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The distribution of square-free nufnbers of the
form [n¢]

par X1A0DONG CAO et WENGUANG ZHAI

RESUME. Nous montrons que pour 1 < ¢ < $&& =1.6944---, la
suite [n] (n = 1,2, ---) contient une infinité d’entiers sans facteur
carré ; cela améliore un résultat antérieur di a Rieger qui obtenait
Pinfinitude de ces entiers pour 1 < ¢ < 1.5.

ABSTRACT. It is proved that the sequence [n€] (n = 1,2,---)
contains infinite squarefree integers whenever 1 < ¢ < g—é- =

1.6944 - - - | which improves Rieger’s earlier range 1 < ¢ < 1.5.

1. INTRODUCTION

A positive integer n is called squarefree if it is a product of different
primes. Following a paper of Stux [15], Rieger showed in [11] that for all
real ¢ with 1 < ¢ < 1.5, the equation

6 2¢+1
1.1 S = 1=—2z+ o) 3 t€
(1.1) e(z) X(: a2 (z )
[nc]squarefree
holds, which is an immediate consequence of Deshouillers [4]. Here [t]
denotes the fractional part of ¢ and ¢ is a positive constant small enough.
It is an easy exercise to prove that

(1.2) Se(z) = %x + o(z)

for 0 < ¢ < 1. When 1 < ¢ < 2, one still expects (1.2) to hold, but if ¢ = 2,
[n€] is always a square, so that S;(z) = 0.

It is worth remarking that Stux [15] has shown that S.(z) tends to infinity
for almost all positive real 1 < ¢ < 2 (in the sense of Lebegue measure),
however this result provides no specific value of c.

Manuscrit recu le 26 février 1998.
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The aim of this paper is to further improve Rieger’s range
1 < ¢ < 1.5 by the method of exponential sums.

Basic Proposition. Let 1 <c¢< 2,7y = -i—, and x > 1. Then we have
6

(1.3) Se(z) = — + Ac(z),
with
(1.4) Ac(z) = Y lu(n)| (¥(=(n +1)7) = p(-n")) + O(z' /),

n<ze

where Y(t) =t — [t] — 1/2 and p(n) is the well-known Mébius function.
Using the simple one-dimensional exponent pair, we can prove imme-
diately from the Basic Proposition that
Corollary. Let 1 < ¢ < 1.625, then fore >0
6
(1.5) Sela) = =+ O(z T +e).

Combining Fouvry and Iwaniec’s new method in [5] and Heath-Brown’s
new idea in [6], we can prove the following better Theorem .

Theorem. Let c be a real constant such that 1 < ¢ < 61/36, then

(1.6) Su(z) = %x + O(z 25582+,

Notations. f(z) < g(z) means that f(z) = O(g(z)), m ~ M means
aM < m < coM for some constants c;,co > 0. We also use notations
L = log(z),e(z) = exp(2miz) and ¥(0) = 6 — [6] — 1/2. To simplify writing
logarithms, we will assume that all parameters are bounded by a power of
z. Throughout the paper we allow the constants implied by ‘O’ or ‘<’ to
depend on only arbitrarily small positive number ¢ and ¢ when it occurs.

2. PROOFS OF BASIC PROPOSITION AND COROLLARY

Proof of Basic Proposition. It is well-known that (see [9])

(2.1) Z lu(n)| = —x+ O(z?)

and

(22) () =" u(d).
d?|n

Obviously, [n°] is square-free if and only if m? < n < (m+1)?,m square-
free. Therefore
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(23) S@)= Y, 1= > ([-m]-[-(m+1)")+0(1)

n<z m<z€

[n<]squarefree m squarefree
= Y lum)| ((m+1)7 = m?) + Eic(z)
m<ze
=7 Y |um)im™™! + By(z),
m<z°
where
Ejo(z) = Y |u(m)| ($(—(m+1)7) —(-m")) + O(1), j=1.2.

m<ze

(From (2.3), (2.1) and partial summation we can get the Basic Proposition
at once.

The proof of Corollary will need the following two lemmas. Lemma 1 is
well-known (see [1]), Lemma 2 is contained in Theorem 18 of Vaaler [16].

Lemma 1. Let |¢g™(z)] ~ YX'™™ for 1 < X <z < 2X and m =
1,2,---. Then

(2.4) > elgn) <« YRX* 4y
X<n<2X
where (k,\) is any exponent pair.

Lemma 2. Suppose J > 1. There is a function ¢*(x) such that

M@= Y heho)
1<|h|<J
@ W <g ad G0 <
*(z) — (= ! —|—,ﬂe x
Q v(0) = 0| < g7y 32 (1= e

By Lemma 1 and Lemma 2 we immediately obtain

Lemma 3. Let y > 0,X >1,0<0 <1, g(n) = (n+0)". Then

(25) > Plyg(n)) < y™= XA 4 x
n~X

Proof of Corollary. Taking M = x'scl_gs, by (2.2) we have

(2.6) > ) ($(=(n +1)7) = (-n"))

n<x¢
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= Y @ 3 @=(Pn+1)) - (~(dn)7))

dgr% n<zed—2

= > opd) > (W(=(d®n+1)) —yp(—(dn)"))
<M n<zed—2
+ Y wd) Y (B(=(dn+1)") —p(-(dn))).
M<d<z? n<zed—?

d

By Lemma 3 with (k,\) = (%, %) and simple splitting argument we have

(2.7) doud) D (W(=(dPn+1)") —y(—(d®n)"))

<M n<zcd—?

< L Z ( d27 1+'° Cd_ )1_'4:7”_ (d2’)’)—1(l.cd-2)1—7)

d<M

< sz 245 + ¢ 1L
d<M

< x%ﬁM%L+x"_1L

8¢c+3
<« g ieTE

By Lemma 3 with (k, ) = (3}, %) we have

(2.8) Yo ow@d Y (#(=(dn+1)7) —y(=(d®n)")

M<d<z$ n<zed-?

< L Y ( (d2) T (g5d-2) TFe (d27)_1(mcd"2)1’7)
M<d<x7

< LY FaitislL
M<d<z$

< M IL+z'L

8¢c+3
L z 16t

Now the Corollary follows from (2.6), (2.7), (2.8) and the Basic Propo-
sition.
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3. SOME LEMMAS

Lemma 4. Let 0 < a < b < 2a. Let f(£) be holomorphic on an open
convez set I containing the real line segement [1,b/a]. Assume also that
(1) |f"(£)| <M onl, (2) f(z) is real when z is real, (3) f"(z) < —cM
for some ¢ > 0. Let f'(b) = o, f'(a) = B. For each integer v in the range
a <wv < B, define z, by f'(xy) =v. Then

e(f(xy —vxv—l 1
> oe(ftn) = Y (f(20) 8)+O(M 2+log(2+M(b—a))).

a<n<b a<v<f ]f"(.’l?v)'

For the proof of Lemma 4, see Heath-Brown [6], Lemma 6.

Lemma 5. Suppose A;, Bj, a; and b; are all positive numbers. If Q
and Q2 are real with 0 < Q1 < Q2, then there exists some q such that
Q1 <qg< Q2 and

m n
D Aig"+) Bjg % <
i=1 =

gmn (i Xn:(A;’j BT 4 i AQS + zn: BjQ;bj) .
=1 7=1

i=1 j=1
This is Lemma 3 of Srinivasan [14].

Lemma 6. Let 0 < M < N < uN < A\M, and let a,, be complex numbers
with |am| < 1. Then we have

1 M —it it it -1
Z m = 5~ _M< Z amm™" | N*(p" — 1)t™ dt +

N<m<uN M<m<AM
O(log(2 + M)).
See Lemma 6 of Fouvry and Iwaniec [5].

Lemma 7. Let , (1,82 be given real numbers with o(8; — 1)B2 # 0 and
a ¢ N. Let |lam| <1, |bpnym,| < 1,y #0 and

S=8SM, My, M) = Z Z Z ambmlmze(ymamflméb).

m~M mj~M; ma~Mao
Let F = |y|M°‘M1ﬂlM£2. Then we have
SL™3 < FT M (MyMy) a9 4
M(MyMs)? + M3 My My + F~3 MM, M,

where (K, \) is any exponent pair.
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Lemma 7 can be proved in the same way as the proof of Theorem 2 of
Baker [1]. The idea of the proof is due to Heath-Brown [6].

Lemma 8. Under the conditions of Lemma 7, if we further suppose that
F > M, then

SL3 <«  %/(MiMp)®MBF? + MyMyM3 /1 + M7F~4
+/(My M3)3M4(1 + FM~2).

Proof. This is Theorem 3 of Liu [8], which is proved essentially by the lafge
sieve inequality developed by Bombieri and Ivaniec [3]. But the term

/(M M) P M2EF~2 max(1, F5 M ~10)

in Liu’s result is superfluous, since

/8

1/4 3
2/ (M, Mo) P MBF—2 = (‘\‘VF~4M17M1M2) / (M5/8M1M2)

3/8
X (M y M13M§’) ,

11/16
2/ (My M) P MBF? = ( 2‘2/F3M13M119M2}9) /

5/16
% (M5/8M1M2) / M-8/128
O

Lemma 9. Let 1 < v < 1,M > 1,H > 1,|c(h)] < 1,|b(d)| < 1. Let
N =N; =2°M~2273 (j =1,2,--), F = H(M?N)" and

SH,M,N)=>">" > c(h)b(d)e (h(d?*n)?),

h~H d~M zed—22-3 <n<zed—22-i+1
then

1
(3.1)  S(H,M,N)L™* < F1 (M1+"+”N"H2+”> D | (FM)3H
+M(NH)% + MH + F":MNH.
Proof. By Lemma 4 and partial summation we get

> 3 Y a@pbih, e ((hdzv)l—iwm%f)l

h~H d~M nel

+F :MNH + LMH,
where |a(d)] < 1,|b(h,7n)| <1 and

(3.2) S(H,M,N) < F~iN

I = (y2U-00-Mgl-cpg? 42i0=7gl=cpq2] c [CI%,@%]
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for some c¢1,co > 0.
Applying Lemma 6 to the variable 71, we obtain that for some |b; (h,71)| < 1

(3.3)
SH,M,NL < FiN|Y Y S a(dbi(h,i)e ((hdh)ﬁ ﬁﬂ—x)
h~H d~M 7i~nF|N

+F-3MNH + LMH.

Now we use Lemma 7 to estimate the above sum, with M, H, F/N in
place of M, My, M. This completes the proof of Lemma 9. O

Lemma 10. Under the conditions of Lemma 9, we have

(3.4) S(H,M,N)L™* < ¥FIMBN3HY + VFIM5HS +
Y FAMITHIS + VFMANH? + VF2M2NHS + F-:MNH.

Proof. Applying Lemma 8 to estimate the sum in (3.3), with M, H, F/N
in place of M, M;, M, we can obtain the bound (3.4) if we notice

H=( ‘Wﬂw)z/ ’ (F2MNE) 2 (e,

4. PROOF OF THEOREM
Taking Y = z3, we have

D )| (= (n +1)7) = 9(-n"))

n<ze

Z @ Y. (@(=(d®n+1)7) —y(=(d*n)"))

dszg n<zed—2
(4.1) =3 u@d Y, @(@n+1)")-y(=(dn)")
d<Y n<zed~?
+>0 > wd) (B(=(n+1)7) - 9(=(d’n)"))
nsY Y<d§:c%n_%

=Zl+22, S8

Let M >1and N = N; =z°M~2273 for j = 1,2,---. Define
(4.2)
T(M,N)= Y pd Y (H(=(@n+1))—p(=(dn)").

C c
Meds2M gy <n<ampt
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Lemma 11. We have
L
(43) T(M, N)L—5 < ((MZN)(1+’7)(1+K)M/\—-K,) 3¥2x + (M2N)1—';1
1
+MN7 + M'"INY3 4 (M2N)M2N4) % |
where (K, A) is any exzponent pair.

Proof. By Lemma 2 we get for any J > 0

(44) T(M,N) < MNJ + Y %IS(H, MM+ %wl (H, M, N)|,
H H

where H = J,‘2I, g -+ and
Si(H,M,N)=>"ch) Y  b(d > e(—h(d?n +1)7),
h~H M<d<2M dz; <n< =y
le(h)] < 1,b1(d) < 1,S(H, M, N) is defined in Lemma 9. O

Write ®,(y) = e(h(y” — (y+1)7)) — 1. By partial summation and
Lemma 1, we have

(4.5) D> e(=h(d@®n+1)7) —e(—h(d?n)")

X<n<2X

@4 (d’n)e (—h(d?n)")
(

X<n<2X

2
x5 |@r(d"t)|

+/

< h(d®X)"! max
X<t<2X

> e(=h(d®n)7)

X<n<t

> e(—h(d®n)")|dt

X<n<t

Z e (h(d2n)7)

X<n<t
< (@ X) 7 (Rd X771 XA 4+ (RaP7 X71) 1)
< h1+Ic(d2X)7—1+n7XA—n + d—2.

6<I>h(d2t)
ot

Here we used ®p(d%t) < h(d®X)"! and 22280  pp2(g2x)7-2
ot
for X <t <2X.
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Now take (k,A) = (2/7,4/7) in (4.5) we have
(4.6) Si(H,M,N)=Y ch) > bi(d) > e(=hd'n)

h~H M<d<2M z¢ z¢
- a7 S gEyT

+3 eh) > bi(d) Y. e(—h(d’n+1)") — e(~hd®'n?)

h~H M<d<2M 527].<n<;5_,-2—]-:1—
=Y et ¥ @ Y el=hdn)
h~H M<d<2M —~<n<

d22J ﬁzz—i

+Zzo(h9/7(d2 )9’7/7 1N2/7+d—2)
h d

=> ch) D b(d > e(—hd®'n")

h~H  M<d<2M B <n< &t
+0 (H%(M2N)2¥M‘1N‘§) :
iFrom (4.4)—(4.6) we get

(4.7) T(M,N) < @ +JTMAN)FMINR 4 Z —|S (H,M,N)|,

where in S(H, M, N) the coeflicient of d is b(d) or b (d).

Now use Lemma 9 to estimate the above sum and then choose a best
J € (0,+00) by Lemma 5, we obtain the bound (4.3).
Lemma 12. We have

(4.8) T(M,N)L™5 < ¥/(M2N)I'"M2IN11 4 R/(M2N)% MON*

+ X/ (M2NYY M2IN4 + {/(M2N)2Y M3 N2
+¢/(M2NYYMAN + ¥/(M2N) M2N? + M'~'N'-3%,

Proof. In the proof of Lemma 11, using Lemma 10 in place of Lemma 9 to
estimate the sum in (4.8), we can get Lemma 12. O

Lemma 13. We have
(4.9) Y. <= =L

Proof. In the proof of Lemma 13, we will use M2N < z°.
To estimate ) ,, we consider the following cases:
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32c+323

Case (i) M < x 1164 ,
Similar to (2.6), by Lemma 3 with (k,\) = (12, 16) we get

317 31
(4.10) D wld) Y w(=(dPn+1)7) = p(~(d*n)")
M<d<2M n<zs
<K Lz 16(:1413 Z d-% + iEc_lL
M<d<2M
12

< :1:16<‘:1j:‘1 13 (a; 32161:':6?123) 44 L

<L,
Case (ii) Z; = R <M< 14(¢+1) = 7.
By Lemma 11 with (k,\) = (ég, gg see [6, pp. 265]) we obtain
(4.11) Yo v@d Y (B(=(d®n+1)7) —y(-(d®n)))

M<d<aM n<zs

< {(@*FMB) T 4 @
+af + ()" IM 1 4 (@) M0) 16} L

L . 3
< {( 64(1+C)Z22) 181 fL'l_.:{;_ + 1'2 + z° 221-—1 + (m9+4CZ1~6) 16 }L7

6(c+1!
K x99 L

14(c+D)
Case (iti)) Z=xz"91 <M<Y.
By Lemma 12 we have

> uld) D (B(—(d®n+1)7) - p(—(d*n)"))

M<d<2M n<2;
< { 3{)/ ) 411y -1 4 1\2/xc 447 )L o+ Z{I/(mc 444y )13

+ \/(xc 2427 -1 4 \/ )1+ M2 + 1\/(xc)4+97M —6

+ (=) I L7
< { Valia z-1 4 ¥/z40+9y 4 Yoty 13

+ V209 Z-1 4 Vglrey? 4 Wghet976 4 go=h 71 7

36(c+1)
Lz e L.

(4.12)

Combining (4.10)—(4.12) completes the proof of Lemma 13.
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Lemma 14. We have
(4.13) >, < g5, T2 S 8

Proof. Let N >1, M = M; = -15-% for j =1,2,---, and F = H(M2N)",
)

take J = (M2N )1_51 By lemma 2 we have

(4.14)
Ti(N,M) = Yo (@) (B(—(Pn+ 1)) —p(=(d*n)"))
n~N % =%
<d<—T-—
n22] n22i-1
1
-1
< MNJ'+ ; ﬁr.rl(H,N, M)| + XHJ I T2(H, N, M),
where H runs through J, %, 5‘17, ---,and

(415) Tu(HN,M)=Y > > c(h)r(d)e (—h(d*n)?),

h~Hn~N _§ =5

TENM) =3 Y Y a®rde(-hdn+1)),

h~H n~N
_=17_<d<_I£L
n22 n22i-1

for some c(h) < 1,¢1(h) < 1,r(d) < 1,71(d) < 1.
Since e (—h(d?n +1)?) — e (—h(d?n)?) < |h|(d?n)7~!, we have
TH,N,M) =Y Y > a(h)ri(de(=h(d?*n)")

h~H n~N z7

——'I-——<d<——1———
n227 nZ2i—1

P> Z (h)r ()@ (dn)e (~h(dn)")

hvHnN 5

+MN(M2N)""1LH.

So it suffices to bound T (H, M, N).
Now first applying Lemma 6 to the variable d and then using Lemma 8
to estimate the sum directly with (o, 81, 52) = (27,7,1), we get
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LT, M) < /(INEOEN + 3 = { %/ NI
H

+HNMS %/1+ MTF-4 + 3/(HN)*M*(1 + FM-2)}.
Using the bound M2N < z¢, one has

(4.16)  L7STy(N,M) < /(@) 'N + §/(z¢)3+67 N2 4 Vb NI

+ VglTe-8N15 4 Vg2 N 4 Vgl+eN2,

Now we note that N < z3, by (4.16) and simple splitting argument, the
bound (4.13) could be obtained at once. O

Finally, Combining Lemma 13, Lemma 14, (4.1) and the basic Proposi-
tion completes the proof of Theorem .

Acknowledgement. The authors would like to thank the referee for his
kind and helpful suggestions.
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