Nikolai G. Moshchevitin

Continued fractions, multidimensional diophantine approximations and applications

<http://www.numdam.org/item?id=JTNB_1999__11_2_425_0>
Continued Fractions, Multidimensional Diophantine Approximations and Applications

par NIKOLAI G. MOSHCHEVITIN

RÉSUMÉ. Cet article rassemble des résultats généraux d’approximation diophantienne, sur les meilleures approximations et leurs applications à la théorie de répartition uniforme.

ABSTRACT. This paper is a brief review of some general Diophantine results, best approximations and their applications to the theory of uniform distribution.

1. DIOPHANTINE APPROXIMATIONS.

1.1. One-dimensional approximations.

1.1.1. Lagrange spectrum. Let \(\alpha \) be an irrational number. Dirichlet’s theorem states that there are infinitely many positive integers \(q \) such that

\[
\| q \alpha \| < \frac{1}{q}
\]

holds, where \(\| \cdot \| \) denotes the distance to the nearest integer. Hurwitz obtained a more precise result: for any irrational number \(\alpha \), the inequality

\[
\| q \alpha \| < \frac{1}{\sqrt{5}q}
\]

has infinitely many solutions in \(q \). Moreover, there is a countable set of numbers \(\alpha \) for which this inequality is an exact one, that is, for any positive \(\varepsilon \) there are only finitely positive integers \(q \) such that the inequality

\[
\| q \alpha \| < \left(\frac{1}{\sqrt{5}} - \varepsilon \right) \frac{1}{q}
\]

holds.

We define the Lagrange spectrum to be the set of the real numbers \(\lambda \) for which there exists \(\alpha = \alpha(\lambda) \) such that the inequality

\[
\| q \alpha \| < \frac{\lambda}{q}
\]
has infinitely many solutions, and for any positive ε the inequality

$$||q\alpha|| < (\lambda - \varepsilon) \frac{1}{q}$$

has only a finite number of solutions. It is well-known that Lagrange spectrum has a discrete part

$$\frac{1}{\sqrt{5}}, \frac{1}{\sqrt{8}}, \ldots,$$

and the minimal λ for which there are uncountably many $\alpha = \alpha(\lambda)$ is $\lambda = 1/3$. Also it is well-known that Lagrange spectrum contains an interval $[0, \lambda^*]$. Moreover, for any decreasing function ψ satisfying $\psi(y) = o(y^{-1})$, as y tends to infinity, there is an uncountable set of real numbers α such that the inequality

$$||q\alpha|| < \psi(q)$$

has infinitely many solutions, but for any $\varepsilon > 0$, the stronger inequality

$$||q\alpha|| < (1 - \varepsilon)\psi(q)$$

has only a finite number of solutions.

One can find the above results in [5]. All of them can be obtained from the continued fraction expansion [14].

1.1.2. Best approximations and continued fractions. Any real number α may be written as

$$\alpha = b_0 + \frac{1}{b_1 + \frac{1}{b_2 + \frac{1}{b_3 + \ldots}}}$$

where $b_0 \in \mathbb{Z}$ and, for $j > 0$, b_j are a nonnegative integers. For convenience, we use the notation

$$\alpha = [b_0; b_1, b_2, b_3, \ldots].$$

This representation is infinite and unique when α is irrational. If α is rational, we have $\alpha = [b_0; b_1, b_2, b_3, \ldots, b_t]$, and this representation is unique if we impose the condition $b_t \neq 0, 1$.

Convergents to α of the order ν are defined as

$$\frac{p_\nu}{q_\nu} = [b_0; b_1, b_2, b_3, \ldots, b_\nu]$$

A simple theorem states that these fraction and only these form the best approximations, that is the relation

$$||q_\nu\alpha|| = \min_{q < q_\nu} ||q\alpha||$$

holds for the denominators q_ν and only for them (see [14]). We now give two other easy facts.
Theorem 1. We have
\[||q_{\nu}\alpha|| \asymp (q_{\nu+1})^{-1}, \quad \text{(in order of approximation)}. \]

Proposition 2. We have
\[\Delta_\nu = \begin{vmatrix} p_\nu & q_\nu \\ p_{\nu+1} & q_{\nu+1} \end{vmatrix} = \pm 1. \]

1.1.3. Klein polygons. We now consider the integer lattice \(\mathbb{Z}^2 \subset \mathbb{R}^2 \). Let \((q, a) \in \mathbb{Z}^2\) be a primitive point \((\gcd(q, a) = 1)\) and \(q, a > 0\). We define the two angles \(\varphi_+ \) and \(\varphi_- \) by
\[\varphi_+ = \left\{ Z = (x, y) \in \mathbb{R}^2 : x \geq 0, y \geq \frac{a}{q} \right\}, \]
\[\varphi_- = \left\{ Z = (x, y) \in \mathbb{R}^2 : y \geq 0, y \leq \frac{a}{q} \right\}. \]

Klein polygons \(K_+(a, q) \) and \(K_-(a, q) \) are defined to be respectively the following borders
\[\partial(\text{conv}(\varphi_+ \cap (\mathbb{Z}^2 \setminus \{0\}))) \]
and
\[\partial(\text{conv}(\varphi_- \cap (\mathbb{Z}^2 \setminus \{0\}))) \]
which consist of finite (nontrivial) intervals.

We now define \(\Delta(a, q) \) to be the domain:
\[\Delta(a, q) = \left\{ Z = (x, y) \in \mathbb{R}^2 : x > 0, y > 0, \right. \]
\[\left. Z \not\in \text{conv}(\varphi_+ \cap (\mathbb{Z}^2 \setminus \{0\})), \quad Z \not\in \text{conv}(\varphi_- \cap (\mathbb{Z}^2 \setminus \{0\})) \right\}. \]

We have

Theorem 3 ([7, 9]). 1. The vertices of \(K_-(a, q) \) (different from \((q, a)\)) are integer points of the form \((q_{2\mu}, p_{2\mu})\), where \((p_{2\mu}/q_{2\mu})\) is the \(2\mu\)-th convergent to \(a/q\).
2. The vertices of \(K_+(a, q) \) (different from \((q, a)\)) are integer points of the form \((q_{2\nu+1}, p_{2\nu+1})\), where \(p_{2\nu+1}/q_{2\nu+1}\) is the \((2\nu + 1)\)-th convergent to \(a/q\).
3. If \((u, v) \in (K_+(a, q) \cup K_-(a, q)) \cap \mathbb{Z}^2\) is an integer point then \(v/u\) is a convergent to \(a/q\) or one of the intermediate fractions \((wp_{\nu + 1} + p_{\nu-1})/(wq_{\nu + q_{\nu-1}}), 1 \leq w \leq b_{\nu+1}\).
4. \(\Delta(a, q) \cap \mathbb{Z}^2 = \emptyset \).

One can easily verify the same results for infinite continued fractions (i.e. for irrational numbers).

Recently, several papers [1, 21, 45, 46, 27] devoted to multidimensional generalization of Klein polygons have appeared. Unfortunately one must notice that there is something incorrect in papers [45, 46].
1.1.4. Representation of rationals. The rationals \(a/q \) with bounded partial quotients \(b_j \) are of great interest (see [22, 23, 24, 11]).

Let \(N(k, q) \) be the number of integers \(A, 1 \leq A < q, \gcd(A, q) = 1 \) such that any component \(b_i \) of the continued fraction expansion

\[
\frac{A}{q} = [0; b_1, \ldots, b_{n(A)}]
\]

is bounded by \(k: b_i \leq k, \ i = 1, \ldots, n(A) \). It is known ([22, 4, 52]) that if \(k > \gamma \log q \) with \(\gamma \) sufficiently large, then \(N(k, q) \geq 1 \). Moreover we can show that for almost all positive integers \(q \) and \(A \) with \(1 \leq A < q \), all partial quotients are bounded by \(O(\log q) \).

By the way we may recall a famous and still open conjecture which asserts that for any \(q \geq 1 \), we have \(N(6, q) \geq 1 \). However it is known that the conjecture holds when \(q = 2^a \) or \(q = 3^a \) ([39]).

Sergei Konyagin (see [17]), by means of Farey fractions, proved the following upper bound for \(N(k, q) \):

Theorem 4. For any \(\gamma < 1 \) and for any \(k \geq k(\gamma) \) we have

\[
N(k, q) \ll \varphi(q)q^{-\frac{\gamma}{k \log k}},
\]

where \(\varphi \) denotes the Euler function.

We define the sequence \(A_1 < A_2 < \cdots < A_d \) to be an almost arithmetic progression if

\[
\exists w > 1: \ w \leq A_{j+1} - A_j \leq 3w, \ j = 1, \ldots, d - 1.
\]

In [32], the author shows that numbers with bounded partial quotients cannot appear very regularly: they cannot form long almost arithmetic progressions. The following theorem improves the result from [32].

Theorem 5. For \(d \geq 3 \), let \(A_0, \ldots, A_d \) be positive integers. Suppose

(i) \(0 < A_0 < \cdots < A_d \) form an almost arithmetic progression;

(ii) \(\gcd(A_i, q) = 1, \ i = 0, \ldots, d. \)

Let \(A_\nu/q = [b_{\nu, 1}, \ldots, b_{\nu, s(\nu)}] \). Then there exist \(\nu_0 \) and \(\mu_0 \) such that

\[
0 \leq \nu_0 \leq d, \ 1 \leq \mu_0 \leq s(\nu_0)
\]

and

\[
b_{\nu_0, \mu_0} \gg d^{1/2}.
\]

Theorem 5 is proved by means of Klein polygons. The same result is true for real-valued (not integer) almost arithmetic progressions and in the last case S. Konyagin showed that the result for real-valued progressions is exact in order.
1.2. Simultaneous approximations. Let \(\psi : \mathbb{R}_+ \to \mathbb{R}_+ \) be a positive and real-valued function. For given \(\alpha = (\alpha_1, \ldots, \alpha_s) \in \mathbb{R}^s \), a positive integer \(p \) is said to be a \(\psi \)-approximation of \(\alpha \), if

\[
\max_{j=1,\ldots,s} ||p\alpha_j|| = \max_{j=1,\ldots,s} \min_{a \in \mathbb{Z}} |p\alpha_j - a| \leq \psi(p).
\]

1.2.1. Dirichlet and Liouville's theorems. Dirichlet's theorem states that for any \(\alpha = (\alpha_1, \ldots, \alpha_s) \in \mathbb{R}^s \), where \(1, \alpha_1, \ldots, \alpha_s \) linearly independent over \(\mathbb{Z} \), there are infinitely many \(\psi \)-approximations of \(\alpha \) with \(\psi(y) = y^{-1/s} \).

On the other hand, Liouville's theorem ([2], ch.5) shows that for any \(\alpha = (\alpha_1, \ldots, \alpha_s) \in \mathbb{R}^s \) such that \(1, \alpha_1, \ldots, \alpha_s \) form a basis of a real algebraic field of degree \(s + 1 \), there exists \(C(\alpha) \) such that

\[
\max_{j=1,\ldots,s} ||p\alpha_j|| \geq C(\alpha)p^{-1/s}, \quad \forall p \in \mathbb{N}.
\]

One can see that there are only countably many algebraic \(\alpha = (\alpha_1, \ldots, \alpha_s) \).

1.2.2. Theorem by Cassels and Davenport and the result by Jarnik. In [3, 6] the following result is obtained.

Theorem 6. There exists a constant \(C_s \) for which there exists an uncountable set of elements \(\alpha \in \mathbb{R}^s \) which do not have any \(\psi \)-approximation where \(\psi(y) = C_s y^{-1/s} \).

V. Jarnik [12, 13] proved another result:

Theorem 7. Let \(\psi \) and \(\lambda \) be positive real-valued functions such that \(\psi(y)y^{1/s} \) decreases as \(y \to \infty \) and \(\lambda(y) \to 0 \) as \(y \to \infty \). Then there exists an uncountable set of elements \(\alpha \in \mathbb{R}^s \) for which there are infinitely many \(\psi \)-approximations, but only finitely many \(\psi \lambda \)-approximations.

A review of other results can be found in [43, 10, 2].

1.2.3. Exact results in terms of the order of approximation. Generalizing the work [3] by means of chains of parallelepipeds [28, 50, 7, 8] we improve Jarnik's result.

Theorem 8. For \(y \geq 1 \), let \(\psi \) and \(\omega \) such that \(\psi(y)y^{1/s} \) decreases as \(y \to \infty \) and \(\lambda(y) \to 0 \) as \(y \to \infty \). Then there exists a vector \(\alpha = (\alpha_1, \ldots, \alpha_s) \) which has infinitely many \(\psi \)-approximations but not any \(2^{-((s+1)(s+2))} \)-approximation.
Theorem 9. Let ω and ψ be as in Theorem 8 and suppose that
$$\omega(1) \leq 2^{-(s+1)(s+3)}(s!)^{-1/s}.$$
Then there exists an uncountable set of vectors $\alpha = (\alpha_1, \ldots, \alpha_s)$, each of them having infinitely many ψ-approximations but not any $2^{-(s+3)\psi}$-approximation.

It follows that in Cassels Theorem 6 we may put
$$C_s = 2^{-(s+2)(s+3)}(s!)^{-1/s}.$$
We say that $\alpha = (\alpha_1, \ldots, \alpha_s)$ satisfies the ψ-condition if α has infinitely many ψ-approximations but not any c_ψ-approximation for some $c = c(\alpha)$

Theorem 10. Let ψ be defined by $\psi(y) = y^{-1/\epsilon} \omega(y)$ where ω is decreasing positive function. Then in any Jordan s-dimensional domain Ω with Vol $\Omega > 0$, there exists an uncountable set of $\alpha \in \mathbb{R}^s$ satisfying the ψ-condition.

Theorems 8, 9, 10 are discussed in [33].

1.2.4. Successive best approximations. Let $\alpha = (\alpha_1, \ldots, \alpha_s) \in \mathbb{R}^s$. We define a best simultaneous approximation (b.a) of α to be any integer point $\zeta = (p, a_1, \ldots, a_s) \in \mathbb{Z}^{s+1}$ such that $\forall q, (b_1, \ldots, b_s) \in \mathbb{Z}^s, 1 \leq q \leq p, (q, b_1, \ldots, b_s) \neq (p, a_1, \ldots, a_s)$, we have
$$D(\zeta) = \max_{j=1,\ldots,s} |p\alpha_j - a_j| < \max_{j=1,\ldots,s} |q\alpha_j - b_j|.$$
Let $\alpha_j \notin \mathbb{Q}, j = 1, \ldots, s$. Then all b.a. of α form infinite sequences
$$\zeta^\nu = (p^\nu, a_1^\nu, \ldots, a_s^\nu), \ \nu = 1, 2, \ldots$$
where $p^1 < p^2 < \ldots < p^\nu < p^{\nu+1} < \ldots$ and
$$D(\zeta^1) > D(\zeta^2) > \ldots > D(\zeta^\nu) > D(\zeta^{\nu+1}) > \ldots.$$
Let
$$M_\nu[\alpha] = \begin{pmatrix} p^\nu & a_1^\nu & \ldots & a_s^\nu \\ \vdots & \vdots & \ldots & \vdots \\ p^{\nu+s} & a_1^{\nu+s} & \ldots & a_s^{\nu+s} \end{pmatrix}.$$
For $\alpha = (\alpha_1, \ldots, \alpha_s)$ satisfying $\alpha_j \notin \mathbb{Q}, j = 1, \ldots, s$, we define $R(\alpha) \in [2, s+1]$ to be the integer
$$R(\alpha) = \min \{ n : \text{there exist a lattice } \Lambda \subseteq \mathbb{Z}^{s+1} \text{ with dim } \Lambda = n \text{ and a natural } \nu_0 \text{ such that } \zeta^\nu \in \Lambda, \ \forall \nu > \nu_0 \}.$$

Proposition 11. Let $s = 1$. Then for any $\nu \geq 1$ we have $\det M_\nu[\alpha] = \pm 1$ (rank $M_\nu[\alpha] = 2, \ \forall \nu$).

Proposition 12. For any $s \geq 1$ we have $R(\alpha) = \dim_{\mathbb{Z}} (\alpha_1, \ldots, \alpha_s, 1)$.

Proposition 13. Let \(s = 2 \) and \(\alpha_1, \alpha_2 \) such that \(1, \alpha_1, \alpha_2 \) are linearly independent over \(\mathbb{Z} \). Then for infinitely many \(\nu \) we have
\[
\text{rank } M_\nu[\alpha] = 3 = \dim_{\mathbb{Z}}(\alpha_1, \alpha_2, 1).
\]

Proposition 11 – 13 can be easily verified. The following result is proved in [36].

Theorem 14. Let \(s \geq 3 \). There exists an uncountable set of elements \(\alpha = (\alpha_1, \ldots, \alpha_s) \in \mathbb{R}^s \) such that

(i) \(1, \alpha_1, \ldots, \alpha_s \) are linearly independent over \(\mathbb{Z} \),

(\text{thus } \dim_{\mathbb{Z}}(\alpha_1, \ldots, \alpha_s, 1) = s + 1),

and

(ii) \(\text{rank } M_\nu[\alpha] \leq 3, \ \forall \nu \geq 1, \)

(\text{Hence for all } \nu \geq 1 \text{ we have } \det M_\nu[\alpha] = 0).\)

Theorem 14 represents a counterexample to the conjecture of J.S. Lagarias [26]. It shows that the successive b.a. have no such an asymptotic property as a reader can see in Proposition 12. The idea of the proof was suggested to the author by N.P. Dolbilin.

1.3. Linear forms. Again, let \(\alpha_1, \ldots, \alpha_s \) be real numbers such that \(1, \alpha_1, \ldots, \alpha_s \) are linearly independent over \(\mathbb{Z} \), and put \(\alpha = (\alpha_1, \ldots, \alpha_s) \).

For \(m = (m_0, m_1, \ldots, m_s) \in \mathbb{Z}^{s+1} \setminus \{0\} \) we define
\[
\zeta(m) = m_0 + m_1 \alpha_1 + \cdots + m_s \alpha_s, \quad M = \max_{j=0,1,\ldots,s} |m_j|.
\]

A vector \(m \in \mathbb{Z}^{s+1} \setminus \{0\} \) is a best approximation of \(\alpha \) in sense of linear form if
\[
\zeta(m) = \min_{n \in \mathbb{Z}^{s+1} \setminus \{0\}} |\zeta(n)|.
\]

All best approximations form sequences
\[
\zeta_1 > \zeta_2 > \cdots > \zeta_\nu > \zeta_{\nu+1} > \cdots,
\]
\[
M_1 < M_2 < \cdots < M_\nu < M_{\nu+1} < \cdots
\]

where \(m_\nu = (m_{0,\nu}, \ldots, m_{s,\nu}) \) is the vector of the \(\nu \)-th b.a., \(\zeta_\nu = \zeta(m_\nu) \) and \(M_\nu = \max_j |m_{j,\nu}| \).

By Minkowski’s Theorem we have \(\zeta_\nu M_\nu^{s+1} \leq 1 \).

1.3.1. Singular systems. The theorem on the order of approximations from §1.1.2 does not admit multidimensional generalization in the sense of linear form.

Theorem 15 (see [29, 35]). Let \(s \) be an integer \(\geq 1 \) and \(\psi \) a function such that \(\psi(y) \) decreases to zero when \(y \) tends to infinity. Then there exists an uncountable set of elements \(\alpha = (\alpha_1, \ldots, \alpha_s) \in \mathbb{R}^s \) such that

(i) \(1, \alpha_1, \ldots, \alpha_s \) are linearly independent over \(\mathbb{Z} \),
(ii) the sequence of the best approximations of α satisfies

$$\zeta_\nu \leq \psi(M_{\nu+s-1}).$$

In the case $s = 1$ this theorem means that there are real numbers with any given order of the best approximations. In higher dimensions it gives something more.

Khinchin [15] defined a vector $\alpha = (\alpha_1, \ldots, \alpha_s) \in \mathbb{R}^s$ to be a ψ-singular system if for any $T > 0$ the system

$$||m_1\alpha_1 + \cdots + m_s\alpha_s|| < \psi(T), \quad M = \max_{1 \leq j \leq s} |m_j| < T$$

has a nontrivial solution $(m_1, m_2, \ldots, m_s) \in \mathbb{Z}^s$.

Proposition 16. System is ψ-singular $\iff \zeta_\nu < \psi(M_{\nu+1}), \; \forall \nu$.

1.3.2. Successive best approximations for linear form. Here we define Δ_ν^s to be the determinant of the successive best approximations

$$\Delta_\nu^s = \begin{vmatrix} m_{0,\nu} & m_{1,\nu} & \cdots & m_{s,\nu} \\ \cdots & \cdots & \cdots & \cdots \\ m_{0,\nu+s} & m_{1,\nu+s} & \cdots & m_{s,\nu+s} \end{vmatrix}.$$

The proposition below follows from Minkowski theorem on convex body. It seems to me that it is a well-known fact, but I could not find the corresponding reference.

Proposition 17. Let $s = 2$. Then for infinitely many ν we have $\Delta_\nu^2 \neq 0$.

The theorem below was proved by the author in [35] by means of singular systems.

Theorem 18. Let $s \geq 3$. Then there exists an uncountable set of vectors $\alpha = (\alpha_1, \ldots, \alpha_s) \in \mathbb{R}^s$ such that

(i) $1, \alpha_1, \ldots, \alpha_s$ are linearly independent over $\mathbb{Z},$

and

(ii) there exists a linear subspace $\mathcal{L}_\alpha \subset \mathbb{R}^{s+1}$, $\dim \mathcal{L}_\alpha = 3$ satisfying the condition

$$m_\nu \in \mathcal{L}_\alpha, \; \forall \nu > \nu_0.$$

We see that for $s \geq 3$ almost all best approximations may asymptotically lie in a three-dimensional plane but they cannot lie in two-dimensional plane. Of course these examples are degenerated in sense of measure. For almost all vectors $\alpha \in \mathbb{R}^s$ (in the sense of Lebesgue) best approximations are asymptotically $(s + 1)$-dimensional.
2. INTEGRALS FROM QUASIPERIODIC FUNCTIONS

In the text below we discuss applications of diophantine results to certain problems of uniform distribution of irrational rotations on torus. A full review of the methods and results of the theory of uniform distribution is given in [25].

2.1. Uniform distribution. Let T be the one-dimensional torus and $f : T^s \to \mathbb{R}$ defined by the series

$$f(x_1, \ldots, x_s) = \sum_{m \in \mathbb{Z}^s, m \neq 0} f_m \exp(2\pi i (m_1 x_1 + \cdots + m_s x_s)).$$

We also define the integral

$$I(T, \varphi) = I_{f, \omega}(T, \varphi) = \int_0^T f(\omega_1 t + \varphi_1, \ldots, \omega_s t + \varphi_s) \, dt,$$

where $\omega_1, \ldots, \omega_s \in \mathbb{R}$ are linearly independent over \mathbb{Z}, and $\varphi = (\varphi_1, \ldots, \varphi_s) \in \mathbb{R}^s$.

H. Weyl [51] proved that if f is a continuous function, then for any φ we have

$$I(T, \varphi) = o(T), \quad T \to \infty.$$

This equality holds uniformly in φ if we suppose moreover that f is smooth.

V.V. Kozlov conjectured that the integral $I(T, \varphi)$ is recurrent that is the following condition holds:

$$\forall \varepsilon > 0, \quad \forall T, \quad \exists T^* > T : |I(T^*, \varphi)| < \varepsilon.$$

This conjecture is true when f is any trigonometric polynomial, and in this case (*) holds uniformly in φ. This implies that for any trigonometric polynomial f of finite degree, J^∞ defined by

$$J^\infty(T) = J^\infty_{f, \omega}(T) = \sup_{\varphi \in \mathbb{R}^s} |I(T, \varphi)|,$$

is itself recurrent, that is

$$\forall \varepsilon > 0, \quad \forall T, \quad \exists T^* > T : |J^\infty(T^*)| < \varepsilon.$$

2.2. Case $s = 2$. In the two-dimensional case, the conjecture above was proved by V.V. Kozlov himself for functions $f \in C^2(T^2)$ in [18] (see also [19]). It is also easy to see that when f is a smooth function, then (*) holds uniformly in φ, that is ($\$) is true. E.A. Sidorov [44] obtained a similar result for “absolutely” continuous f.
2.3. The general result. The author [34] proved the conjecture in the general case:

Theorem 19. Suppose that

\[f(x_1, \ldots, x_s) = \sum_{m \in \mathbb{Z}^s \setminus \{0\}} f_m \exp(2\pi i (m_1 x_1 + \ldots + m_s x_s)) \]

belongs to the class \(C^d(T^s) \), where \(d > C_1 s^3 \) and \(\omega_1, \ldots, \omega_s \) are linearly independent over \(\mathbb{Z} \). Then for any \(\varphi \), the integral \(I(T, \varphi) \) satisfies (*).

The proof is based on consideration of best approximations in the sense of linear form (see §1.3.2.).

2.4. Metric results. It is known [49, 48] that for almost all (in the sense of Lebesgue) vectors \(\omega = (\omega_1, \ldots, \omega_s) \in \mathbb{R}^s \), if \(f \) is smooth enough, then the integral \(I(T, \varphi) \) is bounded when \(T \to \infty \) uniformly in \(\varphi \). Hence the integral \(I(T, \varphi) \) satisfies (*), uniformly in \(\varphi \). But even in the case \(s \geq 3 \), this result is not universal.

Let \(\Phi \) be a decreasing function and assume that the series \(\sum_{m \in \mathbb{Z}} \Phi(m) \) converges. We define a periodic function \(\Theta : T^s \to \mathbb{R} \) to be of the type \(\Phi \) if, the coefficients \(\Theta_{m_1, \ldots, m_s} \) in the expansion

\[\Theta(x_1, \ldots, x_s) = \sum \Theta_{m_1, \ldots, m_s} e^{2\pi i m_1 x_1 + \ldots + m_s x_s}, \]

satisfy

\[|\Theta_{m_1, \ldots, m_s}| \leq \Phi(M), \text{ where } M = \max_j |m_j|. \]

We consider

\[J^\infty(T) = J^{2\infty}_{f, \omega}(T) = \max_{\varphi \in T^s} |I_{f, \omega}(T, \varphi)|; \]

\[J^2(T) = J^2_{f, \omega}(T) = \left(\int_{T^s} |I_{f, \omega}(T, \varphi)|^2 \, d\varphi \right)^{1/2}. \]

The result below is proved in [29].

Theorem 20. Let \(s \geq 3 \). Then for any function \(\Phi \) which decreases to zero as \(y \to \infty \) and for any function \(\psi \) with \(\psi(y) = o(1) \) as \(y \to \infty \), there exist \(\omega_1, \omega_2, \ldots, \omega_s \) which are linearly independent over \(\mathbb{Z} \), and a function \(f \) of type \(\Phi \) such that \(\int_{T^s} f(x) \, dx = 0 \) and

\[J^l(T) \gg T \psi(T) \quad \forall T, \quad l = 2, \infty. \]

We will reformulate Theorem 20 in the following way.
Theorem 21. Let $s \geq 3$, and $f : \mathbb{T}^s \to \mathbb{R}$ be smooth with zero mean value. Assume that in the expansion

$$f(x_1, \ldots, x_s) = \sum_{(m_1, \ldots, m_s) \neq 0} f_{m_1, \ldots, m_s} e^{2\pi i (m_1 x_1 + \cdots + m_s x_s)}$$

the coefficients f_{m_1, \ldots, m_s}, where $(m_1, \ldots, m_s) \neq 0$, are all different from zero.

Then there exist $\omega_1, \omega_2, \ldots, \omega_s$ which are linearly independent over \mathbb{Z} such that

$$J^l(t) \gg t\psi(t) \quad \forall t; \quad l = 2, \infty.$$

An improvement of the latter result was obtained recently by E.V. Kolomeikina [20].

One can see that the behaviour of integrals J_l in two-dimensional case radically differs from the case $s \geq 3$.

2.5. Odd functions. Sergei Konyagin's result. Recently, S. Konyagin [16] obtained the following result.

Theorem 22. The Kozlov's conjecture is true (that is (\ast) holds) for arbitrary $s \geq 1$ and any function f satisfying the condition

$$f(-x_1, \ldots, -x_s) = f(x_1, \ldots, x_s), \quad f \in C^r(\mathbb{T}^s), \quad r \asymp s^{2s}.$$

2.6. The smoothness. In [42],[41] it is shown that we need some kind of smoothness conditions on f to insure that (\ast) is true: indeed in the two-dimensional case ($s = 2$), there exists a function $f : \mathbb{T}^2 \to \mathbb{R}$ (with zero mean value) of the class $C^1(\mathbb{T}^2)$ such that $I(T, 0)$ tends to infinity when $T \to \infty$ (with the choice $\omega_1 = 1$ and $\omega_2 = \sqrt{2}$). On the other hand, in [44] it is shown that when $s = 2$, a sufficient condition on f for having (\ast), is f to be absolutely continuous.

Developing an idea of D.V. Treshchev, the author, in [31], generalized Poincaré's example. He proved that for any real $\omega_1, \ldots, \omega_s$ which form a basis of a real algebraic field, there exists a function $f \in C^{s-2}(\mathbb{T}^s) \setminus C^{s-1}(\mathbb{T}^s)$ such that $I(., 0)$ does not satisfy the property (\ast) with $\varphi = 0$.

One may find some results on algebraic numbers in [40] and [38]. Recently, S.V. Konyagin [16] proved that for some Liouville transcendental numbers, there exists $f \in C^d(\mathbb{T}^s)$ with $d \asymp 2^s/s$ such that (\ast) is not satisfied.

Some early results are reviewed in [37].

2.7. Vector-functions: counterexample in dimension $s = 3$. Let $f^j : \mathbb{T}^s \to \mathbb{R}$, $j = 1, 2$ be defined by

$$f^j(x_1, \ldots, x_s) = \sum_{k \in \mathbb{R}^s \setminus \mathbb{Z}^s} f^j_k \exp(2\pi i (k_1 x_1 + \cdots + k_s x_s)).$$
For $\omega_1, \ldots, \omega_s \in \mathbb{R}$ be linearly independent over \mathbb{Z}, we put

$$I^j(T) = \int_0^T f^j(\omega_1 t, \ldots, \omega_s t) dt, \quad j = 1, 2.$$

The analogue of property (*) for the vector-integral $I = (I^1, I^2): \mathbb{R} \to \mathbb{R}^2$ becomes

\begin{equation}
\forall \varepsilon > 0 \quad \forall T \exists T^* > T : |I^1(T^*)| + |I^2(T^*)| < \varepsilon.
\end{equation}

Proposition 23. In the case when $s = 2$ and f is a smooth vector-functions, then (7) holds.

Proposition 24. The analogue of Theorem 22 holds for vector-function, that is (7) is satisfied for any odd smooth vector-function f.

Let $\Phi : \mathbb{R}_+ \to \mathbb{R}_+$ be a positive function such that $\sum_{k \in \mathbb{Z}} \Phi(\max_{1 \leq j \leq s} |k_j|)$ converges. A vector-function $f = (f^1, f^2) : \mathbb{T} \to \mathbb{R}^2$ is defined to be a function of type Φ if we have

$$|f^j_k| \leq \Phi(\max_{1 \leq j \leq s} |k_j|) \quad \forall k, \quad j = 1, 2.$$

Recently, the author [34] constructed the following example.

Theorem 25. For any given positive function Φ, there exist a vector-function $f = (f^1, f^2) : \mathbb{T} \to \mathbb{R}^2$ of the type Φ with zero mean value ($\int_{\mathbb{T}} f^j(x) dx = 0, j = 1, 2$) and numbers $\omega_1, \omega_2, \omega_3$, which are linearly independent over \mathbb{Z} such that

$$|I^1(T)| + |I^2(T)| \to \infty, \quad \text{as} \ T \to +\infty.$$

Acknowledgment. The author thanks Prof. M. Waldschmidt and Prof. P. Voutier for their help in checking the language of the paper.

REFERENCES

Nikolai G. Moshchevitin
Department of Theory of Numbers
Faculty of Mathematics & mechanics
Moscow State University
Vorobiovy Gory
119899, Moscow, Russia
E-mail : MOSH@mth.msu.su