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Non literal tranducers and

some problems of normality

par FRANÇOIS BLANCHARD

ABSTRACT - A new proof of Maxfield’s theorem is given, using automata
and results from Symbolic Dynamics. These techniques permit to prove
that points that are near normality to base pk (resp. p) are also near
normality to base p (resp. pk), and to study genericity preservation for non
Lebesgue measures when going from one base to the other. Finally, similar
results are proved to bases the golden mean and its square.

0. Introduction

Consider the expansion of a real number r E [0, 1) = 1r1 to the base p.
Several arithmetical manipulations of this expansion have a transductional
cha.racter: multiplication or division by an integer; addition of a rational
number; changing from base p to base pk, or the other way round. What if
these manipulations are performed on a normal number? Do they preserve
normality?

Positive answers to these questions were first given before transducers or
automata were defined, by using a result from Harmonic Analysis, namely
Weyl’s criterion: for instance Maxfield’s theorem [M] states that normality
to base p (i.e. genericity for the uniform measure) is equivalent to normality
to base pk. Recently, proofs using transducers and ergodic techniques were
given in [BIDT] concerning addition and multiplication; they allowed to
prove that near normality is also preserved, and to say something about
genericity for measures different from Lebesgue measure. One purpose
of this paper is to prove Maxfield’s theorem with the same tools, thus
obtaining the same refinements; another, more philosophical, aim is to
underline the topological character of this result.

Suppose one has the expansion of r to base pk, i.e. an infinite sequence
of cells, each of them filled with one symbol in the alphabet

Manuscrit regu le 20 septembre 1991, version definitive le 2 juin 1993.
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(CIRM, Luminy, Mai 1991).



304

Any symbol a E A has expansion 7(a) to base p; for convenience y(a) is
supposed to have length uniformly equal to k, which is achieved by adding
the suitable number of 0’s in the beginning. The rewriting into base p is
done in three steps:

1- create k - 1 cells between any two of the sequence, in order to

provide room for writing down the expansion -y(a) instead of a;
2- whenever one has a E A and then k -1 empty cells, write y(a); one

thus obtains a sequence on B, together with its scansion into words
of -y(A);

3- drop the scansions, keeping only the expansion to base p (scansion
seems not to matter much in this case; in fact it is important in the
setting of doubly infinite sequences, where the question is solved,
and whenever one makes use of a code with variable length).

This construction was described in [BIP], but whitout consideration of
topological aspects, which are essential in this article. Our job consists
of checking that each step transforms some kind of genericity (first to the
uniform measure) to another, suitable, one. It is almost the same the other
way round, except for an extra difficulty: given the sequence on B, one
must first find all its possible scansions in order to invert step 3; if one
wants genericity to be preserved, y(A) must be a code, which means any
finite concatenation of words of y(A) has unique decomposition into such
words. Fortunately this is the case.

This question may be put in the more general context of transductional
manipulations of number expansions. A transducer is an automaton with
two labels on each arc, namely an oriented graph on a finite set of states C,
with arcs having one input label in A and output label in B*, where A and
B are finite alphabets. The expansion of r to the base p can be obtained
from its expansion to the base pk by applying a 1-state transducer with arcs
having input label a and output label y(a), a E A. Transducers of different
types may be used in the theory of normality: for instance multiplication
by 1~ in base p is performed by a transducer with I-letter output [BIDT];
we also introduce one in Section 4, when using the same techniques for
expansions to base the golden mean. Transducers with output labels equal
either to the input or to the empty word can extract subsequences; this is
done in [K, BrL] with the use of slightly different automata.

Another, more general, question is the action of such a base change on
sequences which are generic for some non uniform invariant measure P.
Sometimes the new sequence is also generic for some other measure J-l’, an
image of J-l under some string of operations. This fact has not as strong a
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significance as normality preservation; nevertheless our tools provide some
insight into this field.

What about using the same tricks when the expansion is to the base 8,
with 0 greater than 1 but not an integer? This is not obvious. In [Be], A.
Bertrand-Mathis proved that a number is generic for the Parry measure to
base 0 if and only if it is generic for the Parry measure to base 8k, with k an
integer, in case 0 is a Pisot number. Here it is only done for 0 = (1 + 
and k = 2; the proof makes use of the same set of results, but the main
difficulty is that even when 0 is Pisot, any number has several expansions
to the base 0, only one of which is canonical [Fl]. Because of this, several
transducers, some of them not too easy to build up, have to be used in
order to obtain the canonical 8-expansion of a number, starting from its
canonical 82-expansion. This is devised as an example that questions like
preservation of near genericity for the Parry measure, or preservation of
genericity starting from non canonical measures, can sometimes be tackled
with the use of transducers; but the purely technical difficulty encountered
in this simple case with the size of one transducer suggests that new ideas
would be welcome.

The results obtained also extend far beyond changes from base ~ to
base since they may be applied to codes with variable length; of course
in this case they have hardly any number-theoretic meaning, still another
drawback being that measures with maximal entropy do not generally cor-
respond to each other under the tower construction.

After some preliminaries, Section 2 contains all general statements on
preservation of normality or genericity that are required for applications. In
Section 3 generalizations of Maxfield’s theorem for integer bases are dealt
with; in Section 4 the same is done for bases 0 = (1 + B/5)/2 and 82.

This research was partly done during a stay at Universidad de Chile,
Santiago, in December 1990. I am indebted to Pierre Liardet and especially
Jean-Marie Dumont for several stimulating remarks and questions; also, the
work in Section 4 parallels some unfinished common research with him and
Alain Thomas on multiplication by integers to base the golden mean (the
transducers proved even bigger than the ones in Section 4!).

1. Definitions

Let A be a finite set of symbols endowed with the discrete topology; A*
is the set of all finite words on A, the length of the word u is denoted by
Jul; a language on A is any subset of A*. The sets AZ and AN of all doubly
and simply infinite sequences on A, endowed with the product topology,
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are compact metric spaces. The shift a : Az (or AN) defined
by is a homeomorphism of (a continuous
transformation of A~ ). A subshift on A is any closed a-invariant subset of

(or AN). A subshift X is unambiguously determined by the language
L(X) = ju E A*, 3m, n e Z or E X, x(m, n) = ul; thus a language
having some obvious suitable properties defines a subshift of Az and a
subshift of For u E L(X), denote by [u] the set a:(0, Jul - 1) = ~}.
A transitive subshift is one such that for any u, v E L(X ) there exists

w E A* such that L(X). A subshift of finite type is defined by
forbidding a finite set of words; a subshift is called sofic if L(X) is regular,
or recognized by a finite automaton.

A factor map is a continuous, onto, shift-commuting map X -+ X’;
in this case X’ is a factor of X and X an extension of X’. A conjugacy
map is a one-to-one factor map: when such a map exists, X and X’ are
said to be conjugate. A bounded-to-one factor map is such that the number
of preimages, or lifts of x’ E X’ is bounded by some k.

Automata and transducers

An automaton ,,4 consists of:

- a finite alphabet A,
- a finite set of states C,
- a directed graph on C, the arcs each having a label in A.

To a path in the graph, one associates its label, i.e. the word spelled
by concatenating the labels of its arcs (usually from left to right, but the
natural automata for multiplication by an integer work from right to left);
the set of labels is called the language recognized by the automaton. When
using the automaton to recognize this language, all states are initial and
final. There is another word one may associate to a path: to any arc,
associate the couple (a, c) of its label a and the origin vertex c. Then do
the same for the path by concatenating all corresponding couples. The

language thus recognized may be called simply the language of A.

Each of these languages defines a subshift: they are the factor subshift
X C and the lift subshift Y C (A x C)z associated to ,r4. Elements of
these subshifts correspond to infinite paths in the graph: an element of X
is the label of such a one, and an element of Y is the pair consisting of the
sequence of vertices and the label of an infinite path. These two subshifts
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have particular properties (Y is a subshift of finite type; X must be at
least sofic). ,~1 defines a mapping 0 from Y to X by projection on A of
coordinates of y E Y. It is of course a factor map. It is convenient, though
not strictly correct, to call also 0 the projection map from (A x C)* to A*.
The same definitions are fitting for simply infinite sequences.

An automaton ,~ is said to be deterministic if, given a E A and c E C,
there is at most one arc starting from state c with given label a; non-
ambigous if there is at most one path with given label from one state to
another. Deterministic automata are nonambigous, but the converse is not
true.

An automaton is said to be irreducible if its graph is strongly connected,
i.e. if for any two states c, c~ there exists a path joining c to c’ in the graph.
If ,~ is irreducible, subshifts Y and X are transitive.

An automaton ,r4 is said to be bounded-to-one (or a transducer T bounded
to-one for input) if the factor map 0 is bounded-to-one. The corresponding
definition applies to output. When the automaton ,~4 is irreducible, the
map 0 is bounded-to-one if and only if ,A is nonambigous [B].
A transducer is an automaton in which arcs have two labels, one input

label in alphabet A, and one output label in B*, where B is another alpha-
bet : thus output labels may be single letters (in this case the transducer
is said to be literal), or words with length greater than 1, or the empty
word. A transducer may be thought of as performing three tasks simul-
taneously : it recognizes input words, and output words which decompose
into concatenations of output labels; it rewrites on B any input word on
A. Transducers are said to be deterministic or nonambigous for input, or
output when literal, or irreducible, according to the same definitions as for
automata.

Measures

Here we state some relevant facts about invariant measures on a compact
metric space X endowed with a continuous transformation T; examples are
subshifts, or the 1-torus ~’1 endowed with multiplication by some integer
p. For proofs see [DGS]. Recall the set of probability measures on
X is a compact metric space for the topology of weak convergence, and the
set I(X) of T-invariant probability measures on X is always nonempty and
compact. An invariant measure p on (X, T) is such that p(E)
for any Borel set E. The (topological) support of an invariant measure p
on X is the intersection of all closed invariant subsets of X having measure
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1; its entropy is the nonnegative number

where Cn = f[u], u E L(X), Jul = n} (the limit is known to exist). A
subshift for which there is exactly one invariant measure with maximal
entropy is said to be intrinsically ergodic.

For any subshift E X and f E C(X), define the measure by
the formula 

-

A point x E X is said to be generic with regard to the invariante measures
p on X, or simply p-generic, if Sn(x) converges weakly to p as n goes
to infinity. As genericity is an asymptotic property, depending only on
nonnegative coordinates of x E X, it is perfectly defined for sequences in
A~. When X = A N (resp. and p is the Bernoulli measure A with

probability for each symbol (resp. Lebesgue), a generic x is called
normal to the base p.

Define .M(x) as the set of measures associated to x, or limits, for the
weak convergence of measures, of Compactness implies it is
always nonempty. Any measure in is invariant; x is generic for p
if and only if ~1(x) _ Given some metric generating the topology
of weak convergence, and 6 &#x3E; 0, a point x is said to be (6, J.L )-generic if
M(x) C B(JL,6), (the open ball with centre p and radius b); when tt is
the uniform measure this is equivalent to (k, E)-normality for some k and e
depending only on 6 (see [BIDT], Section 3]).

Assuming § : V 2013~ X to be a factor map, denote by ~ : : A~(K) 2013~
M(X) the corresponding map for measures: = v o 0-1 (generally,
for any factor map from Y to X, denoted by a small Greek letter, let
the corresponding continuous shift-commuting map from .M(Y) to M(X)
be denoted by the corresponding capital Greek letter). Map $ is weakly
continuous and shift-commuting. As a consequence, M(Øx) = lll(M(z))
and if y E Y is v-generic, 0(y) is A lift of measure p on X
is a measure v on Y such that p. When 0 is bounded-to-one, $
preserves entropy.

There is no essential difference between the theory of invariant measures
on subshifts of A~ and subshifts of Definitions are identical, so there
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is a one-to-one correspondence between invariant, or ergodic, measures on
a simply infinite subshift and its doubly infinite version. Properties are
the same. For instance, genericity may be considered as a property of a
doubly infinite sequence, but it depends only on its restriction to positive
coordinates. The only (slight) difficulty arises when trying to find preimages
of some simply infinite sequence under the tower construction, because in
most cases there are several solutions. This will be dealt with in time.

2. Some general statements on genericity preservation

Going from base pk to base p is done in three steps, as explained in the
introduction. So is any more general coding. After describing each step,
the corresponding theorems on genericity preservation are stated (when
previously known) or proved (when not).

Step 1: the tower construction. In this subsection we deal only with the
formal construction. For instance the actual meaning of the function f as
regards coding is only explained further on.

Put Z = A~ for some finite A. Let f : Z - N* be a continuous map
(i.e. for any integer n the set {z E Z/ f (z) = n} is closed, which implies of
course that f is bounded by some integer k). Let us construct the tower

system (Z f, r) over (Z, a) under function f, as in [PS]: define

Z f, endowed with the restriction of the product topology, is a compact
metric set and r is a homeomorphism.

Suppose p is an invariant measure on (Z, Q). It is well-known that the
measure defined by

is T-invariant on Z f, and if p is ergodic, so is the map p f is 1-to-1
and onto from I( Z) to and Abramov’s formula

. , ,

links the entropies of the two measures [A]. None of these facts depends on
the topology; all are also true in a purely metric situation.
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PROPOSITION 1. The is continuous (hence bicontinuous) for
the topodogy of weak convergence of measures.

Proof. Let pn E tend weakly to p as n - oo: this means for any
continuous function g on Z, We wish to check that for any
continuous h on Zj , ~ Write h = hi + h2 +... + hk,
where h; is the (continuous) restriction of h to the set {(z, i) E Z f}. Define
hi : Z -+ R by = hi(z,i) whenever = 0 otherwise. By
definition of hi and (1) one can write

Applying the hypothesis of weak convergence to each continuous function
h and f, the last expression goes to (li(f))-l - which, by (1), ist 

i 
t

equal to 

Now here is the basic tool for all further results.

PROPOSITION 2. Suppose z E Z, y = (z, i~ E Z f. Then one has 

Pi(M(z)).

Proof.

1) We prove first the implication (p E M(z)) # M(y)). As
~c is assumed to be associated to z, there is an infinite subset E of N such
that for any continuous g on Z,

tends to p(g) as n tends to infinity along E. We want to compute

for continuous h, as N tends to infinity along some subset E’. As M(y)
does not change under action of T, it is sufficient to compute SN(y, h) for
y = (z,1).

For z E Z, define and E’
is also an infinite subset ofN, and for given z, fZ(~) defines a 1-to-1 onto
map from E to E’.
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For continuous h : Zj - R, 0  i  k, define continuous functions
hi : and Z -~ Il~ as in the proof of Proposition 1. For N E E’,
one has

By permuting the two summations, multiplying and dividing by 
one gets

Putting = n, since f is continuous and bounded,

tends to 1L(f) as N tends to infinity along E’, so that = n/fz(n)
tends to (IL(f))-l. Apply the hypothesis to each continuous function hi,
and then (1):

2) The converse is proved in a similar way. Given v E I(Z¡), there
exists a unique invariant measure p on Z such that v = Suppose
v is associated to some (z, i) E Z f: for the same reason as above assume

i = 1. The convergence of SN(y, h) to v occurs on some subset E’. Without
loss of generality one may assume E’ C fz(N): since f is bounded, for any
p E E’ there is q E with 0  p - q  k. For given h the difference
isp(y, h) - S,(y, h)1 is bounded by so that Sq(Y) tends
weakly to v as well as Sp(y).
We claim that for any continuous g, p(g) as n goes to infinity

along E = fZ 1(E~). Define continuous functions g’ and f’ : Zj - II8 by
= g(z), g’(z, i) = 0 for i &#x3E; 1, = 1, f’(z, i) = 0 for i &#x3E; 1.

One has

whence
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as g’ is continuous, by hypothesis the second limit in the product is equal
to v(k) _ p(g)lp(f); f. being defined as above, as

and f’ is continuous, by (1)

so 11ri1nEE g(g)- Q.E.D. 0

A direct consequence of Propositions 1 and 2 is the following:

COROLLARY 3. Given E &#x3E; 0, there exists b &#x3E; 0 such that M(z) E B(JL,6)
implies M (z, i) E -) ared conversely M (z, i) E B(p¡(JL), 6) implies
M (z) E 

When E vanishes, this becomes a statement on genericity preservation.

Step 2: writing the letters

This is by far the simplest step.

Suppose now the function f above is generated in the following way.
Let a be a map from A to B*, where B is some finite alphabet; a can be
easily extended into a map from A* to B*, but not into a shift-commuting
map from to B7: this is why one has to build the tower. Define f
on Z by f (z) _ la(zo)l. We want to identify (Zf, 7-) with some
convenient symbolic space Y, under the assumption that a is 1-to-l.

Let X = be the set of all points x E BZ for which there exists a
sequence t E {0,1}~ such that ti = tj = 1 implies x(i, j - 1) E (a(A))*;
t is called a scansion of x into words of and 4&#x3E;’ being the natural
projections from (B x {0,1})~ on B~ and (0, 1)~’~, define a subshift Y on
the alphabet B x {0,1} by the following condition:

for any y E Y, 0(y) E X, and 0’(y) is a scansion of 0(y) into words of
a(A).
For a E A, write a(a) = al(a)a2(a)... a’a(a),(a), a;(a) E B. Define the

map ~ : Zj - Y by the two conditions:
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This definition consists of replacing each letter zn in z by the corresponding
word a(z), for which Z f provides convenient room owing to the choice of
f, while keeping trace of the beginning of all words a(zi). ~ is obviously
continuous and onto, and by (2) it changes T to or; it is 1-to-I if and only
if a is, which means that in this case ~ is a conjugacy.

Now let us examine the action of ~ (and ~-1) on points that are generic,
or almost generic, for some given measure.

That ~ preserves genericity and almost genericity is a straightforward
consequence of its being a factor map.

PROPOSITION 4. Let 7r be a factor map from the compact metric space Y
to the compact metric space X. For any - &#x3E; 0 there exists b &#x3E; 0 such
that for any invariant measure v on Y, y E Y, if M(y) E B(v, b), then
M

The proof is elementary and left to the reader. As a consequence g
preserves genericity and, assuming c~ to be 1-to-1, so does ~-1.

Step 3: dropping or restoring the scansion

Dropping the scansion only means applying the factor map 0; by Propo-
sition 4 this map preserves genericity. But the converse is far from being
always true: some extra conditions are needed. Here is the general ergodic
statement we are going to apply: it is an easy consequence of Proposition
3.3 in [BIDT].

PROPOSITION 5. Suppose 0 : Y ~ X is a factor map, A is an invariant

measure on X such that there is a unique invariant measure v on Y with
~(v) _ A. For any s &#x3E; 0, there is b &#x3E; 0 such that if C B(A,b) for
some x E X, then for any y E Y with 0(y) = x, M(Y) C B(V,ê).

Of course one wants sufficient conditions on p for uniqueness of its lift
v. The next, still general, remark settles the uniform case:

Remark 6. When Y and X are the extension and factor subshift of a

nonambiguous irreducible automaton, and /-t is the unique measure with
maximal entropy on X, then its unique lift on Y is the measure v with
maximal entropy. This is a mere consequence of intrinsic ergodicity of sofic
systems and entropy preservation by bounded-to-one factor maps.
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A more general sufficient condition for an invariant measure to have a
unique invariant preimage under some nonambiguous automaton is given in
[BIDT, Propositions 2.7 and 4.9]. And now, how can we use Remark 6 when
introducing all possible scansions of x E X? This is done by introducing an
important further combinatorial assumption on a: a(A) must be a code.

DEFINITION. r C B* is said to be a code if

implies rra = n and x~ = y=, 1  i  n.

Many finite and infinite codes are described in [BeP]; the ones used in
Section 3 and Section 4 are elementary.

When r = a(A) is a code, one usually wishes a to define a 1-to-1 mor-
phism from A* into B*, so as to make it possible to tell what element of A*
any word u E r* is the image of; for this to be true one must also assume
a to be 1-to-l.

The petal automaton AA of a language A = zs) has state
set fF} U  xt E A}. There are arcs

(i) from 6’ to (x;,1) with label xi(l), x; E A;
(ii) from (x;, n) to (xt, n + 1) with label xi(n + 1) for n + 1  Ixi 1;
(iii) from (xi, IXil- 1) to 6’ with label 

This automaton is obviously irreducible. When E is the only initial and final
state, ,A~ recognizes A*; when all states are initial and final, it recognizes
the set F(A*) of "pieces" of words of A*.

PROPOSITION 7 [BP]. The petal automaton of a (finie) language A on B
is irreducible. It is nonambiguous if and only if A is a code.

In fact, if A is not a code, there exists no nonambiguous automaton
permitting to obtain the scansions of words belonging to F(A*).

Here is now the theorem we have been aiming at; it just collects our
previous results.

PROPOSITION 8. Let p be an invariante measure on Z, a : A 2013~ B*, let f
be a continuous map Z to ~’, ~ the two factor maps defined above,
and finally let b &#x3E; 0. There exists 6’ &#x3E; 0 such that if z is a (6’, p)-generic
Point of Z, then if x = 0 o ~(z, i) for some i, it is a (b, A)-generic point
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for A = lll o Conversely assume a is 1-to-1 and a(A) is a code,
and reduced to a unique invariant measure v. If it is the unique
measure on Z corresponding to then for any (b, A)-generic x E X,
if x = ~ o ~(z, i), z is (b’, 

Proof. Starting from p on Z it is enough to apply the classical properties
of towers and the direct part of Corollary 3, and Proposition 4, in order to
obtain the direct result. Conversely, there is a unique invariant measure v
on ~’ such that = A’; apply Proposition 7 to Y and X, which exactly
coincide with the extension and factor subshifts of petal automaton 
of code a(A); then Proposition 5 to A, and finally Proposition 4 and the
converse part of Corollary 3. 0

Remark 9. For number-theoretic applications, one wants one-sided infinite
sequences. In order to obtain the same results in this case, just remark that

(a) given an invariant p on AN, there is a unique invariant measure p’
on A~ such that its restriction to the a-algebra of future events is
equal to p.

(b) any point x in some subshift of A~ can be extended into at least
one point x’ in the corresponding subshift of A~ .

(c) x is p-generic if and only if x’ is p’ -generic.
Thus any question about genericity in AN can be carried over to Az and
solved there; all former statements may be applied in A~ .

3. Refining and extending Maxfield’s theorem

Let us denote a measure on 1r1, invariant by multiplication by p, by a
starred Greek letter, for instance and the almost always unique corre-
sponding measure on (0; .. , ,p - 1} by the same Greek letter without a
star: }1.

The next proposition states that b-normality to the base p is equivalent to
b’-normality to the base pk for some b’. The first part, about preservation of
normality, is the well-known Maxfield theorem [M]; another ergodic proof
can be deduced from the main result in [BrL]. The remainder is mostly
original, though J.-M. Dumont [D] has an unpublished combinatorial proof
of the converse part, which may also be deduced from [C]. However, the
present proof establishes clearly, in the line of [BIDT], that such results are
within easy reach of Ergodic Theory, combined with elementary techniques
of the Theory of Automata.
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PROPOSITION 10. For any two integers p &#x3E; 2, k &#x3E;_ 2, and r E (0,1), r is
normal to the base p if and only if it is normal to the base pk. Moreover,
for 6 &#x3E; 0, there exists b’ &#x3E; 0 such that if r is b’-normal to the base p (resp.
pk), then r is b-normal to the base pk (resp. p).

Proof. Put A = f 0,... ip k - 1 ~, B = {0,’" p - 1}. Since the Lebesgue
measure corresponds to only one measure on AN or we can work directly
on expansions; and according to Remark 9 all propositions on genericity
of doubly infinite sequences may be applied to sequences in AN or To

prove the statement we have to perform three tasks:

- first to see how the former construction (tower and factor map) can be
applied to deduce the expansion of r in base p from its expansion in base
pk (and conversely);

- then to prove that the measure corresponding to the uniform mea-
sure on AN under this construction is the uniform measure on BN, and
conversely;

- finally, to check the hypotheses of Proposition 7 are fulfilled.

1) In order to obtain the expansion of r to base p from its expansion to
base pk, one has to replace each symbol a belonging to A = {0,’’’ 
by a word y(a) with length k on alphabet B = ~0, ~ ~ ~ , p - 1}: y(a) is
the expansion of a in base p, with a suitable number of 0’s added in the
beginning when necessary. Obviously y is 1-to-1 onto between A and Bk;
moreover y(A) is evidently a prefix code, therefore 0 is the canonical factor
map of a deterministic automaton.

2) Call p the uniform measure on Z = AN, A’ the uniform measure on
X = BN . We establish that and is the uni-

que element of ~-1 (~’). Starting from p on AN one has f = k everywhere,
so by Abramov’s formula = = log p = h(A’). As they are
associated to bounded-to-one factor maps, -= and $ preserve entropy: since
a is 1-to-1, =- is a conjugacy; since y(A) is a code, ~ is bounded-to-one. As
A = lll is the ultimate image of p on X, h’(A’) = h(A); but as A’
is the unique measure on X with entropy logp, one has A’ = a. Conversely,
there is a unique invariant measure v on Y such that A’: since 0
is the canonical factor map of a nonambiguous automaton it is bounded-
to-one, thus A’ implies h(v) - h(A’) = log p; as the automaton is
irreducible Y is intrinsically ergodic, and v is unique. As ~-1 (v) also has
entropy logp, by Abramov’s formula the corresponding measure on Z has
entropy k ~ log p and so must be equal to p.
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3) The direct part of Proposition 8 only requires that f be continuous,
which is evident. For the reverse part, it is sufficient to remark 7 is 1-to-l
and also a prefix code, so that, by Proposition 7 and Remark 6, 0-1(p) is
a singleton. D

Now let us drop uniform measures, and suppose r E 71 is generic for
some xpk-invariant measure ~* (in order to avoid any trouble when passing
to the expansions, assume is nonatomic). By using Proposition 7 it is
easy to prove r is also generic for some corresponding xp-invariant A*. But,
supposing one inverts the roles of xp and xpk, when is the corresponding
statement true ?

An answer to this question can be obtained in particular cases, using
some results in [BIDT]. For instance:

PROPOSITION 11. Suppose the measure A* on 1f1 is the image of an ergodic
Markov measure A with topological support BN. Then there is a unique
measure v on Y such that A; thus there is a measure ~,* on 1f1 such
that if x is generic for A* under xp, it is generic for J1 * under xpk.

Proof. The hypothesis implies A is unique, and by [BIDT, Propositions 2.7
and 4.9] that v is also unique, thus defining unique measures /-I on A N and
p* on 1ft. By Proposition 8 one gets the expected results on preservation
of genericity. D

4. Analogous results for expansions with respect to the golden
mean

Given a real number ~3 &#x3E; 1; not in N, a sequence (st, i &#x3E; 0) of symbols
in A = {0,1," ’ , [,8]} is said to be an expansion of r E 1r1 to the base ,8 if
its valuation V(s) checks

When {3 is not an integer there are many possible expansions of any real
number in to the base {3. One of these expansions, the greatest for lexi-
cographical order, plays a special role and may be called the canonical one.
The matter of {3-expansions has been given some attention in the literature,
and an analogue to Maxfield’s theorem was proved by A. Bertrand-Mathis
when ~3 is a Pisot number [Be]. We want to show on a very particular
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example how to use transducers and ergodic techniques to get the same re-
sult, by the way obtaining the same refinements as for expansions to integer
bases in Section 3.

Consider the case {3 - 9 = (1 + B/5)/2: then the canonical expansion
of r is the only one in which the word 11 never occurs; the set of all such
expansions is the subshift of finite type So defined by this exclusion rule.
The canonical expansions to the base ( = 02 are sequences in which there
is at least one occurrence of 0 between two occurrences of 2. They form
a sofic system By erasing the output labels in the graph of 7í below,
one obtains an automaton recognizing S,. On the sets So and there
is a unique measure having maximal entropy (equal to logo and log20
respectively), which is called the Parry measure; its role corresponds to
that of the uniform measure with regard to integer bases.

Given r E 1r1, and its canonical expansion s’ to the base (, we want to
compute its canonical expansion s to the base 0. This has to be done

by combining the action of two transducers: on account on their acting
in opposite directions, it is impossible to merge them into just one [F1].
The first one, Tl, performs two tasks: creating one empty cell between
any two symbols of s’, belonging to alphabet f 0, 1, 2}, and then, using the
additional room, rewriting these symbols on alphabet (0, 1) ; the sequence
s" thus obtained has valuation r and is on alphabet A = {0,1,’*’ ~~3j~
but generally does not satisfy the constraint that 11 must never occur.
The second transducer T is literal; it eliminates all blocks 11 in s’, thus
yielding s. A simpler transducer might be used in order to do just this, as
in [Fl]; but, in order to use the various results of Section 2, we want T
to be nonambiguous, which means its input subshift must be equal to the
output subshift of Tl; this makes it more complicated. This also illustrates
the kind of difficulties one runs into when using transducers in the field of
{3-expansions.

Transduces

This transducer acts from left to right; the input words (on alphabet
f 0, 1, 21) are exactly those belonging to S,. Any symbol in f 0, 1, 21 is

replaced by a two-letter word depending on the state the transducer is in.
Initially a cell containing a 0 is created between any two symbols in s’; then
any symbol 2 is subtracted and replaced by adding two 1’s, one in the first
cell to the left and one in the second cell to the right, according to identity
2 = e + e-2 (thus V(s") = Yes)). The cell to the left formerly contained a
0; but the second one to the right may have contained a 1, which creates
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a new 2, and this must be eliminated in its turn (this is done by the loop
with labels 1/10 on state b). Its graph appears in Figure 1.

Figure 1

The input subshift Xl is exactly S~. The output subshift X1 has two
relevant features: 13 never occurs, and two occurrences of 11 must be
separated by at least one occurrence of 02. Figure 2 below pictures an
automaton recognizing it.

It is important to notice 7í performs the three operations described in
Section 2 at the same time. In order to apply previous results it may be
thought of as the composition of two transducers. Put u = 00, v = 01, w =
10, and replace output words in 7í by these new symbols: one thus obtains
a literal, deterministic tranducer T’ with the same graph, but with output
alphabet lu, v, w}. The second one, T", has only one state and replaces
letters by their value on alphabet {0,1}. It is a typical tower
transducer, performing steps 1, 2 and 3 of the Introduction.

Remark. it is important to notice is a code.

Transducer T :

This one acts from right to left. Before constructing it one should build
up an automaton recognizing the output subshift of Tl, X’, from right to
left (this makes it easier to check that the input subshift of T is equal to the
output subshift of Tl). One such, deterministic, automaton is represented
in Figure 2.

Figure 2
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Now this is how T acts. Everytime the word 11 occurs in the input
sequence s", the two l’s are replaced by 0’s and a 1 is created to the left,
according to the identity 1 = 8-1 + 8-2 (which ensures V(s’) = V(s") =
V (s )) . As the output subshift of T , never contains 13 or 12 012 this
never creates 2’s, or words 1 n, n &#x3E; 2; when a new word 11 is created to
the left of the one just eliminated it must be dealt with in its turn: this is
achieved by the loop on states g and h in the graph. Its graph is featured
out in Figure 3. 

-

Figure 3

Finally, 72 is nonambiguous for input and output.

Let and It, be the Parry measures on 1r1 corresponding to 8 and (.
There only remains to apply results of Section 2 to the transducers T’, T",
and 72 to prove the following

PROPOSITION 12. For any b &#x3E; 0, there exists b’ &#x3E; 0 such that the two

following properties are equivalent :

(1) r E is b)-generic under multiplication by 0.
(2) r is b’)-generic under multiplication by (.

Proof. It is closely related to the proof of Proposition 10. First one
reformulates the problem into its symbolic equivalent on S9 and Then
one has to identify measures IL8 and as corresponding to each other
under action of the transducers 7i and T : this is an easy job with the
use of entropy. Finally apply Proposition 8 to T" (this is possible since
(u, v, w) is a code) and Propositions 4 and 6 to T’ and 72 to reach the
conclusion. 0
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Remarks.

1- Recent work by C. Frougny [F2] and by C. Frougny and B. Solomyak
[F3] suggests this proof may be generalised to all Pisot numbers r such that
1 has a finite decreasing canonical expansion to base T [F2].

2- The same set of results suggests there are other measures for which
genericity is preserved.
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