Un -uplet diophantien est un ensemble de entiers naturels non nuls tel que le produit quelconque de deux d’entre eux augmenté de est un carré parfait. Dans cet article, nous nous intéressons a certaines propriétés de courbes elliptiques d’équation du type , où est un triplet diophantien. Nous considérons en particulier la courbe elliptique définie par l’équation où et désigne le -ème nombre de Fibonacci. Nous montrons que si le rang de est égal a , ou si , alors les points entiers sur sont donnés par
A Diophantine -tuple is a set of positive integers such that the product of any two of them is one less than a perfect square. In this paper we study some properties of elliptic curves of the form , where , is a Diophantine triple. In particular, we consider the elliptic curve defined by the equation where and , denotes the -th Fibonacci number. We prove that if the rank of is equal to one, or , then all integer points on are given by
@article{JTNB_2001__13_1_111_0, author = {Dujella, Andrej}, title = {Diophantine $m$-tuples and elliptic curves}, journal = {Journal de Th\'eorie des Nombres de Bordeaux}, pages = {111--124}, publisher = {Universit\'e Bordeaux I}, volume = {13}, number = {1}, year = {2001}, zbl = {1046.11034}, mrnumber = {1838074}, language = {en}, url = {http://www.numdam.org/item/JTNB_2001__13_1_111_0/} }
TY - JOUR AU - Dujella, Andrej TI - Diophantine $m$-tuples and elliptic curves JO - Journal de Théorie des Nombres de Bordeaux PY - 2001 DA - 2001/// SP - 111 EP - 124 VL - 13 IS - 1 PB - Université Bordeaux I UR - http://www.numdam.org/item/JTNB_2001__13_1_111_0/ UR - https://zbmath.org/?q=an%3A1046.11034 UR - https://www.ams.org/mathscinet-getitem?mr=1838074 LA - en ID - JTNB_2001__13_1_111_0 ER -
Dujella, Andrej. Diophantine $m$-tuples and elliptic curves. Journal de Théorie des Nombres de Bordeaux, Tome 13 (2001) no. 1, pp. 111-124. http://www.numdam.org/item/JTNB_2001__13_1_111_0/
[1] On Euler's solution of a problem of Diophantus. Fibonacci Quart. 17 (1979), 333-339. | MR 550175 | Zbl 0418.10021
, , ,[2] The equations 3x2 - 2 = y2 and 8x2 - 7 = z2. Quart. J. Math. Oxford Ser. (2) 20 (1969), 129-137. | MR 248079 | Zbl 0177.06802
, ,[3] Logarithmic forms and group varieties. J. Reine Angew. Math. 442 (1993), 19-62. | MR 1234835 | Zbl 0788.11026
, ,[4] Lucas and Fibonacci numbers and some Diophantine equations. Proc. Glasgow Math. Assoc. 7 (1965), 24-28. | MR 177944 | Zbl 0127.01902
,[5] Algorithms for Modular Elliptic Curves. Cambridge Univ. Press, 1997. | MR 1628193 | Zbl 0872.14041
,[6] History of the Theory of Numbers. Vol. 2, Chelsea, New York, 1966, pp. 513-520. | Zbl 0958.11500
,[7] Arithmetics and the Book of Polygonal Numbers. (I.G. Bashmakova, Ed.), Nauka, Moscow, 1974 (in Russian), pp. 103-104, 232.
,[8] On Diophantine quintuples. Acta Arith. 81 (1997), 69-79. | MR 1454157 | Zbl 0871.11019
,[9] The problem of the extension of a parametric family of Diophantine triples. Publ. Math. Debrecen 51 (1997), 311-322. | MR 1485226 | Zbl 0903.11010
,[10] A proof of the Hoggatt-Bergum conjecture. Proc. Amer. Math. Soc. 127 (1999), 1999-2005. | MR 1605956 | Zbl 0937.11011
,[11] A parametric family of elliptic curves. Acta Arith. 94 (2000), 87-101. | MR 1762457 | Zbl 0972.11048
,[12] Absolute bound for the size of Diophantine m-tuples. J. Number Theory, to appear. | MR 1838708 | Zbl 1010.11019
,[13] A generalization of a theorem of Baker and Davenport. Quart. J. Math. Oxford Ser. (2) 49 (1998), 291-306. | MR 1645552 | Zbl 0911.11018
, ,[14] Integer points on a family of elliptic curves. Publ. Math. Debrecen 56 (2000), 321-335. | MR 1765985 | Zbl 0960.11019
, ,[15] On Fermat's quadruple equations. Abh. Math. Sem. Univ. Hamburg 69 (1999), 283-291. | MR 1722939 | Zbl 0952.11033
, , ,[16] A problem of Fermat and the Fibonacci sequence. Fibonacci Quart. 15(1977), 323-330. | MR 457339 | Zbl 0383.10007
, ,[17] Elliptic Curves. Springer-Verlag, New York, 1987. | MR 868861 | Zbl 0605.14032
,[18] A second variation on a problem of Diophantus and Davenport. Fibonacci Quart. 16 (1978), 155-165. | MR 498978 | Zbl 0382.10011
,[19] Solving constrained Pell equations. Math. Comp. 67 (1998), 833-842. | MR 1443123 | Zbl 0945.11027
,[20] Elliptic Curves. Princeton Univ. Press, 1992. | MR 1193029 | Zbl 0804.14013
,[21] Rational isogenies of prime degree. Invent. Math. 44 (1978), 129-162. | MR 482230 | Zbl 0386.14009
,[22] Introduction to Number Theory. Almqvist, Stockholm; Wiley, New York, 1951. | MR 43111 | Zbl 0042.26702
,[23] Contributions to the theory of a category of Diophantine equations of the second degree with two unknowns. Nova Acta Soc. Sci. Upsal. 16 (1954), 1-38. | MR 70645 | Zbl 0057.28304
,[24] Euler's concordant forms. Acta Arith. 78 (1996), 101-123. | MR 1424534 | Zbl 0863.11038
,[25] S-integral points on elliptic curves and Fermat's triple equations. In: Algorithmic Number Theory, (J. P. Buhler, ed.), Lecture Notes in Comput. Sci. 1423 (1998), 528-540. | Zbl 0920.11086
, , ,[26] SIMATH manual, Universität des Saarlandes, Saarbrücken, 1997.
[27] The equations z2 - 3y2 = -2 and z2 - 6x2 = -5, in: A Collection of Manuscripts Related to the Fibonacci Sequence. (V. E. Hoggatt, M. Bicknell-Johnson, eds.), The Fibonacci Association, Santa Clara, 1980, pp. 71-75. | MR 624070 | Zbl 0511.00007
,[28] Elliptische Kurven: Fortschritte und Anwendungen. Jahresber. Deutsch. Math.-Verein 92 (1990), 58-76. | MR 1056202 | Zbl 0708.14019
,