle is made up of two phases — one
during which the station is capable of rendering service and one during which
the station is shut down. For convenience of discussion they will be referred
to as green and red phases respectively, and their durations (prescribed cons-
tants under our control) will be denoted by 6 and = respectively.

0++=T ¢))

As a matter of convention we shall stipulate that a cycle starts with the
green phase and ends with a red one.

Customers arrive at the station in a steady Poisson stream at a rate A which
is independent of time. They are being discharged from the station (if present)
during green periods only and the mode of service is such that

a) all service times are identically distributed,
b) the distribution is negative-exponential with parameter p, and,
¢) any two service times are independent of each other.

Without formal proof we state that (as in all other analogous systems) a
necessary and sufficient condition for a steady state regime to exist is non-satu-
ration; that is : the average arrival rate of customers must fall short of the
station’s average capacity to discharge customers on completion of service.
Now within the duration of a cycle AT customers make their appearance (on
the average); the station (if called upon) can render service to an average of (.0

customers. If we designate 2 and % by b and B respectively the necessary
®
and sufficient condition for steady state to prevail is represented by
b<B<1 )]

The physical meaning of b and B is the average « station busy-ness » (1)
and average « station busy-ness » during green phases, respectively. Hence
another wording for the above-mentioned criterion of steady state is that
during (some) green periods « patches » of idle station time must exist.

The steady state is characterized in the following fashion : Let p,(t) (i = 0,
1,2, ...; t = 0) be the probability of i customers — including the one receiving
service — queueing up at the station at time ¢. Typically p,(¢,) is not equal
to p,(t,); however if and only if the following relation holds for all values of
iand ¢t

pit + kT)=p{t)  (integral k) 3

a steady state regime pertaining to the system is said to exist.

We are now in a position to state (and derive) a number of basic relations.

(1) Average «station busy-ness » is the fraction of time during which the station
actually renders service.
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Consider a green phase; from the model assumptions it is clear that the rela-
tions between the various states are governed by a birth-and-death process.

dI:;)t(t) =—po()) +upi()  0< <) 4 a)

dpi(®) = — (A + wWpit) + Ap;i1(£) + wpis (D) (i=12..) (4 b)

dr
0<t<9

Next we define the average station « busy-ness » at time ¢ as

Z pit) = b(D) &)
i=1
The average total queue g(¢) at time £ is given by
9O =E{i|t} =" ip(®) ©)
i=0
As steady state conditions are assumed to exist it is clear that the average
increase, R, of queue size during a red phase equals

R =q(T)—q(®) = q(0) — q(0) =~ )

Obviously R is also equal to the average decrease of queue size during a
green phase; in short it is a measure of the non-random pulsations of the queue
due to intermittent opening and closing-down of the service station.

If equation (4 b) is multiplied by i and the result summed over all values of i
the following interesting relation is obtained

dg(®) _
—qr = M wb@) ©)
Equation (8) has an immediate physical interpretation : the change of the
average queue in unit time is made up of two components (of opposite sign) :

a) the number of arrivals in unit time A; b) the product of service rate p. and
the probability of rendering service b(¢), that is, the effective service rate pb(z)

If differential equation (8) is integrated between 0 and 0 we derive
f:dq(t) — 4®) — 4(0) = — s
= f:(x —ub(®))dt =20 —p Leb(t) d 9
which yields after a little manipulation

0
f b() dt =2 (10)
0 3
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But the 1 h.s. of (10) is the time invested by the station (during a green
phase or equivalently during a whole cycle) in rendering service. This equation
then is consistent with the definitions (given before) of the « average busy-ness »,
b, and of the « average busy-ness » during a green phase, B.

Next consider equation (4 b) again, multiply by i(/ + 1) and sum over all i.
This operation results in

d .
aE{i(l+l)lt}=2[1~q(t)(u—%)] an
Utilizing relation (8), the /. h. s. of equation (11) can be rewritten as

SE(G+ 1| 1) =3[V{i|z}+q2(z)+q(t>1=

(t)

V{ |t}+ 2g9() + 1] =

(12)
- gi V{i|t}+Dn—pb®2q() + 1] =

= 2[h —q(O) ([ —N)]
After some further rearrangements this relation is transformed into

Sy ii] ) =2 —2uqpo() 242 (13

It is not difficult to perform an integration on (13) between 0 and 0. We have
already utilized the fact — in relation (7) — that the average queue size at the
beginning of the green phase is equal to the sum of the average queue size at
the beginning of the red phase and the average number of arrivals during the
red phase. Closer inspection reveals that the random variable « queue size
at ¢ = 0 » may be considered as the sum of two independent random variables :
@) « queue size at ¢ = 0 » and b) « number of arrivals during the red phase » —
the latter being Poisson distributed with parameter Ar. Hence not only rela-
tion (7) holds but the variances, too, are additive

V{i|0}=V{i|0}+ 2 (14)

Hence integration of (13) yields

[} 0
f % V{i|t}dt=—nr = 27\6——2gf g(Opo(t) dt + rr  (15)
0 0

This in turn may be developed into the following very interesting relation

0
: fo a(Opolt) df = % —B (16)
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Equation (16) serves as starting point for the generation of some very useful
formulas. We shall designate the average queue sizes within a red phase and
within a green phase (these are quantities averaged over time) by ¢, and q,,
respectively.

Clearly

q(®) + 4(0)

q, = 3 = q(6) + 5 =q(0) — a7

The quantity g, bears no such simple relationship to the average queue sizes
at the special time epochs : # = 0 and ¢ = 0. It is obtained by integration and
on using equations (16) and (8) the following relation is generated

9 [:]
4y = % fo g(t) dt = é— fo q(Dlpo(?) + b} dt =

1L 110y 1 da)
_B+6—foq(t) ® ‘=B+6J0qm\ el K

— B+ bg,— Zlfe [40) — 4°(0)] = as)
— B+ bg,— 5 10T 1O g0 =

At
=B+bqg+;6q,=

Hence we obtain

q,(1 —b)—q,(B—b) =B (19)
This can be rewritten as
1+ g, (20)

The average queue (that is : averaged over time) is defined by
0 T

If we multiply (21) by B and add (19) another interesting relationship is
derived

B(1 + q) = (1 —b)g,— (B—b)g, + bg, + (B—b)q, =4, (22)
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Equation (22) is of particular interest. Clearly each of the three quantities ¢,
4, 4 is a function of b, B and R. The meaning of (22) is that once g, is deter-
mined, ¢ is uniquely fixed by the value of B. In other words : suppose the value
of g, has been determined by a triplet (b, B, R); if then B is held constant and
values b and R are varied simultaneously in such a way so as to keep g, unchan-
ged then — at the same time — the total average queue, g, is held constant as
well.

Judicious combination of (20) and (22) results in

b . B—b
I=T T Ei—h

(23)

Relation (22) can be usefully employed in an argument establishing an

inequality : For a given B the value of ¢ cannot fall short of

B y ; this lower

bound is attained (in a « thought experiment », of course) if service availability
and discontinuation are evened out in some sense and non-random pulsations
are not permitted. Thus, for instance, we could visualize (again in a thought
experiment) the service station to oscillate very rapidly between the two states
such that during a prescribed proportion of time the station is active and during
the complementary fraction no service can be rendered. This is equivalent to
generating a simple queueing situation with arrival rate A and effective service

Tate u % The associated queue lenght is then equal to i B 5 If now the oscil-

lations are less rapid (non-random) pulsations make additional contributions
to average queue size. What we have established then is the following

a6, B, R) > g6, B,0) = @

Manipulation of (24) and insertion of (22) yields
g2 B(l+4q)=gq, 2%
Since ¢ is a weighted average of g, and g, this inequality is equivalent to
9% <9< 4, (26)

An alternative line of argument leading to (26) would be to utilize the pro-
perty of p(?) being a continuous and increasing function within the interval
of customer discharge (0, 6). Differentiation of both sides of (8) renders

@) __, 0 _ o)
dr? dt dt 27N

Hence the second derivative of g(¢) is positive in the interval under consi-

deration and ¢(t) is then a strictly convex (and decreasing) function. However,

2
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within the interval (0, T') q(¢) is — by virtue of Poisson arrivals and absence of
service — a strictly linear function. The behavior of ¢(¢) within the period (0, T)
is schematically represented in figure 1. Inequality (26) is an immediate result.

Analogous arguments enable us to set bounds for the ratios Z—", % and g-
r r

From equation (20) we obtain

B—b 1—B g,
- =1 <
- 1 1-—b< 7, 1 (28)
a(t)
R
e T
0 e T
Figure 1.

Average queue length as a function of time within a cycle of duration T.

The lower bound can be approached as closely as desired by increasing
the value of R.
In a similar fashion we can derive

94
B< g1 29
7 (29

B—b b B q
B-—Bb‘l_(l—b) /(1—B)<;<1 (30)

Finally, in this section, an exact relation (that is, exact under the assump-
tions of our model) between 5(0) and b(0) is presented. Clearly for zero custo-
mers to be present in the system at the beginning of a green phase the preceding

and
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green phase had to terminate with an empty station and no customers could
have arrived in the interceding red phase. Hence the following must hold

Po(0) = po(®) ™™ (€))
or, noting that b(t) = 1 — p(t), equivalently
b®) =1— (1 —b(0))e® (32)

OI. APPROXIMATIONS TO AVERAGE QUEUE SIZE

The various relatively simple relationships presented in the previous section
do not suffice for the generation of an exact formula of the average queue size
in terms of b, B and R. In principle, of course, one could proceed in the following
fashion. First a matrix of transition probabilities { pg’ #) 1 is established relating
to states at the beginning and the end of a green phase; these transition pro-
babilities are expressible by rather complicated but well-known formulas.
Secondly the matrix of transition probabilities { p{*® } — relating to states at
the beginning and the end of a red phase — is set up; these transition proba-
bilities are of rather simple character since changes (k —j) follow a Poisson
distribution. Thirdly, the two matrices are multiplied — in the above order,
say — and that probability vector is sought which represents the (existing and
unique) fixed point of the matrix product. This is the set { p,(0) }. All quantities
of interest in this study can be derived from this set.

Unfortunately, it is not practicable to carry out this programme. The
entries p; j(°’°) are of functional complexity and the number of rows and columns
of the matrix is infinite. Hence it appears that the problem of evaluating the
average queue size has to be approached on other avenues.

Two modes of approximate evaluation will be presented here. One pertains
to the case of rapid pulsations (that is : frequent interruptions and renewals
of service) whereas the second mode is most useful when the oscillations are
rather slow.

Consider the function b(t) within the interval (0, 0). Clearly the average
«busy-ness» of the service station decreases in time. However, the rate of
decrease diminishes, that, is the second derivative of b(¢) is positive and extra-
polation of b(¢) beyond 0 (« forgetting » to close down the service station at

time 0, at it were) would let this function approach the value A (=b)in an
w

asymptotic fashion. Hence a reasonable approximation of this function is
given by

b(t) =b + (b(0) —b) e~ (33)

where { is a constant which will be determined by imposing two constraints :



20 P. ROBILLARD AND P. NAOR

1) At times ¢ = 0 and ¢ = 0 the values of the function b(¢) must be consis-
tent with the (exact) condition expressed by (32).

2) The average value (in time) of b(¢) within interval (0, 6) must equal B.

Hence we obtain

9
1 f b(t)dt =b + L b0) —b)(1 —e ) =B (34)
0Jo {0
or, alternatively
Z(B—b) = (b(0) —b)(1 —e™°) (35)
where the dimensionless constant Z is defined as
Z=10 (36)

This quantity Z — a constant for any given system — depends on b, B,
and R and can be determined in the following fashion : we examine the value
of b(t) at time (¢ = 0) and set it equal to that obtained in equation (32)

b®) =b+ (B(0)—b)e 2 =1—(1—b0))e® 37
This can be rewritten as
1—b0) =1 —b)(1—e %)+ (1 —b0)e™? =(1—5b(0)e" (38)

and further rearrangement yields

e~ VA
pol@) =10 = =20 =) (39)

Now if equation (39) is combined with (35) this results in
Z(B—b) =[1—b—(1—b0)1 —e %) =
(40)
=1 —bO)E* —eH)— (1 —b0))(1 —e %) =

= (1—bO)E"—1)
Hovewer further use can be made of (32) in order to modify relation (40) into
Z(B—b) =(1—b(0) e" — (1 —5(0) = (1 — b)) — (1 —b(0)) =

(41
= b(0) — b(0)

While the various equations presented above exhibit a number of simple
relationships between quantities of interest no single equation has been put
forward yet which describes Z as a function — implicit, at least — of b, B
and R. Such an equation can be derived by manipulating (39) and (40)

(1—b(—e? _Z(B—b)

R -z

1—50) =
© ef—e eR—1

(42)
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This latter equation may be transformed into

1—b1 1 1
B—'bz—ek—l+l—-e“z “3)
A convenient form for numerical computations is now obtained
_ VA
1—e %=
1—b Z 1 (44)

B—b “eR__|

It is easy to verify that one and only one solution of (44) exists with the
property Z > 0. Also an upper bound for the solution is immediately esta-
blished

Z<(1—e™® 1—5 (45)
B—b
on observing that the numerator of the r.h.s. of (44) falls short of the denomi-
nator. Inequality (45) may be advantageously employed for that stage of compu-
tational work at wihch a first approximation to the solution is sought.

It is both useful and interesting to describe the behavior of Z in dependence
on R with quantities B and b fixed but arbitrary [and, of course, consistent
with inequality (2)]. Since Z is an implicit function of R the necessary deriva-
tions are rather long and some results only will be reported here :

a) Z is a concave and monotone increasing function of R(> 0).
b) If R is set equal to 0, Z attains the value 0 as well.
¢) In the neighborhood of the origin a linear Maclaurin expansion yields

1—B
Zn R (46)

Clearly the coefficient of R is positive and unbounded.

d) With increasing argument R the function Z tends to an asymptotic value,
Z, say, which is the solution of
B—b

-Z0 __
T—p 2=+ 1 @7

1—b
by Barton et al. (1960). For finite R, the value of Z must fall short of Z;
hence we have

This latter function | Z,, dependent on the coefficient was tabulated

Z< Zay =(1——e'z°°)113—j_~% (48)
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which — under some easily specified circumstances — may be more useful
than (45).

Let the case of (sufficiently) small R and Z be considered. We may rewrite
(35) as

b(0) = b + .1~:Z-g_~Z(B——b) =b+ (1 + %) (B—b) 49

Combination of (49) and (46) yields
. 11—B R
b©) =b+ (B—b) + 55—, (B—bR=B+ (1—B)5 (50)

If now the value of b(0) — as obtained in (50) — is inserted in (32) an
approximate formula for 5(6) is derived

b(0)£l——(l—B)(l+}—§) =B_(1_B)§ 1)

It is recalled that relations (50) and (51) hold for sufficiently small values
of R only. Under such circumstances the value of b(¢) decreases linearly in the
interval (0, 6) and « jumps back » to the original value 5(0) during the inter-
val (0, T). Inspection of (50) immediately clarifies the meaning of the phrase
« sufficiently small R». The average increase of b with respects to its (time)
average value B in (0, 0) has to be very small and obviously under no circum-

R ..
stances may — exceed the value one. Hence we may sum up these two conditions

2
as
R B
251—3 (52)
and
R
3 <1 (53)

The physical significance of (52) is that the average increase and decrease
of queue size (to wit : 1; during a pulsation has to be small with respect to

average queue size under conditions of extremely rapid oscillations (to wit :
l—l—,;B ; the significance of (53) is that even if the average queue size were to

be very large, 1—§ is not permitted to take a value larger than 1.

Our next step will be the evaluation of the various average queue lengths
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of interest. Within the interval (0, 0) the average queue size at some arbitrary
(but fixed) time ¢ can be derived from (8), (33) and (35)

a(6) = g(0) + f dq"')dz
—q0) + L D — ()] dt” =

4(0) + f b+ BO)— By e} dr =
0 (54)

= 9(0) — (b(0) — b fot e™f dr = g(0) — 5 (B(O) — h)Y1 — &™) =

= 00— 55— 6O — DA — ) =
—¢t

-Z

1—e
=¢1(0)—R1

This formula yields the proper result (7), if the particular value ¢ = 0 is
chosen.

The average value (in time) of the queue, g,, during a green phase is then
obtained as

1 R R o _
quéfq(t)dt =q0) — - z+ f € S dr —

1—e (1—e %0 Jo
(55)
R R 1 1
= ¢(0) — e + 2=q(0)—R(1 oz —Z)

The corresponding quantity, g,, for the red phase is presented in equa-
tion (17).

It is useful to consider the coefficient of R in (55) as a function, ¢ say, of Z.

1 1
V=i z (56)

1t is not difficult to verify that ¢ is a monotonically increasing function of Z

such that 41(0):1 (:;) 0=%a(§;—\g)z=o:0and¢(oo)=l.

The latter value of ¢ is of little consequence since Z itself is a bounded
function of R.
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The two equations

=4¢(0)—¢R €1
and
are now combined with (19)
@@—wma—b»—P@—éRya—w= (59)

1
=q(0)1 —B)— R[W —b—3 (B—b)] =
Hence the average queue length at the beginning of the green phase equals

1
5 W—B—3B—bH

40 =1—5 + — R (60)

and the other average quantities of interest are immediately obtained

1
B 51— B)— (1 —5b)2¢ — 1]

g0) =2 — — R (6])
@—gu~w

q, (62)
oo

% R 63)

( ‘)( i, w

If R is sufficiently small we can approximate the function ¢ in the neigh-
borhood of 0 in the following fashion

Z 1 1—BR

¢*“ tp=3Y 5510

(65)

Hence if oscillations are very rapid — that is close-down and reopening of
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the station occurs rather frequently — the five average queue sizes of interest
may be (approximately) evaluated as

B R 1—bR?

Q(O)éx—_i+5+3-—_b'fi (66)
PO L (©)
o i iR (68)
9 é%ﬁ%z (69)
g P 1R (70)

Equation (70) is of particular interest since a special feature of the deter-
ministic interruption pattern is demonstrated. In the neighborhood of the origin
the average queue does not increase linearly with R (which — we recollect —
is an inverse measure of oscillation rapidity). The derivative of the average
queue with respect to R equals zero at the location R = 0. In cruder terms : if
oscillations possess « infinite frequency » the average queue size equals
B/(1 — B); if now the frequency is made finite but still very large then — to a
first approximation — no change in average queue size can be recorded. This
is strikingly different from the case of Poisson station breakdowns (instead of
deterministic breakdowns) which was dealt with by Gaver (1962) and Avi-
Itzhak and Naor (1963). The analogous formula for the average queue size
in this latter case can be derived from equation (24) in Avi-Itzhak’s and Naor’s
communication as

B (B—b) R
1=1=B " BUi—8)2 an

This formula holds rigorously over the whole domain of possible values of B,
b and R and therefore, also in the neighborhood of R = 0.

It is to be expected that the assumption of linear change in 4 [equations (50)
and (51)] should yield proper results (that is : correct formulas for average
queue sizes) for sufficiently small values of R and all permissible values of b
and B. Furthermore approximation (33) should be associated with numerically
good results for « medium » values of R. This is the case since (33) is a speci-
fication — negative exponential, that is — of a function b(¢) of which we know

8
:—-—Z—Eg—;; b) the integral J- b(¢t) dt; and c) that it is convex. Clearly
- )]
in practice the negative exponential specification can differ only slightly from
any other reasonable alternative specifications — precisely because of the ratio

a) the ratio
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and integral constraints. Hence, as long as 0 and 0 are not too far apart the
shape of b(¢) is almost invariant with respect to the set of alternative specifi-
cations, and perforce the same statement holds good for the shape of g(z) as
well as for g,, ¢, and g. If, however, 0 and 0 are far apart, (that is if the case of
large R is considered) we can no longer expect that the true shape of b(¢) and the
one derived from the exponential decay assumption will be close to each other.
Indeed it is possible to demonstrate that for a sufficiently large R a patently
wrong value of g(0) is obtained. This becomes obvious on examination of (61) :

S0 — B— (1 — B2y — 1)

The coefficient % tends to a (positive) constant

when R increases. Hence for sufficiently large values of R the average queue
size at the end of the green phase falls short of any arbitrarily selected finite
bound — even a negative one. This is not in accord with physical reality and
therefore the queueing formulas derived up to now are valid for a limited
domain only of possible R-values. There exists a value of R, R, say, beyond
which formula (61) must yield non-feasible values of ¢(0). It is clear that under
all circumstances the following inequalities must hold

b B
=5 <10 <1=3

(72)

While mathematical analysis would render (72) as strict inequalities the
equality sign was included for practical considerations. ¢(0) takes the value
on the r.h.s. in the case of extremely rapid oscillations (R very small); it is
equal to the Lh.s. of (72) if the oscillations are very infrequent (R very large).
The set of equations (60)-(64) is certainly not applicable if equation (61) does
not obey the left inequality (72).

The above considerations regarding the general behavior of g(8) serve as
a basis of approximating the various average queue sizes by a new approach.
¢(0) is a monotonically decreasing function of R with upper bound
B

q(elR**O):.:T‘_—B (73)

and lower bound

40 | R — o) éTE‘B (74)

Our present programme is to find a suitable monotonically increasing (in
dependence on R) function ® (R, B, b) possessing values
(0, B, b) =0 (75)
and

@(co, B, b) = 1 (76)
independent of B and b.
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For notational convenience define a quantity D as

B b 1 1 B—b

D=1—3 T T8 i—b a—Ba—p 7

The average queue at the end of the green phase, ¢(0), is then determinable by

40) = ;25— OD (78)

At the origin the value of the derivative of ¢(0) with respect to R is known

[e.g. from (67)] to be -—%-

Hence one criterion for the suitability of function ® should be

84(0) . 8@
(W)R=O T D(SR)R=0

If (as an example) an exponential form is selected for @ criterion (79) pres-
cribes that

f

1
3 (79)

R
DR, B,b) =1 —e 2D (80)

This is one of several « reasonable » choices for the functional form of @;
in the following, whenever ® appears in an equation, specialization (80) is not
necessarily assumed. However it should be emphasized that the various alter-
native forms for @ typically render similar shapes. Furthermore, within that
part of the domain of R in which alternative functions ®, and @, may attain
truly distinct values the relative contribution of @ to the average queue size ¢
is not expected to be appreciable.

Utilizing the various exact relations obtained before we derive the following
equations for average queue lengths of interest.

B
B R
% =7"% <I>D+§ (82)
B R (B—b)
s —I_—B+(i—“"’) T—b ©

. _ B | [R (B—Db)
— B—;—(——@D) ®9
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For sufficiently large R the function ® practically attains value 1. In this
case equation (84) tends to

.~ b, b (B—b R(B—b _
=15 "1=5'BA—b)  2BI—b)
_b2B—b—Bb) , R (B—D)
Bi—bf T 2BI—b) O

It is interesting to compare (85) with equation (71) which represents the
exact solution of a model with Poisson arrivals, exponentially distributed
service times, Poisson breakdowns of the service station and constant shutdown
times.

The present approximative procedure for the evaluation of average queue
size has been constructed in order to obtain results for large R — a region
where the first approximative procedure failed. However the « suitability »
criterion (79) which was required for the construction of function @ ascribes
the proper first derivative (with respect to R, at location R = 0) to all quene
sizes. Hence a linear Maclaurin expansion of queue length certainly yields
correct results and the present approximation is valid not only for large values
of R but also for very small values of that variable. Should we require — as an
additional suitability criterion — that the function’s second derivative too (at
location R = 0) should have the correct value then it is frequently possible to
obtain a « formula » which represents queue size very well over the whole
domain of R. However typically not many simple functional forms for ® are
at our disposition.

As an additional example for a suitable function @ we select

1
B—_=

®=1_¢ 2 cosh X «/———3 (86)
2D " 1—B

This function | which, incidentally, is meaningful only if % < B< % ren-

ders good approximations when introduced in equation (84) and its associates.
However frequently the application of rather complicated functions [such as (86)]
is superfluous and one can arrive at useful (approximate) results employing
graphical methods. The methods revolve around the following pivots : the
value of the function g at R = 0 is known as well as the function’s first two
derivatives; the straight line (85) is approached asymptotically when R increases.

IV. CONCLUSION

The model described, developed, and discussed in this communication may
have direct applicability in some queueing situations and formulas derived here
may possibly be employed as they stand. However the main purpose of this
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study was not to provide precise formulas to a rather narrow class of situations
described in our model : @) Poisson arrivals; b) service time exponentially
distributed; ¢) regular (that is cyclic) service interruptions and renewals. Rather
our aims were the following : 1) It has been shown (or at least claimed) in the
literature that many results are (almost) invariant under « moderate » changes
of assumptions. If indeed such robustness exists the optimal approach to
analysis is to make the simplest assumptions and use standard methods for the
derivation of the desired results. Setting up the differential equations pertaining
to the birth and death process appears to be a simple proceedure. 2) Even if the
desired robustness of results is not a characteristic of a large segment of « situa-
tion space » the analysis presented here may be utilized for bounding the proper
solutions and — at a later phase — arriving at approximations for the concrete
situation at hand. 3) In a wider class of situations where quasi-invariance of
solutions no longer prevails and even bounding by the special class under
discussion is not possible, the methods employed here and types of results
attained may serve as guide lines. Thus, for instance, the type of exact relation
as presented in (20) and the ensuing approximation (85) of the average queue
length are in all likelihood obtainable in other situations either more general or
differently specified.

We have made no attempt to develop optimisation procedures. To do this
further assumptions relating both to costs and to feasible allocations of service
to various customer streams must be made. Some work is in progress in this
-subject area.
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