Nous donnons des conditions suffisantes pour que l’ensemble des fractions d’un ensemble d’entiers soit dense dans , en termes des densités logarithmiques de . Ces conditions diffèrent sensiblement de celles précédemment obtenues en termes des densités asymptotiques.
In the paper sufficient conditions for the -density of a set of positive integers in terms of logarithmic densities are given. They differ substantially from those derived previously in terms of asymptotic densities.
@article{JTNB_2003__15_1_309_0, author = {Mi\v{s}{\'\i}k, Ladislav and T\'oth, J\'anos T.}, title = {Logarithmic density of a sequence of integers and density of its ratio set}, journal = {Journal de Th\'eorie des Nombres de Bordeaux}, pages = {309--318}, publisher = {Universit\'e Bordeaux I}, volume = {15}, number = {1}, year = {2003}, zbl = {02058871}, mrnumber = {2019018}, language = {en}, url = {http://www.numdam.org/item/JTNB_2003__15_1_309_0/} }
TY - JOUR AU - Mišík, Ladislav AU - Tóth, János T. TI - Logarithmic density of a sequence of integers and density of its ratio set JO - Journal de Théorie des Nombres de Bordeaux PY - 2003 DA - 2003/// SP - 309 EP - 318 VL - 15 IS - 1 PB - Université Bordeaux I UR - http://www.numdam.org/item/JTNB_2003__15_1_309_0/ UR - https://zbmath.org/?q=an%3A02058871 UR - https://www.ams.org/mathscinet-getitem?mr=2019018 LA - en ID - JTNB_2003__15_1_309_0 ER -
Mišík, Ladislav; Tóth, János T. Logarithmic density of a sequence of integers and density of its ratio set. Journal de Théorie des Nombres de Bordeaux, Tome 15 (2003) no. 1, pp. 309-318. http://www.numdam.org/item/JTNB_2003__15_1_309_0/
[1] Theory and Application of Infinite Series. Blackie & Son Limited, London and Glasgow, 2-nd English Edition, 1957. | Zbl 0042.29203
,[2] Asymptotic density of A C N and density of the ratio set R(A). Acta Arith. 87 (1998), 67-78. Corrigendum in Acta Arith. 103 (2002), 191-200. | MR 1904872 | Zbl 0923.11027
, ,[3] On ratio sets of sets of natural numbers. Acta Arith. 15 (1969), 173-278. | MR 242756 | Zbl 0177.07001
,[4] Quotientbasen und (R)-dichte mengen. Acta Arith. 19 (1971), 63-78. | MR 292788 | Zbl 0218.10071
,[5] Relation between (R)-density and the lower asymptotic density. Acta Math. Constantine the Philosopher University Nitra 3 (1998), 39-44.
,