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Metaplectic covers of GL,, and the
Gauss—Schering Lemma

par RICHARD HILL

RESUME. Le lemme de Gauss-Schering est une identité impli-
quant le symbole de Legendre utilisé dans des preuves élémen-
taires de la loi de réciprocité quadratique. Dans cet article nous
montrons comment ce lemme peut-étre généralisé pour donner
une formule sur un 2-cocycle correspondant a une plus grande ex-
tension métaplectique de GL,,/k ou k est un corps global. Dans
le cas ou la caractéristique de k est non nulle, la formule fournit
une construction compléte du groupe métaplectique, et par suite
donne une nouvelle preuve de la loi de réciprocité pour le symbole
de Legendre supérieur.

ABSTRACT. The Gauss-Schering Lemma is a classical formula
for the Legendre symbol commonly used in elementary proofs of
the quadratic reciprocity law. In this paper we show how the
Gauss Schering Lemma may be generalized to give a formula for
a 2-cocycle corresponding to a higher metaplectic extension of
GL,/k for any global field k. In the case that k has positive
characteristic, our formula gives a complete construction of the
metaplectic group and consequently an independent proof of the
power reciprocity law for k.

1. Introduction

Let k be a global field with adele ring A and let G/k be an affine algebraic
group. A metaplectic extension of G by a discrete Abelian group A is a
topological central extension:

1— A—G(A) — GA) -1,
which splits over the group G(k) of k-rational points. This means that the
group G(k) lifts to a subgroup of C~¥(A) The covering group G (A) is called
a metaplectic group, or metaplectic cover of G. Metaplectic groups are
important since, just as the usual automorphic forms on G are functions on
G(A) which are invariant under translations by G(k), forms of non-integral
weight on G can be regarded as functions on é(A) which are invariant
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under translations by a lift of G(k). Metaplectic extensions of G by A are
classified by elements of H2(G(A), A) which split when restricted to G (k).
The cohomology groups here are based on Borel-measurable cochains and A
is regarded as a trivial, discrete G(A)-module. In this paper the algebraic
group G will always be the general linear group GL,/k and A will be a
group of roots of unity in k.

Let p,, be a group of roots of unity in & with m = #pu,,. There is
a canonical metaplectic extension of SL,/k by pm. This extension was
constructed by T. Kubota [7], [8] in the case n = 2 and by H. Matsumoto
[11] for general n (see also [12] or [5]). By embedding GLy, in SLyp41 one
obtains a metaplectic extension on GL,. Of course the extension of SL,
can be recovered from that of GL,, in the same way.

In this article we shall give a different construction of the metaplectic
cover of SL,,. Our construction will be explicit in the sense that we are able
to write down a cocycle corresponding to the extension. We shall show how
the cocycle is related to the Gauss—Schering Lemma in the case n = 1, and
as a corollary we obtain Weil’s reciprocity law. The results described here
are contained in a more general form in [4]. However we shall give more
elementary proofs and limit ourselves to a minimum of notation. We shall
also emphasize the connection between the cocycle and the Gauss—Schering
Lemma.

Acknowledgement. This paper was written on a visit to the University
of Goettingen. I would like to thank the University of Goettingen and
particularly Prof. S. J. Patterson for their hospitality.

Notation. Throughout, k will denote a global field containing a primitive
m-th root of unity. We shall write u,, for the group of all m-th roots of
unity in k. For a place v of k we shall write o, for the ring of integers in k,
and (+,+)y,m for the m-th power Hilbert symbol on k,. We shall write 7, for
a local uniformizer in k,. Given a finite set S of places of k£ containing all
the Archimedian places, we shall write A(S) for the restricted topological
product of the k, for v ¢ S with respect to the subrings o,. Given an adele
a we shall write a,, for the component of « in k,. For an idele @ € A(S)*
we shall use the notation

|a|A(S) = H |t |o-

vgS

We shall write o° for the ring of S-integers. The m-th power Legendre
symbol on o° is defined by

(5). = II @my®,

v|b, v€S

where o is an S-integer and b is an ideal of o which is coprime to ma.
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Suppose 7' is an Abelian group, and regard u,, as a trivial T-module. If o
is an inhomogeneous 2-cocycle on T" with values in p,, then the commutator
of o is the function T' x T' — ., given by:

ACH)
[a7 16]0' - O'(ﬁ, a) L4
This map is bimultiplicative, skew-symmetric and depends only on the co-
homology class of 0. We shall write H, fym(T, tm,) for the subgroup of classes

whose commutators are trivial. Cocycles in H, fym are called symmetric co-
cycles. It is known (see [6]) that the restriction map gives an isomorphism

Hgym(T’ Pm) — Hszm(T[m]a Bm),

where T'[m] is the m-torsion subgroup of T

2. The cocycle

We begin by describing the cocycle. Let S be the finite set of places v
of k for which |m|, # 1. Note that if k is a function field then S is empty
and A(S) = A.

The group pn, acts on the Cartesian product A(S)™ of n copies of A(S)
by scalar multiplication. Let U be a p,-invariant compact, open neigh-
bourhood of 0 in A(S)" and let F' be an open fundamental domain for
the action of p, on A(S)™\ {0}. We shall write f : A(S)" — Z for the
characteristic function of F. Define for a, 3 € GL,(A(S)),

IT g{fU - fﬂv} f(al‘)f(Cw)da:’

Cell»m

(4) ou,F(a, B) =

where the Haar measure dz on A(S)" is normalized so that U has measure
1. The powers in this product are all rational numbers whose denominators
are coprime to m. It therefore makes sense to raise ¢ to such a power.

Theorem ([4]). The function oy is a continuous, inhomogeneous 2-co-
cycle on GLy(A(S)). The cohomology class of oy F is independent of U and
F. If k is a function field then oy r is metaplectic. Its restriction to SLy,
corresponds to the canonical metaplectic extension of SL,. Furthermore
ou,r splits on every compact subgroup of GLyn(A).

Remark. In fact o is not quite the standard metaplectic class on the whole
group GL,,. In particular if m is even then o cannot be obtained by pulling
back a cocycle on a larger group SLn+r to GL, (see [4]). There is a sense
in which o is a nicer cocycle on GL, than Matsumoto’s, since it has the
following functorial property. Let ! be a finite extension of k of degree
d. Then Restl(GLy/l) may be regarded as a subgroup of GLy4/k. The
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cocycle o)) which we obtain on GL,/! is the restriction of the cocycle o(*)
on GLy4/k. This compatibility does not hold for Matsumoto’s cocycles.

The theorem will be proved in sections 4, 5 and 6. At first sight the
cocycle o seems completely unrelated to any other number theoretical ob-
jects. In section 3 we shall show that it is in fact closely related to the
Gauss—Schering Lemma.

3. The Gauss—Schering Lemma
One of Gauss’ proofs of the quadratic reciprocity law is based on the

following Lemma
Gauss’ Lemma. Let 3 be an odd prime number and o a natural number
not divisible by 3. Then

a

=) =(1),

(5),=

where T is the number of residue classes i € {1,2,..., %} modulo B such
that ai is congruent to one of the numbers {—1,... ,—-%} modulo .

In work unpublished during his lifetime, Gauss [1] generalized this lemma
to include composite 8 and 4th power residue symbols in the Gaussian
integers. He went on to use the lemma to prove the biquadratic reciprocity
law for the Gaussian integers. However his proof using the lemma, is much
harder than his later proof using Gauss sums. Some time later, Schering [13]
published a proof that the lemma holds for composite 3 and the generalized
lemma came to be known as the Gauss-Schering Lemma. More recently [2],
[9], [10], [3] the Gauss—Schering lemma has been used to prove the general
power reciprocity law in a number field.

We shall now recall a general form of the Gauss—Schering Lemma. Let k
and ., C k be as above and let S be a finite set of places of k containing
all Archimedian places. Then for an S-integer o and an ideal b C 0° with
b coprime to ma, the m-th power Legendre symbol (a/b), is defined. By
a %—set modulo b we shall mean a subset F' C 05/b such that

©*/6)\{0} = | ¢F,
CEum
where the union here is disjoint.

Generalized Gauss—Schering Lemma. Let a € o and let b C o5 be
coprime to ma. Then for any %-set F modulo b, one has

) = r(¢)
(%) =TI¢@,
CEum
where r(¢) s the number of elements i € F' such that ai € F.
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A proof of this may be found for example in [9] or [3].

We shall now reformulate the lemma slightly. Let f : 05/b — {0,1} be
the characteristic function of F. The power r({) in the Gauss—Schering
Lemma can now be expressed in the form

rQ)= Y, fled)f(Si).
ie(oS/B)\{0}
We therefore have

( ) II ¢ 2ie(os o\ (o} F (@) F(CE)

CEpm

Replacing the sum by an integral over A(S) we obtain a formula for (a/b),
of exactly the same form as (A). More precisely, if we regard o° \ {0} as
being embedded diagonally in A(S)* = GL1(A(S)) then we have

(67

(E>m = oy (e ),

where U = [],¢5 00 and F coincides on U \ BU with a —-set modulo S.
The above relatlon between Legendre symbols and the cocycle oy F is

still rather unsatisfactory since our choice of F' depends on 3. We shall

now give a relation between the commutator of o and Hilbert symbols.

Proposition 1. For o, 3 € A(S)* the following holds:
(m— 1)(|a|A(S) 1)(|ﬂ|A(5)—1)

[a’ :3]0 = (_1) H Ay, ,Bv)v,

vgS

Remark. Hilbert symbols are partially skew symmetric in the sense that
(&, B)v,m = (B, a), 1,- However if m is even then it is not always true that
(a,@)y,m = 1. If the Hilbert symbol fails to be skew symmetric in this

way then it clearly cannot be the commutator of a cocycle. The factor
(m=1)(lalpy(5) =D UBlr(5)—D
(-1) m2 in the above formula compensates for the lack

of skew symmetry in the Hilbert symbols.

Proof. Note that A(S)* is generated by the following set:

Ho,’fU{m,:vgéS}.
vgS
Here by abuse of notation 7, denotes an idele whose w-component is 1 for
w # v and whose v-component is a local uniformizer of k,. Since both
sides of the equation in the proposition are bilinear and skew symmetric,
it suffices to prove the equality for a and [ in the generating set.
First suppose a, 8 € [],¢g0; . Since aU = U = U, we have

ou,r(a, B) = oy r(B,a) = 1.
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Therefore [a, 8], = 1.
We next treat the case a € [],¢50, and 8 = my. For any choice of F it
follows as before that oy r(3, ) = 1. We therefore have

[a7 /3]0 = UU,F(a’ :3)

We must show that oy r(a, 8) = (w, Tw)w,m. Note that we are still free
to choose F' in such a way that we can calculate oy r(a, 8). First let F; be
a lift to o5 in a %-set Fy modulo 7. Define

F2=F1XU,,

where U’ = ng SU{w} Ov- Then F5 is an open fundamental domain for p,,
in U \ BU. This may be extended to an open fundamental domain F3 for
pm in A(S) \ {0}. We shall write f; for the characteristic function of F;.
We have

/ f3(Ca) fs(az)dz = / f2(¢2) fol o) dz
U\BU U\BU

= [, [ o)nonas
Z fo(¢z) fo(azx)dz mod m.

TE(04 /Tap0ap) >

The result now follows from the Gauss—Schering Lemma taking F' = F3.
Finally suppose a = 7, and 8 = m,, with v # w. We must show that

(m—l)(lalA(S)_21)(|ﬂ|A(S)"1)

[O" ﬁ]ﬂ =(-1) m

This is a routine but long calculation and is left to the reader. O

As a corollary to this and the theorem we obtain:

Weil’s Reciprocity Law. Let k be a global field of positive characteristic.
For a, B € k* we have

H(a’ ﬂ)v,m = 1.

4. The Cocycle Relation

The Legendre symbol (/) is defined for composite 3 by multiplica-
tivity. Thus in order to prove that the Gauss—Schering Lemma holds for
composite B one must show that the right hand side of the formula in
the lemma is also multiplicative in 8. If one follows the proof of this fact
through without assuming that a and 8 commute or are coprime then
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instead of obtaining a multiplicativity relation, one obtains the cocycle re-
lation for oy F:

o(ap,v)o(a, B) = o(a, By)o(B,7).

We shall go through this proof now.
We simply calculate o(a, 87) as follows:

H C{fU - fﬁU + fﬂU - fﬁ'yU} flaz)f(¢x)dx

Ceﬂm

o(a, 8) H C{fﬁU - fﬁ'yU} f(az)f(Cz)dz

[qSIT

= o(a,B) [] ¢

CELm

oa,By) =

|det Blacs) { fyr = fyu } £(@B2) £(¢Bz)da
Since | det 3|(s) is congruent to 1 modulo m, we have

o(a, 87) = o(a, B)
T Ao = Lo} (F(@2)1(Co) + Fopo)(£(¢BE) - f(G) ) da

Ceﬂm

= O'(Ol, ,B)U(Q,B ’)’) H C{fU - f'yU} f(aﬁx)(f(c,g$) — f((x))dw

CEpm
It remains to show that
(B) o(B,7) = [[ ¢V~ lwlresuca-rcoma
Cellzm

This follows from the following lemma.

Lemma 1.
0 Ao = b } (o) = F@) (S (Ca) = fcBa))ae _

CEUm

1.

Proof. Since U and yU are ppy-invariant, it is sufficient to show that for
any non-zero vector y € A(S)" \ {0} we have

1 ¢aeumy(f(@B2) = f(2))(f(C2) - £(CB2)) _

CEYm
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where Yy denotes the p,, orbit of y. This follows easily from the relation

> fa)=1.

CEpm

From the lemma we have

1T g{fU - va} f(eBz)(f((z) — f({PBx))dx
(EUm
= H C{fU - f'yU} f(x)(f(Cx) — f(C,Bw))dx

(EUm
Note that f(z)f(¢{x) = 0 unless { = 1. We therefore have

] U= ho} Hemnica) - s(coas
(Epm
- 11 C{fU - fw} — f(@)f((Bz)dz.
CEpm

Replacing = by (~lz we obtain:

II c{fU = fyu } f(aB)(£(¢o) — F((B))da
CEpm
Jv—1/ } — f(¢ ) f(Bz)dx
= C{ U YU .

Finally replacing ¢ by (! we obtain (B).

5. Independence of U and F'

We shall now show that the cohomology class of oy r is independent of
U and F. We first fix F' and vary U. Let U’ be another u,-invariant,
compact, open neighbourhood of 0 in A(S) and define

T(a) = H C{fU — Jur} flaz) f((x)dx
CEum

We shall show that
oyr(a,B) _ 7(a)7(B)

oy p(e,B)  T(aB)
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First note that
ovrlef) _ T b= Jo} (Flea)f(¢2) = f(aba) f(B¢w)de

O'U',F(a9 /3)

[T
— T(a) H C{fU’—fU} f(aﬁx)f(ﬂ(x))dz
CEUm
I C)) {Jr = Jir} F(@Bz)(f(B¢z) — f(Ca))d
oy L €1 |

Now using Lemma 1 we obtain

our(B) _ T<a)) T o= Ji} £ (BCa) — f(Ca))a,
e

oy r(a,B)  T(aB

Again since f(z)f(¢x) = 0 unless ( = 1, we obtain the result.
A similar argument shows that if F” is another open fundamental domain
for the action of um, on A(S) \ {0} then we have

ov,r(e,B) _ e(a)e(B)
ou,r(a, B) e(aB) ’

e(a) = ] o= o} /@) (Ca)de,
CEUm
Here f’ denotes the characteristic function of F”.

where

6. The rest of the proof

The other properties of the cocycle are almost immediate from its defi-
nition with suitable choices of F' and U. We begin by showing that o splits
on any compact subgroup of GL,(A(S)). Let K be a compact subgroup of
GL,(A(S)). Then one may choose the neighbourhood U of 0 in A(S)" to
be K-invariant. One then has immediately for a, 8 € K,

UF,U(aa IB) =1

We next show that o splits on GLy (k) in the case that k is a function field.
To prove this we would like to take F' to be invariant under translations by
k™ and U to be a fundamental domain for k™ in A™. Then for a, 3 € GL, (k)
and ¢ € py, the function

z — f(az)f(¢z)

is periodic modulo translations by k™. On the other hand U and BU are
two different fundamental domains for k. We therefore have

{/U - /ﬁv} f(ez)f(¢z) =0,
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which implies
UF,U(a7 6) =1L

There is a problem with this method. Unfortunately there is no open
fundamental domain F' for p,, in A"\ {0} which is k™-invariant. However
if we are only interested in the restriction of o to GL,(k), we may instead
take F' to be an open fundamental domain for g, in A™ \ k™. Thus its
characteristic function f will be discontinuous on k™. Since U and BU have
the same intersection with k", it follows that the integrals

{/U B /ﬁU} f(oz)f(¢o)da

will still be rationals whose denominators are coprime to m. We may
therefore use such an F' to define a cocycle. Now it is possible to take F'
to be translation invariant modulo k", so the above argument shows that
o splits on GLy (k).

Finally we give a sketch proof that the restriction of o to SL,, corresponds
to the canonical metaplectic extension of SL,. The canonical extension is
determined by its restriction to the subgroup T' of diagonal matrices with
determinant 1. For a diagonal matrix o we shall write a; for the i-th entry
on the diagonal of a.

On T'(A(S)) the canonical extension is given by the cocycle

c(a,ﬂ) = H H (aiaﬂj)v,m-

vgS 1<i<j<n

One calculates that the commutator of ¢ is

n
[, Ble = [ J](ctirBi)vm-
vgS i=1
By generalizing Proposition 1 one may show that this is the same as the
commutator of o on T. Thus o/c represents a symmetric class on T'(A(S)).
To show that o is cohomologous to ¢ on SLy,,(A(S)) it remains only to show
that o/c splits on T'(A(S))[m]. Since T'(A(S))[m] is relatively compact in
GLn(A(S)) it follows that o splits on T'(A(S))[m]. On the other hand if
a, 3 € T(A(S))[m] then since the Hilbert symbols for v ¢ S are unramified,
it follows that c(a,3) = 1. This finishes the proof.
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