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New bounds on the Length of Finite
Pierce and Engel Series.

par P. ERDOS anp J.O. SHALLIT*

ABSTRACT. Every real number z, 0 < z < 1, has an essentially unique
expansion as a Plerce series:

1 1 1

r=— -

r r1T2 12213

where the z; form a strictly increasing sequence of positive integers. The
expansion terminates if and only if z is rational. Similarly, every positive
real number y has a unique expansion as an Engel series:

1 1 1
y=—+
n Y1y2 Y1y293

where the y; form a (not necessarily strictly) increasing sequence of positive
integers. If the expansion is infinite, we require that the sequence y; be not
eventually constant. Again, such an expansion terminates if and only if y
is rational. In this paper we obtain some new upper and lower bounds on
the lengths of these series on rational inputs a/b. In the case of the Engel
series, this answers an open question of Erdds, Rényi, and Sziisz. However,
our upper and lower bounds are widely separated.

1. Introduction.
Let a,b be integers with 1 < a < b, and define

a1 =a and a;+1 = b mod a; fori > 0. (1)

Since a;4+1 < a;, eventually we must have a,4+1 = 0. Put P(a,b) = n.
We ask: how big can P(a,b) be as a function of a and b7

This question seems to be much harder than it first appears. Shallit [11]
proved that P(a,b) < 2v/b; also see Mays [6].
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In this paper we improve the bound to P(a,b) = O(b'/3*¢) for every
¢ > 0. (This is still a weak result, as we believe that P(a, ) = O((logb)?).)

We can also ask about the average behavior of P(a,b). We define

1 .
Q) = > P(i,b).
1<i<h
In this paper we prove Q(b) = Q(loglogb). (Again, this result is rather
weak, as it seems likely that Q(b) = Q(logb).)
There is a connection between the algorithm given by (1) and the fol-

lowing expansion, called the Pierce series:

Let 0 < £ < 1 be a real number. Then £ may be expressed uniquely in
the form

1 1 1
r= — — + _—es (2)
z1 r1Z2 Z1Z2Z3
where 1 < 1 < 22 < z3 < ---. We sometimes abbreviate eq. (2) by
z = (z1,22,23,...).

The expansion terminates if and only if z is rational. If the expansion does
terminate, with
(_l)n+1
1T Ty,
as the last term, then we also must have ¢, < z,, — 1.

Let P'(a,b) denote the number of terms in the Pierce series for a/b.
Then we have the following

OBSERVATION 1.

P'(a,b) = P(a,b).

This follows easily, as a = b mod a; means b = ¢ya1 + ay; hence

T (-%)

Similarly, from b = g,a, + a3, we get

Toul-%)
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Continuing, we find

a 1 1 (—l)"'H
R _
b 3] 9192 9192 qn

In fact, the algorithm (1) has the same relationship with expansions into
Pierce series as the Euclidean algorithm for the greatest common divisor
has with continued fractions.

A similar algorithm is as follows: let 1 < a < b and define

a1 =a and a;41 = (—b) mod a; fori > 0. (3)

Again, we must eventually have a,y1 = 0. Put E(a,b) = n. Erdos,
Renyi, and Sziisz [4] asked for a nontrivial estimate for E(a,b). In this
paper we prove the first such estimate, namely E(a,b) = O(b'/*+¢) for all
€>0.

The algorithm (3) is related to expansion in Engel series, as follows:

Let y be a positive real number. Then y may be expressed uniquely in
the form

1 1 1
y=—+— (4)
Y Y2 UNY2Ws
where 1 < y; < y2 < y3 < ---. If the expansion does not terminate,

then we require that the sequence y; be not eventually constant. Such an
expansion terminates if and only if y is rational.

Let E'(a,b) denote the number of terms in the expansion for a/b. As
above, it is easy to see that E(a,b) = E'(a,b).

For more information about the Pierce series, see [7,8,11,13,14]. The
results in Section 3 were announced previously in [12].

For more information about Engel’s series, see [1,2,3,4,9,13].
2. Upper bounds.
We recall the proof from [11] that P(a,b) < 2v/b. We write a; = a and

b=qia, +ay
b= gea; + a3

b = qn-1Qn-— + an

b= qnQn.
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Note that agqr < bfor 1 <k < n.

Without loss of generality we may assume ¢; = 1, for if not, then :

P(b—a,b) =1+ P(a,b).

Choose k such that ¢ < Vb and k41 > Vb. (If no such k exists, then
qkS\/I;forlngn;hencenS\/I;.)

Then, as the ¢; are strictly increasing, we have k < Vb. Now since
Ar+19k+1 < b, we have ax4q < V. Since the a; are strictly decreasing, we
have n — k < v/b. Hence we find n < 2v/b.

We now show how to modify this argument to get an improved bound:

THEOREM 2.
We have P(a,b) = O(b"/3+*) for all ¢ > 0.

Proof.

We first observe that for any fixed r, we cannot have a; — a;4+1 = r too
often. For if, say, we have

b=gq;,a; +a; —r

b=gqgi,ai,+a;,—r

b= qi; Q45 + ai; — 7T,

then b + r is divisible by each of a;,,a,,,... ,a;;. Since the a’s are all
distinct, we have j < d(b+ r), where d(m) is the number of divisors of
n. Now it is well known (see [5]) that d(m) = O(m*) for all € > 0, so
7 <db+r)=0(b).

Now as above we can assume g; = 1. Choose i such that ¢; < b'/* and
qigq > b1/3. (If no such i exists, then ¢; < b'/ for all 7 and hence n < b'/3)
Note that

i<b'? (5)

andajgb2/3fori+1§j_<_n.

Let us count the number of j’s, i+ 1 < j < n, such that r = a; —aj4; <
b'/*. By the argument above, there are O(b%) such j foreach r,1 < r < b'/3.
Hence there are a total of O(b'/**¢) such j.
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Now let us count the number of j’s, i+ 1 < j < n such that a; —aj4, >
b'/3. Since a;4q — an < b%/%, it is clear that there can be at most b'/? such

J-
Hence all together there are O(b'/*t¢) j’s in the range i + 1 < j < n,
and we conclude

n—i=0(b"/*). (6)
Adding (5) and (6), we conclude P(a,b) =n =O(b'/?t7). O

We now show how to modify this argument to get an upper bound for
E(a,b).

We write a; = a and

b=qia; —ay

b=geas —ay

b= n-1an-1 — Gy

b= gna,.

Note that ¢; = [b/a;].

In what follows, we assume 1 < a < b; such a restriction ensures that
g >2foralll1 <i<n.

Note that axqy < 2b for 1 < k < n. The a; are strictly decreasing.

In the case of Engel series, the ¢; form an increasing sequence that is not
necessarily strictly increasing. However, it is not difficult to show that we
cannot have too many consecutive quotients that are the same:

LemmMma 3.
Suppose b = qa; — a; 41 for j <i < k. Then ¢*J|a; —a;4q for j <i < k.

Proof.

By induction on i. The result is clearly true when ¢ = j. Now assume it
true for 7; we prove it for i+1. We have b = ga; —a;4q and b = ga;41—a;42.
Subtracting, we find a;41 — ai+2 = g(a;i — aiy1). As ¢*~|a; — aiyq1 by
induction, we have ¢**'~J|a;4; — a;42, and the result follows. O
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COROLLARY 4.

Let 1 < a < b and ¢ > 2. In the Engel series for a/b, there cannot be
more than 1 + log, a quotients g; that are equal to q.

We may now apply the same argument used to prove Theorem 2 to get
a similar result for E(a, b):

THEOREM 5.
Let 1 < a < b. We have E(a,b) = O(b'/3*¢) for all € > 0.

Proof.

Again, we choose i such that ¢; < b'/* and ¢,4¢ > b'/?. (If no such i
exists, then ¢; < b'/% for all i and hence by Corollary 4, n < b'/*(1+log, b).)

Note that i = O(b'/?logb), by Corollary 4. Since gi+1 > b'/*  and the
a; are strictly decreasing, we have a; < 20%/% for i+ 1 < j < n. Now an
argument similar to that in the proof of Theorem 2 shows that there can
be at most O(b'/*+¢) subscripts j > i 4 1 such that a; — aj4; < 2b'/%.
Similarly, there can be at most O(b'/*) subscripts j > i + 1 such that
aj — aj41 > 2b'/3. We conclude that there are O(b'/7%¢) subscripts j in
the range i + 1 < j < n, and hence n — i = O(b'/*+*).

Adding our estimates for i and n — i, we conclude that E(a,b) = n =
O(b1/3+6). 0O

3. Lower bounds for P(a,b) and Q(b).

In this section we prove some lower bounds for P(a,b) and Q(b).

In [11], it was proved that

log b

b) > —o -
Pa,b) > log log b

infinitely often. Actually, a very simple argument gives a better result:

THEOREM 6.
There exists a constant ¢ > 0 such that P(a,b) > clogb infinitely often.

Proof.

Let a = n and b = lem(1,2,3,...,n) — 1. Then it is easy to see that
bmodj=j—-1for1<j<n;henceaj=n+1-jfor1<j<n+1,and
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so P(a,b) = n. However,
logb < log(b+ 1) = ¥(n) < 1.03883n = 1.03883 P(a,b),

where ¢(z) = Zp,,<z log p and we have used an estimate from [10]. This
proves the theorem with ¢ = (1.03883)"'. O

REMARK.

It is trivial to find a similar lower bound for Engel’s series, as E(2™ —
1,2™) = n.

We now prove a result on the average complexity of the algorithm (1).

THEOREM 7.
Q(b) = Q(loglog b).
Proof.

Let T3(j) be the total number of times that j appears as a term in the
Pierce expansions of 1/b, 2/b,... ,(b—1)/b, 1.

Clearly

Q)= Y P(i,b) = S T(i)- (1)

1<i<h i1

The idea is to find a lower bound for this last sum. More precisely, we find

a bound for
> Ti)-
1<j<log b

Fix a j, 1 < j <logb. Now every real number in the open interval
I=((z1,22,...,2k,7), (T1,22,... , 28,7+ 1)) (8)

has a Pierce series expansion that begins (z1,z2,...,2k,J,...) provided
zr < j. (Actually, the endpoints of the open interval given in (8) should
be reversed if k is even.)

There are b|I| + O(1) rationals with denominator b contained in the

. . . . 1
interval I, and the interval I is of size oG
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Now let us sum b|I| + O(1) over all possible values for zq,2z9,...

this gives us an estimate for Tj(j). We find

To(d) = Z ((HaeA DG T O(”)

AC{1,2,.

b 1 i

AC{1,2,...,j—1}

Now, using the observation that

) ! a=(1+%)(1+%)--~(1+j—£7)=j’

AC{1,2,...,j—1} Hae"‘
we get

Ty(j) = 77 + 0@ 7).

Now consider 37, <, iogs Th(7). We get

1
X TW={b > 7] +o0
1<j<log b 1§j<logb]

= bloglog b+ O(b).

Thus, using (7), we see

BQ() > D Ti(j) = Q(bloglogh),

1<i<logh
and so Q(b) = Q(loglogd). O

4. Worst cases: numerical results.

y Lk

In this section we report on some computations done to find the least b

such that P(a,b) = n and E(a,b) = n, for some small values of n.

The following table gives, for each n < 42, the least b such that there
exists an a, 1 < a < b, with P(a,b) = n. If there is more than one such
a for a particular b, the smallest such a is listed. This table extends one

given in Mays [6].
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n a b n a b

1 1 1 22 2416 3959
2 2 3 23 1925 5387
3 3 5 24 3462 5387
4 4 11 25 2130 5879
5 7 11 26 3749 5879
6 12 19 27 6546 17747
7 22 35 28 11201 17747
8 30 47 29 2159 23399
9 32 53 30 2360 23399
10 61 95 31 5186 23399
11 65 103 32 6071 23399
12 115 179 33 8664 23399
13 161 251 34 14735 23399
14 189 299 35 59745 93596
15 296 503 36 68482 186479
16 470 743 37 117997 186479
17 598 1019 38 175672 278387
18 841 1319 39 268618 442679
19 904 1439 40 135585 493919
20 1856 2939 41 178909 493919
21 2158 3359 42 314752 493919

Table I: Worst Cases for Pierce Expansions

51

[Note added in proof: the following entry extending Table I has recently

been discovered by computer : n = 43, a = 490652, b = 830939.]

The next table reports the results of a similar computation for E(a, b):
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n a b n a b

1 1 1 28 3050 3053
2 2 3 29 3609 3613
3 4 5 30 3611 3613
4 ) 7 31 3612 3613
5 6 7 32 5459 5461
6 12 13 33 5460 5461
7 18 19 34 7976 8011
8 20 23 35 7999 8011
9 30 31 36 8005 8011
10 46 47 37 8008 8011
11 60 61 38 10076 10081
12 62 71 39 16379 16381
13 72 73 40 16380 16381
14 89 121 41 16379 16383
15 105 121 42 16381 16383
16 113 121 43 16382 16383
17 117 121 44 32765 32766
18 119 121 45 65513 65521
19 120 121 46 65517 65521
20 241 242 47 65519 65521
21 483 484 48 65520 65521
22 633 661 49 131041 131042
23 647 661 50 262083 262084
24 654 661 51 516985 517001
25 1074 1093 52 516993 517001
26 1752 1753 53 516997 517001
27 1806 1807 54 516999 517001

Table II: Worst Cases for Engel Expansions
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