On the Delta set of a singular arithmetical congruence monoid
Journal de théorie des nombres de Bordeaux, Tome 20 (2008) no. 1, p. 45-59
Si $a$ et $b$ sont des entiers positifs, avec $a\le b$ et ${a}^{2}\equiv a\phantom{\rule{0.277778em}{0ex}}\mathrm{mod}\phantom{\rule{0.277778em}{0ex}}b$, l’ensemble${M}_{a,b}=\left\{x\in ℕ:x\equiv a\phantom{\rule{0.277778em}{0ex}}\mathrm{mod}\phantom{\rule{0.277778em}{0ex}}b\phantom{\rule{4pt}{0ex}}\text{ou}\phantom{\rule{4pt}{0ex}}x=1\right\}$est un monoïde multiplicatif, appelé monoïde de congruence arithmétique (ACM). Pour chaque monoïde avec ses unités ${M}^{×}$ et pour chaque $x\in M\setminus {M}^{×}$, nous dirons que $t\in ℕ$ est une longueur de décomposition en facteurs de $x$ si et seulement s’il existe des éléments irréductibles ${y}_{1},...,{y}_{t}\in M$ tels que $x={y}_{1}\cdots {y}_{t}$. Soit $ℒ\left(x\right)=\left\{{t}_{1},...,{t}_{j}\right\}$ l’ensemble des longueurs (avec ${t}_{i}<{t}_{i+1}$ pour $i). Le Delta-ensemble d’un élément $x$ est $\Delta \left(x\right)=\left\{{t}_{i+1}-{t}_{i}:1\le i et le Delta-ensemble du monoïde $M$ est $\Delta \left(M\right)={\bigcup }_{x\in M\setminus {M}^{×}}\Delta \left(x\right)$. Nous examinons $\Delta \left(M\right)$ quand $M={M}_{a,b}$ est un ACM avec $pgcd\left(a,b\right)>1$. Cet ensemble est complètement caractérisé quand $pgcd\left(a,b\right)={p}^{\alpha }$, $p$ un nombre premier et $\alpha >0$. Quand $pgcd\left(a,b\right)$ a plus d’un facteur premier, nous donnons des bornes pour $\Delta \left(M\right)$.
If $a$ and $b$ are positive integers with $a\le b$ and ${a}^{2}\equiv a\phantom{\rule{0.277778em}{0ex}}\mathrm{mod}\phantom{\rule{0.277778em}{0ex}}b$, then the set${M}_{a,b}=\left\{x\in ℕ:x\equiv a\phantom{\rule{0.277778em}{0ex}}\mathrm{mod}\phantom{\rule{0.277778em}{0ex}}b\phantom{\rule{4pt}{0ex}}\text{or}\phantom{\rule{4pt}{0ex}}x=1\right\}$is a multiplicative monoid known as an arithmetical congruence monoid (or ACM). For any monoid $M$ with units ${M}^{×}$ and any $x\in M\setminus {M}^{×}$ we say that $t\in ℕ$ is a factorization length of $x$ if and only if there exist irreducible elements ${y}_{1},...,{y}_{t}$ of $M$ and $x={y}_{1}\cdots {y}_{t}$. Let $ℒ\left(x\right)=\left\{{t}_{1},...,{t}_{j}\right\}$ be the set of all such lengths (where ${t}_{i}<{t}_{i+1}$ whenever $i). The Delta-set of the element $x$ is defined as the set of gaps in $ℒ\left(x\right)$: $\Delta \left(x\right)=\left\{{t}_{i+1}-{t}_{i}:1\le i and the Delta-set of the monoid $M$ is given by ${\bigcup }_{x\in M\setminus {M}^{×}}\Delta \left(x\right)$. We consider the $\Delta \left(M\right)$ when $M={M}_{a,b}$ is an ACM with $gcd\left(a,b\right)>1$. This set is fully characterized when $gcd\left(a,b\right)={p}^{\alpha }$ for $p$ prime and $\alpha >0$. Bounds on $\Delta \left({M}_{a,b}\right)$ are given when $gcd\left(a,b\right)$ has two or more distinct prime factors
@article{JTNB_2008__20_1_45_0,
author = {Baginski, Paul and Chapman, Scott T. and Schaeffer, George J.},
title = {On the Delta set of a singular arithmetical congruence monoid},
journal = {Journal de th\'eorie des nombres de Bordeaux},
publisher = {Universit\'e Bordeaux 1},
volume = {20},
number = {1},
year = {2008},
pages = {45-59},
doi = {10.5802/jtnb.615},
mrnumber = {2434157},
zbl = {pre05543190},
language = {en},
url = {http://www.numdam.org/item/JTNB_2008__20_1_45_0}
}

Baginski, Paul; Chapman, Scott T.; Schaeffer, George J. On the Delta set of a singular arithmetical congruence monoid. Journal de théorie des nombres de Bordeaux, Tome 20 (2008) no. 1, pp. 45-59. doi : 10.5802/jtnb.615. http://www.numdam.org/item/JTNB_2008__20_1_45_0/

 D.F. Anderson, Elasticity of factorizations in integral domains: a survey. Lecture Notes in Pure and Appl. Math. 189 (1997), 1–29. | MR 1460767 | Zbl 0903.13008

 M. Banister, S. T. Chapman, J. Chaika, W. Meyerson, On a result of James and Niven concerning unique factorization in congruence semigroups. To appear in Elemente der Mathematik. | MR 2314039 | Zbl pre05235898

 M. Banister, S. T. Chapman, J. Chaika, W. Meyerson, On the arithmetic of arithmetical congruence monoids. Colloq. Math. 108 (2007), 105–118. | MR 2291620 | Zbl pre05133287

 C. Bowles, S.T. Chapman, N. Kaplan, D. Reiser, On $\Delta$-sets of numerical monoids. J. Pure Appl. Algebra 5 (2006), 1–24. | MR 2269412 | Zbl 1115.20052

 S. T. Chapman, A. Geroldinger, Krull domains and their monoids, their sets of lengths, and associated combinatorial problems. Lecture Notes in Pure and Applied Mathematics 189 (1997), 73–112. | Zbl 0897.13001

 A. Geroldinger, Uber nicht-eindeutige Zerlegungen in irreduzible Elemente. Math. Z. 197 (1988), 505–529. | MR 932683 | Zbl 0618.12002

 A. Geroldinger, F. Halter-Koch, Non-unique factorizations. Algebraic, Combinatorial and Analytic Theory, Chapman & Hall/CRC, 2006. | MR 2194494 | Zbl 1113.11002

 A. Geroldinger, F. Halter-Koch, Congruence monoids. Acta Arith. 112 (2004), 263–296. | MR 2046184 | Zbl 1057.13003

 F. Halter-Koch, Arithmetical semigroups defined by congruences. Semigroup Forum 42 (1991), 59–62. | MR 1075194 | Zbl 0734.20027

 F. Halter-Koch, Elasticity of factorizations in atomic monoids and integral domains. J. Théor. Nombres Bordeaux 7 (1995), 367–385. | Numdam | MR 1378586 | Zbl 0844.11068

 F. Halter-Koch, C-monoids and congruence monoids in Krull domains. Lect. Notes Pure Appl. Math. 241 (2005), 71–98. | MR 2140687 | Zbl 1093.13016

 R. D. James, I. Niven, Unique factorization in multiplicative systems. Proc. Amer. Math. Soc. 5 (1954), 834–838. | MR 64797 | Zbl 0055.27001