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Boundedness of oriented walks generated by substitutions

par F.M. DEKKING ET Z.-Y. WEN

RÉSUMÉ. Soit x = x0x1 ... un point fixe de la substitution sur l’al-

phabet {a,b}, et soit Ua = $$( -1 0  -1 1 ) et Ub = 1 0 1 1). On donne

une classification complète des substitutions 03C3 : {a, b}* ~ {a, b}* selon
que la suite de matrices (Ux0Ux1 ... Uxn)~n=0 est bornée ou non. Cela cor-
respond au fait que les chemins orientés engendrés par les substitutions
sont bornés ou non.

ABSTRACT. Let x = x0x1 ... be a fixed point of a substitution on the

alphabet {a,b}, and let Ua = (-10 -11) and Ub = (10 11). We

give a complete classification of the substitutions 03C3 : {a, b}* ~ {a, b}*
according to whether the sequence of matrices (Ux0 Ux1... Uxn)~n=0 is
bounded or unbounded. This corresponds to the boundedness or un-
boundedness of the oriented walks generated by the substitutions.

1. Introduction

Let A be the alphabet la, bl, and let x = xoxl ... be an infinite sequence
over A. Any such sequence generates an oriented walk (SN) _ (SN, f(x)) on the
integers by the following rules:
, , - - -

In other words: we move one step in the same direction if = b, and one step
in the reversed direction if a. Another way to describe is by
introducing the matrices

then

Mots-cles : Substitutions, self-similarity, walks.
Manuscrit reçu le 3 juin 1995.
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In the probability literature (SN(x)) is also known as persistent random walk
or correlated random walk if x is obtained according to a product measure on
AN. Here we shall consider the case where the sequence x is a fixed point of a
primitive substitution o, on {a, b}.
Non-oriented walks (SN, f(x)) on R are defined by So(x) = 0 and

where f : A -~ R, and A is now an arbitrary finite set. (It is convenient to extend
f homomorphically to A* = i.e. wk) = + ... + f(wk) for

Non-oriented walks with x a fixed point of a substitution have been studied in
[2], [3], [5], [6], [7], [10]. Here [10] contains a rather complete analysis of the
behaviour of (SN, f (x ) ) for two letter alphabets A = {a, b}.
It follows from a general result in [4] that by enlarging the alphabet A oriented
walks generated by substitutions may be viewed as non-oriented walks generated
by substitutions. Hence it might look as if the main result of [5],[6] - which
admits alphabets of arbitrary sizes - would answer all questions on the two symbol
oriented walk. Their result is that as N -; o0

where 0 is the Perron-Frobenius eigenvalue of the matrix M, of the substitution
or (with entries m9t = number of occurrences of the symbol s in the
word u(t)), 82 the second largest (in absolute value) eigenvalue of M, (which is
required to be unique and larger than 1) and v is the vector satisfying Mav = 8v
and ¿sEA Vs =1. Furthermore a + 1 is the order of 92 in the minimal polynomial
of M, and F : [1, oo) -~ R is a bounded continuous function which satisfies a
self-similarity property:

However, even such a simple property as boundedness of can often
not be resolved with (2). Let us take for example A = {a, b, c}, f (a) = f (b) =
+1, f (c) = -1 and a such that the matrix of cr equals

We quickly see that M, has eigenvalues 0,82 = 2 and 0 = 8, and that the Perron
Frobenius eigenvector v = (1,1,2)~ satisfies (~,/) = 0. We obtain from (2) that
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But f (Qa) = = /(7c) = 0, so = 0 for all N, and (SN, f(x)) is
bounded, in spite of the behaviour suggested by (3). (Of course (3) and the
self-similarity property of F imply that F = 0.)

The goal of this study is to determine for any substitution a on {a, b} whether
the oriented walk in (1) will be bounded or not.

Although not explicitly formulated, the analysis of the oriented two symbol
case in [10] heavily relies on the fact that a substitution a on a two symbol
alphabet with (v, f ) = 0 automatically admits a representation with the same f
in R (terminology from [1]), i.e., there exists A E R such that f (a(s)) = Af (s)
for s = a, b. (In [9] such a are called geornetric, see also (8~). However this is no
longer true for larger alphabets, and this is the main reason that our solution to
the boundedness problem is rather delicate.

2. Four types of substitutions

Let a be a substitution on ~a, b} such that the first letter of a(a) is a, and
let u be the fixed point of a with uo = a. Let

be the matrix of a. Here, as usual, Ivlw denotes the number of occurrences of
a word w in a word v. It appears that the question of boundedness of (SN(u))
depends crucially on the entries of Ma reduced modulo two. Let Mo be this
matrix. Then there are 21 = 16 of these matrices possible. However, since a, ~’
and ol all generate the same fixed point u, we only have to consider four types,
namely

Here the dots indicate that the corresponding entries are either 0 or 1. The
four cases cover respectively 6,1,8 and 1 of the 16 possibilities. For example the
Fibonacci substitution a - ab, b - a belongs to Type III since (1 1 ~) 3 m 0 1 0). 1
3. Type I substitutions

Here M, = (° °) . The essential feature of this case is that the number of a’s
in both a(a) and being even, the orientation at the beginning is the same as
at the end of these words. Hence if we consider a(a) and Q(b) as new symbols we
can obtain a non-oriented walk which behaves very much as the original oriented
walk. Formally, define the homomorphism (w.r.t. concatenation)
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by p(a(a) ) = a, cp((~(b)) _ {3. Then define a substitution Q on I a, 0} * by

but for a change of alphabet!), and define f : --~ R by

where fa = la(a)1 I (the length of (a)), and = 
Let u be the fixed point of &#x26; with ico = a. Then the non-oriented walk 
visits a subsequence of the original oriented walk (SN(u)), the time instants not
being further apart than max(ta, ib). Hence boundedness of (SN(u)) is equivalent
to boundedness of (9g~~ j (f) ) . The latter can be easily resolved with Theorem 1.27
of [10]. 

’

Example. Let Q be the Prouhet-Thue-Morse substitution Q(a) = 
baab. Then f (a) = -2,/(/3) = 2 and &#x26;(a) = It is easy
to see that E {-2, 0, 2}, so the original oriented walk is also bounded
(actually it is confined to the set {20133, 20132, 20131,0,1,2}).

4. An equivalence relation

We call words v, w E A* = of length n and length m equivalent, and
denote this by v - w if

i.e., the associated oriented walks end at the same integer with the same orienta-
tion. In terms of the matrices Ua and Ub introduced in Section 1 we have v N w
iff (1 0) Uv = (10) Uw (here UW1W2...Wk = UWl UW2 ... if w E Ak ~ . Note that
concatenation preserves equivalence. We denote the empty word by E. Typical
examples are

Since the orientation changes iff an a occurs we have

LEMMA 1. If v N w, then Ivla 1WIa modulo 2.
The following lemma is important in the analysis of Type II and IV.

LEMMA 2. For alt w E A* there exist r, i E {0,1} and n E N such that w -
albnar.
.Proof. Apply a2 ’" c until w N albnlabn2a... abnk ar for some k. Then apply
bab N a min(nk-l, nk) times on The result is that w is equivalent to a
word of the form above with k one smaller. The lemma then follows by induction.
0

LEMMA 3 (SQUARING LEMMA). If Iwla is odd then w2 N ~.
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Proof. By Lemma 2, and by Lemma 1, r + l is odd. So

w2 ~ al.bnabnar. But since a, we obtain W2 ’" 0

Warning: note that in general u N v does not imply a(u) - u(v).

5. Type II substitutions

Here Ma = (o o) . Note that also %£ = (o o) . Hence the Squaring Lemma
implies

PROPOSITION 1. If a is of Type II, then (SN(U)) is bounded iff E.

Proof. Note first that a2 (ab) N e iff Since if for example E,
then

«) Now = u2(u) = QL (uo )Q~ (ul ) ... , where each E.

This obviously implies that (SN(u)) is bounded.

~) We will show that implies that (SN(u)) is unbounded. Because of
(4) any word un (w) is equivalent to one of the following words for some k &#x3E; 0

Now we take for w the word o,(ab). Since the numbers of a’s and b’s in Q(ab)
are both even, only the first two possibilities above remain, and moreover, k is
even. Let us consider the first possibility, i.e., [an(ab)]’. Then also
o-n(ab) = hence

Continuing in this fashion we obtain

Since we assume that e, and since [o,(ab)]", we have k &#x3E; 0,
so k &#x3E; 2. Since ab, and hence has to occur (5) implies that (SN(u)) is
unbounded, because Q2 (ab) contains an even number of a’s which implies that
the walk corresponding to does not change orientation. In case 

the same argument applies with a and b interchanged. D

Example. We consider 2 substitutions with matrix (~ ~).
A. Let = aabab , a(b) = bba.

Then u2(ab) rv ~Q(ba)~2 ~ b4, so the walk is unbounded.
B. Let Q(a) = abbaa , Q(b) = abb.

Then 0’2 ( ab) "-’ f, so the walk is bounded.
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(In case B also a(ab) - c. The substitution given by a(a) = abb, a(b) = a provides
an example where u2(ab) rv f, but E).

6. Type III substitutions

Here Ma = (10) . Now the orientation has not changed after occurrence of
o,(b). The idea is then to keep track of the parity of the number of a’s that have
occurred until occurrence of un in u, and obtain (SN(u)) as non-oriented walk

To this end we consider a four symbol alphabet A = ~a+, aw, b+, b-~
with a substitution 6r with fixed point û. E.g. fn = a+ will mean that u~ = a
and that an even number of a’s have occurred in uo ... un-,. The substitution
if is defined by exponentiating the symbols a and b of a(a) and a(b), by +’s
and -’s according to the rules: (i) the first symbol obtains a +, (ii) if a symbol
follows an a the exponent is reversed if it follows a b it remains equal to that
of its predecessor. The ú(a-) and ú(b-) are obtained by reversing the signs in
6’(a~), respectively ú(b+). Now we define f : A -~ R by

Then it maybe verified (this is a special case of the construction in [4]) that for
N = -1,0,1,...

- I I - 1-1 

where ic is the fixed point of &#x26; with ico = a+.

Example. Let 0- be given by o(a) = aabab, a(b) = ababb. This induces a substi-
tution å on the alphabet ~a+, a-, b+, b-} by

By definition sign changes (a+ followed by a- or b-, etc.) occur and only
occur in the directly following a symbol a+ or a-. Since M, = (1 °) ,
this implies that in 7(~) there is exactly one more a+, say y + 1, than a - (note
that ä(a+) always starts with a+), and in ä(b+) there are equal numbers of a+
and a-, say x. Moreover, one obtains u(a-) from j(a+) by reversing signs, and
similarly for â(b-). Combining these constraints, we see that the matrix Mü of
~ has the form
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where all entries are non-negative. It turns out that the crucial parameters are
a and (3 defined by

PROPOSITION 2. If a if of Type III, then (SN(u)) is bounded iff /3 = 0, or if there
exist even numbers may and mb such that

Proof. For real numbers K, L let

Then

Therefore one has for 1

Note that

We shall rather concentrate on the occurrences of b+ in 7~. These will certainly
take place, and thus Q"(b+) will also occur for each n. But from the beginning
to the end of such an occurrence the walk will travel

steps (by (7)). Hence if 1,81 &#x3E; 1, then (SN(u)) is unbounded.
There remain 3 possibilities: ,8 = 0 or ,0 = ~1.
In case /3 = 0, f (Q(b+)) = f (~(b-)) = 0. But also i(ü(a+a-» = 0. Since symbols
a+ and a- alternate in f, the sequence f has a decomposition in words from the
set V = {(b+)k, a+(b-)ka- : k &#x3E; 0}. Moreover, we may assume this set to be
finite, since (by almost periodicity) the distance between the occurrence of two
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a’s in u is bounded. Each word v in the set V has = 0. This clearly
implies that (SN,f(u)), and hence (SN(u)) is bounded.
Now the case {3 = ~1. We see that fl is an eigenvalue of MQ (with right eigen-
vector Passing from a to a2we may therefore assume (again by
idempotency of V,) that {3 = +1. In that case

So if a ~ 0, then the walk is unbounded. We are left with the case a = 0"Q = 1.
Then we see from (6) that wl,l is a left eigenvector of Ma. Because of (8) this is a
necessary and sufficient condition for 6, to admit a representation by j in R. (Cf.
the remarks in the last paragraphs of the introduction). This implies that the
walk is renormalizable in the following sense: if the 4 steps corresponding to the
symbols a+, a-, b+ and b- are replaced by the sequences of steps corresponding to
~(a+), 7(a"), o’(~), respectively Q(b-), then this new walk is equal to the original
walk. From this one deduces that if the SN,;(å(a+)), 1  N  lå(a+)1 crosses
level 1, then SN, f (Q’ (a+) ) , 1  N  ~ ~z (d+) ~ [ will cross level 2. More generally
(Srr,f(~2’~(a+))) will cross level n and the walk will be unbounded. So suppose

remains between the levels -1 and +1. Then b2 cannot occur in

u, as this would lead to three +’s or three -’s in u. Also since j(û(a+)) = 1,
and equals mirrored around zero, a2N,f N-O N,f JJN=O ,

cannot occur, unless (SN,j.((a+))) stays between 0 and 1, which would only be
possible if a+ and a- alternate in Q(a+), what contradicts the primitivity of M&#x26;.
We have shown that a(a) contains neither a2 nor b 2, but then cr(a) = 
where m is even because a is of type III. Since the same arguments apply to

and a (b) has to appear in some C1n(a),C1(b) will also neither contain a2 nor
b2. . Since o,(ab) and Q(ba) will occur, it follows likewise that the first and the last
letter of Q(b) are equal to b. Hence a(b) has the claimed form. D.

Example. Let r be the Fibonacci substitution defined by T(a) = ab,T(b) = a.
Then r3 (a) = abaab, T3 (b) = aba, and a = r 3if of Type III. We have 6,(a+) =

= a+b-a-. hence a = -2 and /3 = -1, so (SN(u)) is un-
bounded. (The substitution a given by a(a) = abb, o,(b) = abab gives a (nonperi-
odic) example of a bounded walk.)

7. Type IV Substitutions

Here Ma = ’ 1). Let us write v = C1(a),p, = a (b). Then, because a is of
Type IV, the Squaring Lemma implies
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So if we consider v and /-i as symbols, we have that the two groups

are isomorphic. Here w denotes the equivalence class of a word w under the
equivalence relation introduced in Section 4.
But the matrix (~ ~) of a over la, b} transforms to the matrix (i o) of b over

fit, v}, where the substitution &#x26; on v} is defined as in Section 3. We then use
the analysis of Type III, where at an occurrence of p respectively v we move K :=

respectively L := steps = = lu(b)l). Because
M&#x26; = (~ ~), there are an odd number of v’s in û(JL). But then the parameter
a = s - t of the associated 3 matrix has to be odd, i.e., the renormalizable
case a = 0, (3 = 1 of the Type III analysis can not occur for these matrices.
Furthermore, using the vector wK,L instead of wl,l in (9), we see from (7) that
the walk is bounded iff ,Q = 0, which occurs iff o~(v+) has an equal number of v+
and v-. Since 3(v+) already has an equal number of p+ and it- we finally obtain
PROPOSITION 3. If a if of Type IV, then (SN(u)) is bounded iff r(b) rv f., where
T is the substitutions obta2ned from a by interchanging a and b.
Example. Let Q be defined by 7(a) = aabb, u(b) = ab. Then T is given by
T(a) = ba, T(b) = bbaa. Since -r(b) AE, a generates an unbounded oriented walk.
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