JOURNAL DE THÉORIE DES NOMBRES DE BORDEAUX

LAYLA PHARAMOND DIT D'COSTA

Comparaison de deux notions de rationalité d'un dessin d'enfant

Journal de Théorie des Nombres de Bordeaux, tome 13, n° 2 (2001), p. 529-538

http://www.numdam.org/item?id=JTNB 2001 13 2 529 0>

© Université Bordeaux 1, 2001, tous droits réservés.

L'accès aux archives de la revue « Journal de Théorie des Nombres de Bordeaux » (http://jtnb.cedram.org/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Comparaison de deux notions de rationalité d'un dessin d'enfant

par Layla PHARAMOND DIT D'COSTA

RÉSUMÉ. Soit f un revêtement ramifié de \mathbf{P}_1 défini sur $\overline{\mathbf{Q}}$. Lorsqu'on s'intéresse aux propriétés de rationalité de f sur les les corps de nombres, on peut soit exiger que la base soit \mathbf{P}_1 , soit l'autoriser à être une courbe de genre 0. Nous comparons ces deux points de vue pour les revêtements non ramifiés en dehors de $\{0,1,\infty\}$.

ABSTRACT. Let f be a ramified covering of \mathbf{P}^1 defined over $\overline{\mathbf{Q}}$. When studying the rationality properties of f over number fields, one can ask for the basis to be either \mathbf{P}^1 or more generally a curve of genus 0. We compare both points of view for unramified coverings of $\mathbf{P}^1 - \{0, 1, \infty\}$.

1. Préambule

Soit C une courbe algébrique (irréductible, projective et lisse) définie sur $\overline{\mathbf{Q}}$ et soit f un morphisme fini de C dans la droite projective \mathbf{P}_1 , non ramifié en dehors de $\{0,1,\infty\}$, également défini sur $\overline{\mathbf{Q}}$. Pour tout $\sigma \in \operatorname{Gal}(\overline{\mathbf{Q}}/\mathbf{Q})$, notons $({}^{\sigma}\mathbf{C},{}^{\sigma}f)$ le couple déduit de (\mathbf{C},f) par le changement de base $\operatorname{Spec}(\sigma): \operatorname{Spec}(\overline{\mathbf{Q}}) \to \operatorname{Spec}(\overline{\mathbf{Q}})$. Si τ est un second élément de $\operatorname{Gal}(\overline{\mathbf{Q}}/\mathbf{Q})$, ${}^{\sigma}({}^{\tau}\mathbf{C})$ et ${}^{\sigma}({}^{\tau}f)$ s'identifient canoniquement à ${}^{\sigma\tau}\mathbf{C}$ et ${}^{\sigma\tau}f$. Dire que $({}^{\sigma}\mathbf{C},{}^{\sigma}f)$ est isomorphe à (\mathbf{C},f) équivaut à dire qu'il existe un isomorphisme $u_{\sigma}: \mathbf{C} \to {}^{\sigma}\mathbf{C}$ défini sur $\overline{\mathbf{Q}}$ tel que $f = {}^{\sigma}f \circ u_{\sigma}$. L'ensemble des σ possédant cette propriété est un sous-groupe ouvert de $\operatorname{Gal}(\overline{\mathbf{Q}}/\mathbf{Q})$, i.e. il est de la forme $\operatorname{Gal}(\overline{\mathbf{Q}}/\mathbf{K})$ où \mathbf{K} est un corps de nombres.

Définition 1. Le corps K s'appelle le corps de rationalité (ou encore corps des modules, cf. [1]) de (C, f).

Si (C, f) provient par extension des scalaires d'un couple (C_E, f_E) , où C_E est une courbe algébrique définie sur un sous-corps E de $\overline{\mathbf{Q}}$ et $f_E : C_E \to \mathbf{P}_{1|E}$ un morphisme défini sur E (on dit alors que (C, f) possède un modèle sur E), on a $K \subset E$.

Manuscrit recu le 7 décembre 1999.

Cet article a été plus qu'inspiré par Joseph Oesterlé et n'aurait jamais existé sans ses contributions.

Par contre, il peut arriver que le triplet (C, \mathbf{P}_1, f) provienne par extension des scalaires d'un triplet (C_E, B_E, f_E) , où $f_E : C_E \to B_E$ est un morphisme de courbes algébriques défini sur E, sans que l'on ait $K \subset E$. Nous en donnerons des exemples au § 4. (La courbe B_E est de genre 0, mais les trois points de $B_E(\overline{\mathbf{Q}})$ au-dessus desquels f_E est ramifié ne sont pas tous rationnels sur E; le diviseur formé par ces trois points étant rationnel sur \mathbf{Q} et de degré impair, B_E est isomorphe sur E à la droite projective $\mathbf{P}_{1|E}$.) On a sous les hypothèses précédentes, $k \subset E$ où k est le corps de rationalité de (C, \mathbf{P}_1, f) au sens suivant :

Définition 2. Le corps de rationalité de (C, \mathbf{P}_1, f) (ou encore corps de rationalité absolu de (C, f)) est le plus petit corps de nombres k tel que pour tout $\sigma \in \operatorname{Gal}(\overline{\mathbf{Q}}/k)$, il existe un isomorphisme $u_{\sigma} : C \to {}^{\sigma}C$ et un automorphisme v_{σ} de \mathbf{P}_1 , tous deux définis sur $\overline{\mathbf{Q}}$, tels que $v_{\sigma} \circ f = {}^{\sigma}f \circ u_{\sigma}$.

Autrement dit, on dispose de deux notions de rationalité, dépendant de la catégorie des revêtements choisie : soit on exige que la base du revêtement est \mathbf{P}_1 (le revêtement étant non ramifié en dehors de $\{0,1,\infty\}$) et un morphisme d'un revêtement (C,f) dans un revêtement (C',f') est un morphisme $u:C\to C'$ tel que $f'\circ u=f$, soit on exige seulement que la base soit une courbe projective et lisse de genre 0 (le revêtement étant non ramifié en dehors d'un diviseur effectif de degré ≤ 3) et un morphisme de $f:C\to B$ dans $f':C'\to B'$ est un couple formé d'un morphisme $u:C\to C'$ et d'un morphisme $v:B\to B'$ entre les bases, tel que $f\circ u=v\circ f$.

Il est clair que l'on a $k \subset K$. Le but de cet article est d'analyser les cas où cette inclusion est stricte. Une question analogue a été étudiée par Matzat et Malle dans le cas où le revêtement (C, f) est supposé galoisien et vérifie certaines hypothèses de rigidité ([3], chap. I, § 6, Twisted Rigidity Theorem); voir aussi Serre ([4], § 8.2.2).

2. Cas où f est non ramifié au-dessus d'un des points $0, 1, \infty$

Soit n le degré de f. Supposons f non ramifié au-dessus d'un des points $0, 1, \infty$, par exemple au-dessus du point 1. Le couple (C, f) est alors isomorphe sur $\overline{\mathbf{Q}}$ à $(\mathbf{P}_1, z \mapsto z^n)$: cela résulte du fait que le groupe fondamental de $\mathbf{P}_1(\mathbf{C}) - \{0, \infty\}$, isomorphe à \mathbf{Z} , possède un unique sous-groupe d'indice n. Son corps de rationalité est \mathbf{Q} .

Notons que ce couple (C, f) possède, si $n \neq 1$, une infinité de modèles sur \mathbf{Q} deux à deux non isomorphes, à savoir les couples $(\mathbf{P}_1, z \mapsto az^n)$, où a parcourt un système de représentants de \mathbf{Q}^{\times} modulo \mathbf{Q}^{\times^n} . Par ailleurs, si \mathbf{E} est un corps de nombres différent de \mathbf{Q} , le couple (C, f) possède des modèles sur \mathbf{E} qui ne proviennent pas par extension des scalaires de modèles sur \mathbf{Q} , à savoir $(\mathbf{P}_1, z \mapsto az^n)$, où a est un élément de \mathbf{E} qui n'appartient pas à $\mathbf{Q}^{\times}\mathbf{E}$.

3. Cas où f est ramifié au-dessus des trois points $0, 1, \infty$

Soit $\mathfrak{S}_{\{0,1,\infty\}}$ le groupe des permutations de $\{0,1,\infty\}$. Pour tout $\alpha \in \mathfrak{S}_{\{0,1,\infty\}}$, notons s_{α} l'unique automorphisme de \mathbf{P}_1 défini sur $\overline{\mathbf{Q}}$ qui prolonge α ; il est en fait défini sur \mathbf{Q} . On a $s_{\alpha\beta} = s_{\alpha} \circ s_{\beta}$.

Supposons que f soit ramifié au-dessus de chacun des trois points de $\{0,1,\infty\}$. Notons \mathcal{A} l'ensemble des $\alpha\in\mathfrak{S}_{\{0,1,\infty\}}$ tels que $(C,s_{\alpha}\circ f)$ soit isomorphe à (C,f). Notons \mathcal{B} l'ensemble des $\alpha\in\mathfrak{S}_{\{0,1,\infty\}}$ tels que $(C,s_{\alpha}\circ f)$ soit isomorphe à $({}^{\sigma}\!C,{}^{\sigma}\!f)$ pour un $\sigma\in\mathrm{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$. Remarquons que si $(C,s_{\alpha}\circ f)$ est isomorphe à $({}^{\sigma}\!C,{}^{\sigma}\!f)$ et que $(C,s_{\beta}\circ f)$ est isomorphe à $({}^{\sigma}\!C,{}^{\tau}\!f)$, alors $(C,s_{\beta\alpha}\circ f)$ est isomorphe à $({}^{\sigma}\!C,{}^{\sigma}\!f)$. Il en résulte que \mathcal{B} est un sousgroupe de $\mathfrak{S}_{\{0,1,\infty\}}$ et que \mathcal{A} est un sous-groupe distingué de \mathcal{B} .

Proposition. Avec les notations ci-dessus, le groupe de Galois Gal(K/k) est canoniquement isomorphe à B/A.

Soit $\sigma \in \operatorname{Gal}(\overline{\mathbb{Q}}/k)$. Par définition de k, il existe un automorphisme v_{σ} de \mathbf{P}_1 , défini sur $\overline{\mathbb{Q}}$, tel que $({}^{\sigma}\mathbf{C},{}^{\sigma}f)$ soit isomorphe à $(\mathbf{C},v_{\sigma}\circ f)$. Le morphisme ${}^{\sigma}f$ est ramifié au-dessus des trois points $0,1,\infty$ et non ramifié ailleurs. On a donc $v_{\sigma}(\{0,1,\infty\})=\{0,1,\infty\}$ et il existe un élément α de $\mathfrak{S}_{\{0,1,\infty\}}$ tel que $v_{\sigma}=s_{\alpha^{-1}}$. L'élément α appartient à \mathcal{B} et est déterminé de manière unique modulo \mathcal{A} par σ . L'application qui à σ associe la classe de α modulo \mathcal{A} est un homomorphisme de groupes surjectif de $\operatorname{Gal}(\overline{\mathbb{Q}}/k)$ dans \mathcal{B}/\mathcal{A} ; son noyau est $\operatorname{Gal}(\overline{\mathbb{Q}}/K)$. Par suite, K est une extension galoisienne de k et le groupe de $\operatorname{Galois} \operatorname{Gal}(K/k)$ est canoniquement isomorphe à \mathcal{B}/\mathcal{A} .

En particulier, on a $K \neq k$ si et seulement si $A \neq B$.

Remarques. — 1) La condition $\mathcal{A} \neq \mathcal{B}$ impose de sévères restrictions sur la ramification de f: en effet, si \mathcal{B} contient une transposition $\tau_{\{a,b\}}$ (avec $a,b \in \{0,1,\infty\}$), les listes d'indices de ramification des points au-dessus de a et de b sont les mêmes ; si \mathcal{B} contient un cycle d'ordre 3, les listes d'indices de ramification des points au-dessus de 0, 1 et ∞ sont les mêmes, et le degré de f est dans ce cas congru à 2(g-1) modulo 3 (où g est le genre de G), d'après la formule de Riemann-Hurwitz.

2) Il existe toujours un sous-groupe \mathcal{B}' de \mathcal{B} tel que \mathcal{B} soit produit semidirect de \mathcal{B}' par \mathcal{A} : on peut prendre $\mathcal{B}' = \mathcal{B}$ si $\mathcal{A} = \{\text{Id}\}$, $\mathcal{B}' = \{\text{Id}\}$ si $\mathcal{A} = \mathcal{B}$, et \mathcal{B}' égal à un groupe à deux éléments si $\mathcal{A} \simeq \mathcal{A}_3$ et $\mathcal{B} \simeq \mathfrak{S}_3$ (où \mathcal{A}_3 et \mathfrak{S}_3 représentent respectivement le groupe alterné et le groupe symétrique à trois éléments).

Soit \mathcal{B}' un tel sous-groupe. Il existe des éléments x_0, x_1, x_∞ de $\mathbf{P}_1(\overline{\mathbf{Q}})$ tels que, si σ est un élément de $\mathrm{Gal}(\overline{\mathbf{Q}}/k)$ et α l'élément de \mathcal{B}' dont la classe dans \mathcal{B}/\mathcal{A} correspond à σ , on ait $\sigma(x_i) = x_{\alpha(i)}$ pour tout $i \in \{0, 1, \infty\}$. Notons h l'automorphisme de \mathbf{P}_1 , défini sur $\overline{\mathbf{Q}}$, qui applique i sur x_i pour $i \in \{0, 1, \infty\}$. On a $\sigma h = h \circ s_\alpha$, pour σ et α comme ci-dessus, de sorte

que le couple (${}^{\sigma}$ C, ${}^{\sigma}(h \circ f)$) est isomorphe à (C, $h \circ f$). Il en résulte que le corps de rationalité de (C, $h \circ f$) (*i.e.* le corps de nombres k_h tel que $\operatorname{Gal}(\overline{\mathbf{Q}}/k_h) = \{ \sigma \in \operatorname{Gal}(\overline{\mathbf{Q}}/\mathbf{Q}) | (C,h \circ f) \simeq ({}^{\sigma}C,({}^{\sigma}h \circ f)) \}$) est inclus dans k; l'inclusion réciproque étant évidente, il est égal à k.

3) Reprenons les notations de la remarque précédente. Le groupe des automorphismes de (C, f) coı̈ncide avec celui de $(C, h \circ f)$; s'il est réduit à l'élément neutre, (C, f) possède, d'après le théorème de descente de Weil ([5], th. 1), un modèle (unique à isomorphisme près) sur K, et $(C, h \circ f)$ en possède un (unique à isomorphisme près) sur k.

4. L'action de $\mathfrak{S}_{0,1,\infty}$ sur les dessins

Dans les exemples qui seront donnés au § 5, il sera commode de représenter visuellement un revêtement de $\mathbf{P}_1 - \{0,1,\infty\}$, défini sur $\overline{\mathbf{Q}}$ par un dessin d'enfant, au sens de Grothendieck (cf. [2]). Rappelons qu'un tel dessin est une surface topologique compacte orientée S, munie d'une classe d'isotopie de plongements d'un 1-complexe fini Γ bicolorié (*i.e.* chaque sommet de Γ est de type 0 ou 1, et chaque arête relie un sommet de type 0 à un sommet de type 1) ; on exige de plus que les composantes connexes du complémentaire de l'image du plongement soient homéomorphes à des disques.

Le dessin qui correspond à un revêtement (C, f) s'obtient en prenant pour S la surface C(C) et $f^{-1}([0,1])$ pour 1-complexe plongé, les sommets de type 0 étant les points de $f^{-1}(0)$ et ceux de type 1, les points de $f^{-1}(1)$.

Deux revêtements sont isomorphes si et seulement si les dessins correspondants le sont. Inversement, tout dessin provient d'un revêtement (irréductible si et seulement si S est connexe et non vide).

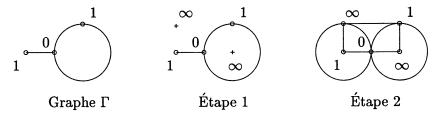
Un dessin n'ayant pas d'automorphismes non triviaux possède un modèle sur son corps de rationalité (cf. [1], par exemple).

Pour un dessin d'enfant D donné correspondant à un revêtement (C, f) et α une permutation de $\mathfrak{S}_{\{0,1,\infty\}}$, on peut sans aucun calcul, tracer un représentant de la classe d'isotopie D_{α} correspondant au revêtement $(C, s_{\alpha} \circ f)$. Nous en indiquons la méthode ci-dessous et l'illustrons ensuite par un exemple.

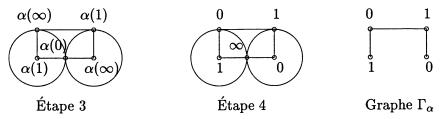
Soit (S,Γ) un couple correspondant comme ci-dessus au dessin D. Les sommets de Γ sont soit de type 0, soit de type 1, et les arêtes seront dites de type $\{0,1\}$. On peut compléter Γ en un nouveau 1-complexe $\widetilde{\Gamma}$, possédant des sommets de type 0, 1 et ∞ et des arêtes de type $\{0,1\}$, $\{1,\infty\}$, $\{0,\infty\}$, qui triangule S. Les sommets de type 0 ou 1 sont ceux de Γ , les arêtes de type $\{0,1\}$ aussi. On choisit dans chaque composante connexe A de $S-\Gamma$ un point P qui sera un des sommets de type ∞ , et une application continue u de $\{z \in \mathbb{C}, |z| \leq 1\}$ dans S tel que u induise un homéomorphisme de $\{z \in \mathbb{C}, |z| \leq 1\}$ sur A, appliquant 0 sur P, et tel que le cardinal de $u^{-1}(x)$ soit fini pour tout $x \in \Gamma$. Les images des rayons du disque unité sont des

courbes reliant P à un point du bord de A. Celles qui aboutissent en un sommet de type 0 (resp. 1) de Γ sont les arêtes de type $\{\infty,0\}$ (resp. $\{\infty,1\}$) de $\widetilde{\Gamma}$ issues de P. Le dessin D_{α} correspond au couple (S,Γ_{α}) , où Γ_{α} est le graphe bicolorié dont les sommets de type 0 (resp. 1) sont les sommets de $\widetilde{\Gamma}$ de type $\alpha^{-1}(0)$ (resp. $\alpha^{-1}(1)$) et dont les arêtes sont les arêtes de $\widetilde{\Gamma}$ de type $\{\alpha^{-1}(0), \alpha^{-1}(1)\}$.

Exemple. — Soit D le dessin correspondant au couple $(\mathbf{P}_1(\mathbf{C}), \Gamma)$, où Γ est le graphe ci-dessous à gauche, et soit α la transposition qui échange 0 et ∞ .



Les composantes connexes de $\mathbf{P}_1(\mathbf{C}) \setminus \Gamma$ sont appelées les faces de Γ . Pour obtenir le graphe Γ_{α} , on a successivement, choisi un point ∞ sur chacune de ces faces (étape 1), triangulé la surface en reliant chaque point ∞ aux sommets situés sur le bord de la face qui le contient (plusieurs arêtes issues de ∞ pouvant aboutir à un même sommet de Γ) (étape 2), permuté les noms des sommets suivant α (étape 3 et 4) et retiré les sommets de type ∞ ainsi que les arêtes de type $\{0,\infty\}$ et $\{1,\infty\}$.



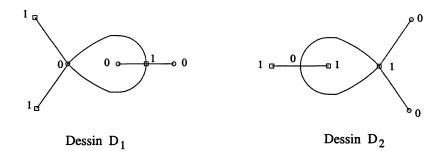
Le couple formé de $P_1(C)$ et du graphe Γ_{α} correspond au dessin D_{α} .

5. Exemples

Dorénavant, $\overline{\mathbf{Q}}$ désigne la fermeture algébrique de \mathbf{Q} dans \mathbf{C} .

1. Un exemple où $A = \{Id\}$ et $B = \{Id, \tau_{\{0,1\}}\}$

Il existe exactement (à isomorphisme près) deux revêtements de \mathbf{P}_1 , définis sur $\overline{\mathbf{Q}}$, non ramifiés en dehors de $\{0,1,\infty\}$ et dont les points audessus de 0 (resp. 1; resp. ∞) ont pour indices de ramification 1, 1 et 4 (resp. 1, 1 et 4; resp. 2 et 4). Ils sont de genre 0, et sont représentés par les dessins d'enfant suivants :



Ces deux revêtements sont de la forme (\mathbf{P}_1, f_1) , et (\mathbf{P}_1, f_2) , les fonctions de Belyi f_1 et f_2 étant normalisées de sorte que pour chaque $i \in \{0, 1, \infty\}$, l'unique point d'indice de ramification 4 dans la fibre de i soit égal à i. On remarque, en observant les dessins, qu'ils n'ont pas d'automorphismes non triviaux, et que la transposition α qui échange 0 et 1 permet de déduire les fonctions de Belyi l'une de l'autre $f_2 = s_{\alpha}^{-1} \circ f_1 \circ s_{\alpha}$. On a :

$$f_1(z) = -\frac{2z^4 \left(2\sqrt{5}z^2 + 2(1 - 3\sqrt{5})z - 5(1 - \sqrt{5})\right)}{\left(2\sqrt{5}z - (1 + \sqrt{5})\right)^2},$$

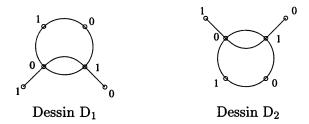
$$f_2(z) = +\frac{2z^4 \left(2\sqrt{5}z^2 - 2(1 + 3\sqrt{5})z + 5(1 + \sqrt{5})\right)}{\left(2\sqrt{5}z + (1 - \sqrt{5})\right)^2}.$$

Il résulte de cela que le corps de rationalité de ces revêtements est $K = \mathbf{Q}(\sqrt{5})$ et que leur corps de rationalité absolu est \mathbf{Q} . Notons h l'automorphisme de \mathbf{P}_1 qui applique 0, 1 et ∞ sur respectivement $\frac{1+\sqrt{5}}{2}$, $\frac{1-\sqrt{5}}{2}$ et ∞ . Le couple $(\mathbf{P}_1, h \circ f_1)$ a pour corps de rationalité \mathbf{Q} d'après le § 3; il est isomorphe à (\mathbf{P}_1, g) , où g est la fonction rationnelle $h \circ f_1 \circ h^{-1}$ donnée par

$$g(z) = \frac{z^6 - 4z^5 + 20z^3 + 10z^2 + 12z + 2}{25z^2}.$$

2. Un exemple où $\mathcal{A} = \{ \mathrm{Id}, \, \sigma_{(0,1,\infty)}, \, \sigma_{(\infty,1,0)} \} \, \text{ et } \mathcal{B} = \mathfrak{S}_{\{0,1,\infty\}}$

Considérons les revêtements de \mathbf{P}_1 , définis sur $\overline{\mathbf{Q}}$, non ramifiés en dehors de $\{0,1,\infty\}$ et dont les fibres au-dessus de $0,1,\infty$ sont chacune constituées de trois points admettant comme indices de ramification 1,2 et 4. Il y a seize revêtements (à isomorphisme près) vérifiant ces conditions. On s'intéresse à ceux représentés par les dessins d'enfant suivants :



Ils peuvent être choisis de la forme (\mathbf{P}_1, f_1) et (\mathbf{P}_1, f_2) où f_1 et f_2 sont des fonctions de Belyi normalisées de la même manière que celles du premier exemple. Le couple $(\mathbf{P}_1, s_{\alpha}^{-1} f_1)$ est isomorphe à (\mathbf{P}_1, f_1) si α est une permutation paire, et à (\mathbf{P}_1, f_2) si α est impaire. On a donc $s_{\alpha}^{-1} f_1 s_{\alpha} = f_1$ si α est paire et $s_{\alpha}^{-1} f_1 s_{\alpha} = f_2$ si α est impaire, vu les normalisations choisies. Les fractions rationnelles $(f_i)_{i \in \{1,2\}}$ sont données par les formules (où c_1 et c_2 désignent les racines de $7c(c-1) = -3 - \sqrt{2}$ de partie imaginaire respectivement positive et négative) suivantes :

$$\sqrt{2}$$
 de partie imaginaire respectivement positive et négative) suivantes :
$$f_i(x) = \frac{x^4 \left(\left(c_i - 1 \right) x + 1 \right)^2 \left(c_i^2 x - 2 c_i + 1 \right)}{\left(x - c_i \right)^2 \left(\left(2 c_i - 1 \right) x + \left(c_i - 1 \right)^2 \right)},$$

ce qui s'écrit aussi

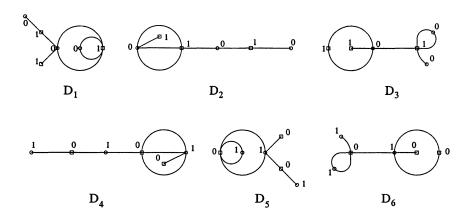
$$f_i(x) - 1 = \frac{(x-1)^4 (c_i x + 1 - c_i)^2 \left((c_i - 1)^2 x - c_i^2 \right)}{(x-c_i)^2 \left((2c_i - 1) x + (c_i - 1)^2 \right)}.$$

Notons h_i l'homographie qui applique les points 0, 1, ∞ sur respectivement $\frac{c_i}{(\sqrt{2}-1)(1-2c_i)}$, $\frac{c_i-1}{(\sqrt{2}-1)(1-2c_i)}$, ∞ ; la fonction $g=h_i\circ f_i\circ h_i^{-1}$ est à coefficients dans $\mathbf{Q}(\sqrt{2})$ et est donnée par :

$$g(x) = \left(-(19+3\sqrt{2})(x+\sqrt{2})x^2\right)^{-1} \times \left(x^7 + (4+\sqrt{2})x^6 + 4(1+2\sqrt{2})x^5 + 4(1+2\sqrt{2})x^4 + 5(4+\sqrt{2})x^3 + 2(11+8\sqrt{2})x^2 - 2(1+2\sqrt{2})x - 2(4+3\sqrt{2})\right).$$

3. Un exemple où $\mathcal{A}=\{\mathrm{Id}\}$ et $\mathcal{B}=\mathfrak{S}_{\{0,1,\infty\}}$

Considérons les six dessins ci-dessous. Îls correspondent à six revêtements de degré 7 de \mathbf{P}_1 , non-ramifiés en dehors de $\{0,1,\infty\}$ et dont les fibres audessus de $0,1,\infty$ sont chacune constituées de trois points admettant comme indices de ramification 1,2 et 4. Pour chaque $i \in \{1,..6\}$ le revêtement correspondant au dessin \mathbf{D}_i peut être choisi de la forme (\mathbf{P}_1,f_i) , où la fonction de Belyi f_i est normalisée comme dans l'exemple 1.



L'examen des dessins montre que ces fonctions de Belyi se déduisent les unes des autres à l'aide des permutations de $\mathcal{B} = \mathfrak{S}_{\{0,1,\infty\}}$. On a par exemple $f_i = s_{\alpha_i} \circ f_1 \circ s_{\alpha_i}^{-1}$ où $\alpha_1 = \mathrm{Id}, \ \alpha_2 = \sigma_{(0,1,\infty)}, \ \alpha_3 = \sigma_{(\infty,1,0)}, \ \alpha_4 = \tau_{\{1,\infty\}}, \ \alpha_5 = \underline{\tau_{\{0,1\}}}, \ \alpha_6 = \tau_{\{0,\infty\}}.$

Notons $\sqrt{-6}$ la racine carrée de -6 de partie imaginaire positive. Les fonctions f_i sont de la forme $f_i(Y) = r_i \frac{Y^4(Y-a_i)^2(Y-b_i)}{(Y-c_i)^2(Y-d_i)}$, où les a_i sont les six racines du polynôme P irréductible sur $\mathbf{Q}(\sqrt{-6})$:

$$P(z) = 5z^{6} - 5(1 - \sqrt{-6})z^{5} - (598 + 11\sqrt{-6})z^{4} + (3501 - 393\sqrt{-6})z^{3} - (7488 - 1209\sqrt{-6})z^{2} + (6885 - 1215\sqrt{-6})z - 2295 + 405\sqrt{-6},$$

dont les valeurs approchées (parties imaginaires et réelles étant données à 10^{-6} près) sont

 $a_1 \simeq 0,928\,492+0,002\,911\,i,\ a_2 \simeq 7,781\,057+0,300\,844\,i,\ a_3 \simeq 1,199\,494+0,254\,785\,i,\ a_4 \simeq -12,961\,370-0,568\,334\,i,\ a_5 \simeq 2,905\,147-2,433\,166\,i,\ a_6 \simeq 1,147\,180-0,006\,530\,i.$

Les coefficients b_i , c_i , d_i et r_i s'expriment de manière unique en fonction de a_i ; on a ainsi les égalités suivantes :

$$\begin{split} b_i &= -\frac{201226 - 51257\sqrt{-6}}{1180116} a_i^5 - \frac{20635 + 14965\sqrt{-6}}{84294} a_i^4 + \frac{3503942 - 840937\sqrt{-6}}{168588} a_i^3 \\ &- \frac{962097 - 477203\sqrt{-6}}{12042} a_i^2 + \frac{313394 - 190769\sqrt{-6}}{2676} a_i - \frac{78601 + 50062\sqrt{-6}}{1338}, \\ c_i &= -\frac{678924 - 428203\sqrt{-6}}{28912842} a_i^5 - \frac{415470 + 88955\sqrt{-6}}{4130406} a_i^4 + \frac{11937690 - 7239433\sqrt{-6}}{4130406} a_i^3 \\ &- \frac{3038808 - 6044189\sqrt{-6}}{590058} a_i^2 + \frac{552792 - 3060755\sqrt{-6}}{196686} a_i + \frac{4418 + 65829\sqrt{-6}}{9366}, \\ d_i &= \frac{4232838 - 552131\sqrt{-6}}{57825684} a_i^5 + \frac{286569 + 300961\sqrt{-6}}{4130406} a_i^4 - \frac{72745794 - 8813131\sqrt{-6}}{8260812} a_i^3 \\ &+ \frac{35892009 - 11154977\sqrt{-6}}{983430} a_i^2 - \frac{34622974 - 12697327\sqrt{-6}}{655620} a_i + \frac{397507 - 141976\sqrt{-6}}{15610}, \end{split}$$

$$r_i = \frac{(1-c_i)^2(1-d_i)}{(1-a_i)^2(1-b_i)}$$

Soit $i \in \{1,..,6\}$. Pour tout $\alpha \in \mathfrak{S}_{\{0,1,\infty\}}$, il existe $j \in \{1,..,6\}$ et $\sigma \in \operatorname{Gal}(\overline{\mathbf{Q}}/\mathbf{Q})$ tels que $f_j = s_{\alpha} \circ f_i \circ s_{\alpha}^{-1}$ et $\sigma(a_i) = a_j$. Ainsi $({}^{\sigma}\mathbf{P}_1, {}^{\sigma}f_i) \simeq (\mathbf{P}_1, f_j) \simeq (\mathbf{P}_1, s_{\alpha^{-1}}f_i)$. De ce fait, le corps de rationalité de (\mathbf{P}_1, f_i) est $\mathbf{Q}(a_i)$, alors que son corps de rationalité absolu est $\mathbf{Q}(\sqrt{-6})$; autrement dit, pour chacun de ces dessins, le groupe \mathcal{A} est réduit à l'élément neutre alors que $\mathcal{B} = \mathfrak{S}_{\{0,1,\infty\}}$.

Remarquons que si deux éléments $i,j\in\{1,..,6\}$ vérifient

$$f_j = s_{\tau_{\{1,\infty\}}} \circ f_i \circ s_{\tau_{\{1,\infty\}}}^{-1},$$

alors on a $1 - a_j = \frac{1}{1 - a_i}$. Par suite les $1 - a_i + \frac{1}{1 - a_i}$ ne prennent que trois valeurs distinctes, qui sont les racines du polynôme g de degré 3 sur $\mathbf{Q}(\sqrt{-6})$ donné par

$$g(X) = 5X^3 - (25 + 5\sqrt{-6})X^2 - (563 - 14\sqrt{-6})X - 1109 + 397\sqrt{-6}.$$

Pour $i \in \{1,..,6\}$, notons X_i , la racine de g égale à $1 - a_i + \frac{1}{1 - a_i}$; les deux autres racines Y_i et Z_i de g s'expriment aussi en fonction de a_i :

$$\mathbf{Y}_{i} = -\frac{80202 - 27857\sqrt{-6}}{590058}a_{i}^{5} - \frac{28836 + 12575\sqrt{-6}}{84294}a_{i}^{4} + \frac{6986394 - 2351627\sqrt{-6}}{421470}a_{i}^{3} \\ -\frac{330126 - 265853\sqrt{-6}}{6690}a_{i}^{2} + \frac{340108 - 428099\sqrt{-6}}{6690}a_{i} - \frac{8796 - 13643\sqrt{-6}}{446},$$

$$\begin{split} \mathbf{Z}_i &= -\frac{509856 + 27857\sqrt{-6}}{590058} a_i^5 + \frac{28836 - 71719\sqrt{-6}}{84294} a_i^4 + \frac{43421418 + 2857391\sqrt{-6}}{421470} a_i^3 \\ &- \frac{3554088 - 268009\sqrt{-6}}{6690} a_i^2 + \frac{5801312 - 655681\sqrt{-6}}{6690} a_i - \frac{194580 - 22929\sqrt{-6}}{446}. \end{split}$$

Soit $i \in \{1,...,6\}$, considérons l'homographie h_i qui envoie le triplet $(0,1,\infty)$ sur (X_i,Y_i,Z_i) , la fonction $h_i \circ f_i \circ h_i^{-1}$ est définie sur le corps de rationalité absolu des dessins (et ne dépend pas de i):

$$h_i \circ f_i \circ h_i^{-1}(x) = \frac{n_7 x^7 + n_6 x^6 + n_5 x^5 + n_4 x^4 + n_3 x^3 + n_2 x^2 + n_1 x + n_0}{d_7 x^7 + d_6 x^6 + d_5 x^5 + d_4 x^4 + d_3 x^3 + d_2 x^2 + d_1 x + d_0},$$

 $n_4 = 460649753 + 9813744\sqrt{-6}$ $n_0 = -1733718317 - 2391213516\sqrt{-6}$ $n_5 = 55698933 + 8631459\sqrt{-6}$ $n_1 = 2454082783 - 3705870411\sqrt{-6}$ $n_2 = 4\,300\,593\,789 - 1\,773\,850\,626\sqrt{-6}$ $n_6 = 3549007 + 973686\sqrt{-6}$ $n_7 = 92503 + 36819\sqrt{-6}$ $n_3 = 2\,051\,085\,245 - 288\,080\,715\sqrt{-6}$ $d_4 = 32719505 + 146440\sqrt{-6}$ $d_0 = -281\,566\,181 - 211\,453\,588\sqrt{-6}$ $d_5 = 4055205 + 533715\sqrt{-6}$ $d_1 = 163\,540\,783 - 308\,258\,251\sqrt{-6}$ $d_6 = 257\,575 + 66\,350\sqrt{-6}$ $d_2 = 308\,891\,685 - 129\,515\,754\sqrt{-6},$ $d_3 = 141877757 - 21924539\sqrt{-6}$ $d_7 = 6871 + 2483\sqrt{-6}$.

Bibliographie

- [1] P. DÈBES, J.-C. DOUAI, Algebraic covers: field of moduli versus field of definition. Ann. scient. Éc. Norm. Sup, tome 30 (1997), 303-338.
- [2] A. GROTHENDIECK, Esquisse d'un programme. Geometric Galois Actions, Cambridge University Press, 242, p. 5-48, Éd. L. Schneps et P. Lochak, 1997.
- [3] G. MALLE, B. H. MATZAT, *Inverse Galois Theory*. Springer Monographs in Mathematics. Springer-Verlag, Berlin, 1999.
- [4] J.-P. SERRE, *Topics in Galois Theory*. Research Notes in Mathematics 1, Jones and Bartlett Publishers, Boston, MA, 1992.
- [5] A. Weil, The field of definition of a variety. Amer. J. Math. 78 (1956), 509-524.

Layla PHARAMOND DIT D'COSTA Institut de Mathématiques UMR 7586, case 247 Université Pierre et Marie Curie 16, rue Clisson 75013 Paris France

 $E ext{-}mail: pharamon@math.jussieu.fr}$