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Two theorems on meromorphic functions used as
a principle for proofs on irrationality

par THOMAS NOPPER et RoLF WALLISSER

RESUME. Dans cet article, nous nous intéressons & deux théore-
mes dis & Nikishin et Chudnovsky se rapportant & des fonc-
tions méromorphes. Notre propos est ici de déduire simplement
de certaines propriétés de fonctions méromorphes, satisfaisant
a des conditions arithmétiques, des résultats d’irrationalité bien
que déja connus mais non triviaux. L’intérét de cette approche
ne réside pas dans les résultats (obtenus comme corollaires de
nos théorémes) sur l'irrationalité de nombres, dont la transcen-
dance a été établie depuis longtemps (cf. [4], [9] and [10]). 1I
réside plutot dans 'intervention de théoremes concernant les co-
efficients de Taylor de fonctions méromorphes qui ont une ca-
ractérisation arithmétique. De la méme maniére que Niven [6]
utilise la méthode d’Hermite pour donner tous les résultats connus
sur l'irrationalité de valeurs de fonctions trigonométriques, nous
utilisons les résultats de Nikishin et Chudnovsky (cf. [2], [8]), pour
déduire l'irrationalité de valeurs de fonctions non-élémentaires.

ABSTRACT. In this paper we discuss two theorems on meromor-
phic functions of Nikishin and Chudnovsky. Our purpose is to
show, how to derive some well-known but not obvious results on
irrationality in a systematic and simple way from properties of
meromorphic functions with arithmetic conditions. As far as it
stands, we have no new results on irrationality, to the contrary
some results on numbers of the corollaries are known already since
a long time to be transcendental (cf. [4], [9] and [10]). Our main
intention lies in theorems on meromorphic functions whose Tay-
lor coefficients are arithmetically characterized. Like Niven [6]
used Hermite’s method to give all known results on irrationality
of trigonometric functions, we use methods going back to Nikishin
[5] and Chudnovsky (cf. [2] and [8]), to give results on irrationality
of values of non-elementary functions.

Manuscrit regu le 27 octobre 1999.



254 Thomas NOPPER, Rolf WALLISSER

1. On a theorem of Nikishin

In [5] E.M. Nikishin gave a short proof of the following theorem on entire
functions satisfying certain arithmetic conditions:

Theorem 1. Let f be a transcendental entire function of strict order
< o < 2 1. All derivatives of f at the points 0 and X\ # 0, as well as
shall be numbers of the Gauss field Q(z). Let Do(n) and Dy(n) be the least
common multiple of the denominators of the numbers f*)(0) and f*)()),
k=0,...,n, respectively. If for a given n

1
(1.1) /O t"(1 — )" F2H) (Xt) dt # 0,

for D(n) := Do(n)Dx(n) the relation
D('n) > ann[(2/0')—1]n

holds, where o does not depend on n.

Nikishin remarks that from this theorem the irrationality of the numbers
exp(p/q) and 7 can be deduced. Obviously one can extract much more out
of it; sometimes, however, the condition (1.1) causes some difficulty. That
is the reason why we have tried to weaken condition (1.1). With a slight
generalization of Nikishin’s method we can prove the following result:

Theorem 1°. Let f be a transcendental entire function of strict order
< o < 3/2. All derivatives of f at the points 0 and \ # 0, as well as A
shall be numbers of the Gauss field Q(¢). Let Do(n) and Dx(n) be the least

common multiple of the denominators of the numbers f*)(0) and f®()),
k=0,...,n, respectively. Then for infinitely many n € N

D(2n) := Dy(2n)Dx(2n) > C™nd@
where

2/0) -1, if 0<o<1
5() =={§3fa§_2, if 1<o0<3/2

and C' > 0 does not depend on n.

Proof of Theorem 1’. We shall not give the whole proof of Theorem 1’
but refer for the first part to the paper of Nikishin [5]. To avoid condition
(1.1) we proceed in the following way:

We take the Padé approximation for e* as mentioned in [5],

(1.2) Ap(2)e® + Bp(z) = Ryp(2),

li.e. there is a C > 0, such that log|f|r < Cr® for r > ro
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with

22n+1

1
/ t"(1 —t)"e* dt.
0

An(2) and By(z) are polynomials of degree n with integer coefficients and
the property Ap(z) = —Bp(—z). If we substitute z in (1.2) by the operator
A\d/dz and then apply the operator R,(\d/dz) to the entire function f®
we obtain

(1.3) A,(Ad/dz)fO(z 4+ \) + B,(Ad/d2) fV(z)
)\2n+1
n!

Rn(2) =

n!

1
/ (1 — £y D (4 4 ) .
0

This holds for all n € N and [ € Nyg. For a verification of this identity
compare [5]. Since (1.2) also holds for n — 1, it immediately follows that
(cf. Siegel [11], pp. 6)

(1.4) Ap—1(2)Rn(2) — An(2)Rp_1(2) = cn2®™ 1, ¢, # 0.

Substitution of z in (1.4) by the operator Ad/dz and application of the
resulting operators to f yields

n—1 n

3 a1 X EB(2) = 3 arn X F) (2) = a2 fE0D(),

k=0 k=0
where Fy,(z) := R,(\d/dz)f(z) and An(2) = 3 p_o @k n2* € Z[2]. Since by
assumption f is a transcendental entire function, there are infinitely many
n € N with f7=1(0) # 0. Therefore there exists an infinite subset M C N
with the property: for all n € M there is a 0 < k, < n, such that

(1.5) F#)0)#0 or E*(0) #0.

Without loss of generality it can be assumed that in (1.5) always the first
or second case holds (take otherwise a subsequence of M).

Lemma. For sufficiently largen € N we have ma.x{|F,£k") 0], |F,$’i"1) 0)} <

C1"n~%" where Cy is a constant independent of n and 6(c) as in Theo-
rem 1°.

Proof of the Lemma. Obviously

(1.6) FE)(0) = Ra(Md/d2)f®(2)|

)\2n+1

1
S / (1 — £)n fenteatD) (\p) gt
. 0
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holds. By Cauchy’s integral formula it follows that
f(2n+k"+1)(/\t) — (2n + k'n + 1)' / f(E) d{
Br(At) (

2mi € — At)2ntkat?

/9 and taking into account the estimation

max(|(€)]} < exp(Car”),
where the constant C2 does not depend on r, we obtain for sufficiently large
values of n

Choosing r =n

on (2n + kn +1)!

2n+kn+1
et ()] < Oy -y

There the constant C3 does not depend on n. A simple calculation shows
that
n! (2n+k,+1)!
(2n + ]_)l n(2ntknt+1)/o

< CZL n—& (o)n

and with

tn n o _()?

we finally get the inequality |F\™(0)| < CPn~%)". Obviously the same
estimation holds for F,(,’i"l) (0). The proof of the Lemma is completed.

Now we assume F,(Lk")(O) # 0 for all n € M. If we take | = ky, in (1.3) and
use the identity A,(z) = —Bn(—2), we get at the point z = 0

(1.7) anak,nx’“[f““"*'“)(x) — (—1)k fkntE) (0)]
=0 )\2n+1

1
Tl / (1~ )"t () dt = F{*)(0).
: 0

If Cs denotes the denominator of A, we obtain by (1.7) and the assumptions
about the values of the derivatives of f at the points 0 and A

D(2n)CEF¥)(0) € Z[i]\{0}
and therefore
|D(@n)CEFE O)? > 1.

Taking into account the estimation of the Lemma for Fkn) (0) this leads
forallne M to

D(2n) > C™nl0)n
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with a constant C' > 0 not depending on n. Since the case F,g’i"l)(O) #0
yields the same estimation, the proof of Theorem 1’ is completed .

Remark. Instead of Q(z) we can consider any imaginary quadratic number
field.

Application. As we don’t require condition (1.1), Theorem 1’ can be ap-
plied more easily than Theorem 1 in order to gain results on the arithmetic
nature of the values of non-elementary functions. As an example, we de-
rive some results on irrationality for certain hypergeometric series and the
incomplete gamma function.

Corollary 1. For all x # 0 in an imaginary quadratic number field K
and all a € Q\{0,—1,-2,...} the confluent hypergeometric function

n

®(1,1+a;2) :=7§(a+1)...(a+n)

never has values in the same field K.

In particular, all real zeros different from O of the so-called incomplete
gamma function y(a,z) for a € Q\{0,-1,—2,...} are irrational and the
complex zeros different from 0 are in no imaginary quadratic extension of
Q. Here v(a,x) is defined by

T
v(a,x) :=/ et 1dt
0

for real x > 0 and for Re(a) > 0 and by analytic continuation for complex
values of a and x.

Proof of Corollary 1. The entire function y(z) := ®(1, 1+a; ) has order
of growth 1 and fulfills the differential equation

(1.8) Y@+ (2-1)y@) =2

If we consider y(z) at the point 0, then dj := y*¥)(0) = k!/(a+1) - (a+k)
for all k > 0. Following Siegel [11], pp. 54, there is a constant Cy > 0,
independent of k, such that we have for the denominators of the numbers
d07 s adk

Lc.m.{den(dp),... ,den(dg)} < C&*!, k>o0.

Let us suppose that there is a number w € K\{0} with y(w) = q € K.
With A := den(1/w), D := den(a) and

p.— | den(q), if ¢#0
- 1 , if ¢=0
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the differential equation (1.8) inductively yields for all £ > 0
B(AD)*y®)(w) € Ok,

Ok denoting the ring of integers of K. Setting f = y in the notation of The-
orem 1’ we therefore get D(2n) = Dy(2n)D,,(2n) < C™ for all sufficiently
large n. As this limitation of the growth of the denominators contradicts
Theorem 1’, the assumption made above is wrong. Hereby the statement
about the arithmetic nature of values of ®(1,1 + a; ) is proved.

For a € Q\{0,-1,-2,...}
1
v(a,z) = Ex“e"@(l, 1+a;2)

holds (cf. Erdélyi [3], p. 133). If y(a,z) = O for an z € K\{0}, ®(1,1+a;x)
would vanish. This contradicts the considerations above and so the claim
about the zeros of the incomplete gamma function is proved.

2. On a theorem of Chudnovsky

In connection with the work of Nikishin we mention a far-reaching the-
orem on meromorphic functions with arithmetic conditions by G.V. Chud-
novsky [2] (also cf. E. Reyssat [8]), which is proved within modern tran-
scendence theory:

Theorem 2. Let f be a transcendental meromorphic function of order
< p 2. S denotes the set of all algebraic numbers w € Q, such that all
derivatives f(k)('w) are rational integers. Then the set S is of cardinality
at most p.

Like Niven [6] applied Hermite’s proof of the transcendence of e to prove
irrationality of values of elementary functions, we use a simple general-
ization of Theorem 2 to get results on the arithmetic nature of values of
non-elementary functions, too. In our case Q is replaced by a certain alge-
braic number field K of degree 4 and the values f*)(w), w € K, are certain
algebraic numbers with a restricted growth of the denominators. With this
modification one gets the following result:

Theorem 2’. Let f be a transcendental meromorphic function of order
p < 2 and K a quadratic extension of K, where K = Q or any imaginary
quadratic field. Let there be a sequence of positive integers by and a constant

2a meromorphic function is said to be of order < p, if it can be expressed as a quotient of two
entire functions of order < p
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C with
(2.1) Lean.{by,... by} < C**,

such that for wy,ws € K one has by f®) (w;) € Of (ring of integers of K).
Then w1 = ws.

Remark. Theorem 2’ can be proven with some minor changes in the proof
of Theorem 0.1 in Chudnovsky [2] because of the nature of the denominators
by. Therefore we omit the proof. Furthermore, one can easily see (compare
the way how Chudnovsky obtained the inequalities of Lemma 0.10 in [2],
p. 391) that if a function of order < 1 is taken, then a stronger growth of
the denominators by can be allowed:

Theorem 3. Let f be of order p < 1 and K as in Theorem 2’. If at
the point wy € K condition (2.1) of Theorem 2’ holds and if there exist
Cy,C1 € N, such that for we € K

[(k + CN% 5™ (we) € O, k20,
then wi = wa.
In order to show that Theorem 3 can be applied in a much more general

setting than Theorem 1, we give an application concerning the irrationality
of certain continued fractions (compare e.g. Bertrand [1]):

Corollary 2. For any imaginary quadratic o € K, a # 0, which is not a
zero of

V(Z Zk'(k-l— ) UGNO,

the value of the logarithmic derivation of ®, is never in K. In particular,
for all such o with a®,(a) # 0 and v € Ny the value of the continued
fraction
vi1t 5+ ol i
lv + lv+3  |v+4
=v+1+
v+2+ 2

[47

v+ 3+ —————
v+4+...

is not in K.

Proof of Corollary 2. Let v € Ny be fixed. The entire function ®, has
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order 1/2. The function
_d (28,(2)
fulz) = dz ( d,(2)

is meromorphic and of order < 1/2. As ®, fulfills a linear differential
equation of second order one obtains

_ o)\ )
flz) =1~ z(%(z)) ~V3,()

and this equation inductively yields
/

22) P =P ( L i‘fﬂ(n) , with Py € Z[X1, Xz, Xa].

z o,

Here degPy x;, < k +2 for ¢ = 1,2,3. Furthermore, a simple calculation
shows that

[(k+v+ 1) 0) € Z C O.

Let us assume that there is an a € K, a # 0, with ®,(a) # 0 and
! (a)/®,(a) = B € K. With C := den(a)den(1/a)den(3) equation (2.2)
yields

Cc**2fk)(a) € O.

If we now apply Theorem 3 with f = f,, Co =C; = v+ 1, w3 = a and
wy = 0 then a = 0 follows. Hence the assumption made above was wrong,
which proves the statement about the values of the logarithmic derivation
of ®,.

In order to obtain the statement about the continued fractions we consider
the entire function

_ ) (__l)n 2\ 2n
Ky (2) .—1+nz=:1n!(v+1)...(y+n) (5) ’

The identity
® K,

(2.3) 2% (a) = —iv/ant (2i/a).
@), K,

can easily be verified for all o € K with a®’,(a) # 0. Following [7], p. 210,
the right side of (2.3) can be expanded into the continued fraction
a

v+2+ o
v+3+---

v+1+

Thus Corollary 2 is proved.
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