Néron showed that an elliptic surface with rank , and with base , and geometric genus , may be obtained by blowing up points in the plane. In this paper, we obtain parameterizations of the coefficients of the Weierstrass equations of such elliptic surfaces, in terms of the points. Manin also describes bases of the Mordell-Weil groups of these elliptic surfaces, in terms of the points ; we observe that, relative to the Weierstrass form of the equation,
@article{JTNB_1994__6_1_1_0, author = {Schwartz, Charles F.}, title = {An elliptic surface of {Mordell-Weil} rank $8$ over the rational numbers}, journal = {Journal de Th\'eorie des Nombres de Bordeaux}, pages = {1--8}, publisher = {Universit\'e Bordeaux I}, volume = {6}, number = {1}, year = {1994}, mrnumber = {1305284}, language = {en}, url = {http://www.numdam.org/item/JTNB_1994__6_1_1_0/} }
TY - JOUR AU - Schwartz, Charles F. TI - An elliptic surface of Mordell-Weil rank $8$ over the rational numbers JO - Journal de Théorie des Nombres de Bordeaux PY - 1994 DA - 1994/// SP - 1 EP - 8 VL - 6 IS - 1 PB - Université Bordeaux I UR - http://www.numdam.org/item/JTNB_1994__6_1_1_0/ UR - https://www.ams.org/mathscinet-getitem?mr=1305284 LA - en ID - JTNB_1994__6_1_1_0 ER -
Schwartz, Charles F. An elliptic surface of Mordell-Weil rank $8$ over the rational numbers. Journal de Théorie des Nombres de Bordeaux, Tome 6 (1994) no. 1, pp. 1-8. http://www.numdam.org/item/JTNB_1994__6_1_1_0/
[1] Intersection numbers of sections of elliptic surfaces, Invent. Math., 53 (1979), 1-44. | MR 538682 | Zbl 0444.14004
and ,[2] Algebraic Curves, an introduction to algebroic geometry, Benjamin, W. A. (1959), (Mathematics lecture note series). | Zbl 0181.23901
,[3] On the deformation types of regular elliptic surfaces, Preprint (1976). | MR 569686
,[4] The Tate height of points on an Abelian variety; its variants and applications, AMS Translations (series 2) 59 (1966), 82-110. | Zbl 0192.26801
,[5] Diophantine Equations, Academic Press, London (1969). | MR 249355 | Zbl 0188.34503
,[6] Les propriétés du rang des courbes algibriques dans les corps de degré de transcendance fini, Centre National de la Recherche Scientifique, (1950), 65-69. | MR 41477 | Zbl 0040.16001
,[7) Propriétés arithmétiques de certaines familles de courbes algébriques, Proc. Int. Congress, Amsterdam, III (1954), 481-488. | MR 87210 | Zbl 0074.15901
,[8] A Mordell-Weil group of rank 8, and a subgmup of finite index, Nagoya Math. J. 93 (1984), 19-26. | MR 738915 | Zbl 0504.14031
,[9] On elliptic modular surfaces, J. Math. Soc. Japan 24 (1972), 20-59. | MR 429918 | Zbl 0226.14013
,[10] An infinite family of elliptic curves over Q with large rank via Néron's method, Invent. Math. 106 (1991), 109-119. | MR 1123376 | Zbl 0766.14024
,[11] The Mordell-Weil lattice of a rational elliptic surface, Comment. Math. Univ. St. Pauli 40 (1991), 83-99. | MR 1104782 | Zbl 0757.14011
and ,