On multiple analogues of Ramanujan’s formulas for certain Dirichlet series
Journal de théorie des nombres de Bordeaux, Tome 20 (2008) no. 1, p. 219-226
Dans cet article, nous prouvons des analogues multiples des célèbres formules de Ramanujan pour certaines séries de Dirichlet, qui ont été présentées dans ses cahiers bien connus. De plus, nous obtenons des versions multiples de formules semblables à celles de Ramanujan qui ont été données par Berndt et d’autres auteurs.
In this paper, we prove multiple analogues of famous Ramanujan’s formulas for certain Dirichlet series which were introduced in his well-known notebooks. Furthermore, we prove some multiple versions of analogous formulas of Ramanujan which were given by Berndt and so on.
@article{JTNB_2008__20_1_219_0,
     author = {Tsumura, Hirofumi},
     title = {On multiple analogues of Ramanujan's formulas for certain Dirichlet series},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     publisher = {Universit\'e Bordeaux 1},
     volume = {20},
     number = {1},
     year = {2008},
     pages = {219-226},
     doi = {10.5802/jtnb.623},
     mrnumber = {2434165},
     zbl = {pre05543198},
     language = {en},
     url = {http://www.numdam.org/item/JTNB_2008__20_1_219_0}
}
Tsumura, Hirofumi. On multiple analogues of Ramanujan’s formulas for certain Dirichlet series. Journal de théorie des nombres de Bordeaux, Tome 20 (2008) no. 1, pp. 219-226. doi : 10.5802/jtnb.623. https://www.numdam.org/item/JTNB_2008__20_1_219_0/

[1] B. C. Berndt, Generalized Dedekind eta-functions and generalized Dedekind sums. Trans. Amer. Math. Soc. 178 (1973), 495–508. | MR 371817 | Zbl 0262.10015

[2] B. C. Berndt, Generalized Eisenstein series and modified Dedekind sums. J. Reine Angew. Math. 272 (1974), 182–193. | MR 360471 | Zbl 0294.10018

[3] B. C. Berndt, Modular transformations and generalizations of several formulae of Ramanujan. Rocky Mountain J. Math. 7 (1977), 147–189. | MR 429703 | Zbl 0365.10021

[4] B. C. Berndt, Analytic Eisenstein series, theta-functions, and series relations in the spirit of Ramanujan. J. Reine Angew Math. 303/304 (1978), 332–365. | MR 514690 | Zbl 0384.10011

[5] B. C. Berndt, Ramanujan’s Notebooks, part II. Springer-Verlag, New-York, 1989. | Zbl 0716.11001

[6] B. C. Berndt, Ramanujan’s Notebooks, part V. Springer-Verlag, New-York, 1998. | Zbl 0886.11001

[7] K. Dilcher, Zeros of Bernoulli, generalized Bernoulli and Euler polynomials. Memoirs of Amer. Math. Soc. 386 (1988). | MR 938890 | Zbl 0645.10015

[8] M. E. Hoffman, Multiple harmonic series. Pacific J. Math. 152 (1992), 275–290. | MR 1141796 | Zbl 0763.11037

[9] K. Katayama, On Ramanujan’s formula for values of Riemann zeta-function at positive odd integers. Acta Arith. 22 (1973), 149–155. | Zbl 0222.10040

[10] M. Lerch, Sur la fonction ζ(s) pour valeurs impaires de l’argument. J. Sci. Math. Astron. pub. pelo Dr. F. Gomes Teixeira, Coimbra 14 (1901), 65–69.

[11] S. L. Malurkar, On the application of Herr Mellin’s integrals to some series. J. Indian Math. Soc. 16 (1925/1926), 130–138.

[12] K. Matsumoto, H. Tsumura, A new method of producing functional relations among multiple zeta-functions. Quart. J. Math. 59 (2008), 55–83. | MR 2392501 | Zbl pre05262223

[13] D. Zagier, Values of zeta functions and their applications. In “Proc. First Congress of Math., Paris”, vol. II, Progress in Math. 120, Birkhäuser, 1994, 497–512. | Zbl 0822.11001