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New bounds on the Length of Finite
Pierce and Engel Series.

par P. ERDÖS AND J.O. SHALLIT*

ABSTRACT. Every real number x, 0  x  1, has an essentially unique
expansion as a Pierce series:

1 1 1x = + - ...
x1 x1x2 x1 x2x3

where the xi form a strictly increasing sequence of positive integers. The
expansion terminates if and only if x is rational. Similarly, every positive
real number y has a unique expansion as an Engel series:

1 1 1
y = + + + ...

y1 y1 y2 y1 y2 y3

where the yi form a (not necessarily strictly) increasing sequence of positive
integers. If the expansion is infinite, we require that the sequence yi be not
eventually constant. Again, such an expansion terminates if and only if y
is rational. In this paper we obtain some new upper and lower bounds on

the lengths of these series on rational inputs a/b. In the case of the Engel
series, this answers an open question of Erdös, Rényi, and Szüsz. However,
our upper and lower bounds are widely separated.

1. Introduction.

Let a, b be integers with 1  a  b, and define

Since a,+,  ai, eventually we must have an+1 = 0. Put P(a, b) = n.
We ask: how big can P(a, b) be as a function of a and b?

This question seems to be much harder than it first appears. Shallit [11]
proved that P(a, b)  2~; also see Mays [6].
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In this paper we improve the bound to P(a,b) = O(b1/:1+f) for every
E &#x3E; 0. (This is still a weak result, as we believe that P(a, b) = O((log b)2).)
We can also ask about the average behavior of P(a, b). We define

In this paper we prove Q(b) = Q(Iog log b). (Again, this result is rather
weak, as it seems likely that Q(b) = S2(log b).)

There is a connection between the algorithm given by (1) and the fol-
lowing expansion, called the Pierce series:

Let 0  x  1 be a real number. Then x may be expressed uniquely in
the form 

, , ,1 1 1

where 1  Xl  X2  X3  .. . We sometimes abbreviate eq. (2) by

The expansion terminates if and only if x is rational. If the expansion does
terminate, with

as the last term, then we also must have zn-i  Xn - 1.

Let P’(a, b) denote the number of terms in the Pierce series for a/b.
Then we have the following

OBSERVATION 1.

This follows easily, as a2 = b mod a, means b = qi ai + a2; hence

Similarly, from b = q2 a2 + we get
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Continuing, we find

In fact, the algorithm (1) has the same relationship with expansions into
Pierce series as the Euclidean algorithm for the greatest common divisor
has with continued fractions.

A similar algorithm is as follows: let 1  a  b and define

Again, we must eventually have an+1 = 0. Put E(a, b) = n . Erd6s,
Renyi, and Szusz [4] asked for a nontrivial estimate for E(a, b). In this

paper we prove the first such estimate, namely E(a, b) = O(b1/3+f) for all
E &#x3E; 0.

The algorithm (3) is related to expansion in Engel series, as follows:
Let y be a positive real number. Then y may be expressed uniquely in

the form 
-1 , ,11 1

where 1  y2  .... If the expansion does not terminate,
then we require that the sequence yi be not eventually constant. Such an
expansion terminates if and only if y is rational.

Let E’(a, b) denote the number of terms in the expansion for a/b. As
above, it is easy to see that E(a, b) = E’(a, b).

For more information about the Pierce series, see [7,8,11,13,14]. The
results in Section 3 were announced previously in [12].

For more information about Engel’s series, see [1,2,3,4,9,13].
2. Upper bounds.

We recall the proof from [11] that P(a, b~  2v’b. We write al = a and
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Note that for 1  ~  n.

Without loss of generality we may assume ql = 1, for if not, then :

Choose k such that qk  v6 and &#x3E; Vb. (If no such k exists, then

Then, as the qi are strictly increasing, we have k  Vb. Now since

b, we have ak+i  Vb. Since the ai are strictly decreasing, we
have n - k  Vb. Hence we find n  2Vb.
We now show how to modify this argument to get an improved bound:

THEOREM 2.

Proof.
We first observe that for any fixed r, we cannot have ai+l = r too

often. For if, say, we have

then b + r is divisible by each of ai2 , ... , ai,. Since the a’s are all

distinct, we have j  d(b + r), where d(rn) is the number of divisors of
n. Now it is well known (see [5]) that d(m) = 0(m) for all E &#x3E; 0, so
j  d(b + r) = O(b’).

Now as above we can assume ql = 1. Choose i such that qi  and

1 &#x3E; b~ ~~~ . (If no such i exists, then qi  b 1/3 for all i and hence n  b~ 1/3 .)
Note that

,"

Let us count the number of j’s, i -f-1  j  n, such that r = aj - 
b1/3. By the argument above, there are such j for each r, 1 ~ r  bi ~‘~ .
Hence there are a total of O(b’ ~‘~+f ~ such j.
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Now let us count the number of j’s, i + I  j  n such that aj - &#x3E;

b . Since b2/3, it is clear that there can be at most such

J.
Hence all together there are j’s in the range i + 1  j  n,

and we conclude

Adding (5) and (6), we conclude P(a, b) = n = O(b~~’~+f~. 0

We now show how to modify this argument to get an upper bound for
E(a, b).
We write a, = a and

Note that qi = 

In what follows, we assume 1  a  b; such a restriction ensures that

Note that akqk  2b for 1  k  n. The ai are strictly decreasing.
In the case of Engel series, the qi form an increasing sequence that is not

necessarily strictly increasing. However, it is not difficult to show that we
cannot have too many consecutive quotients that are the same:

LEMMA 3.

Proof.

By induction on i. The result is clearly true when i = j. Now assume it
true for i; we prove it for i + 1. We have b = and b = qai+l - ai+2 -
Subtracting, we find ai+i - = As ai+l by
induction, we have ai+2, and the result follows. 0
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COROLLARY 4.

Let 1 ~ a  b and q &#x3E; 2. In the Engel series for a/b, there cannot be
more than 1 + log a quotients q. that are equal to q.

We may now apply the same argument used to prove Theorem 2 to get
a similar result for E(a, b): ,

THEOREM 5.

Proof.

Again, we choose i such that qi  b1/3 and b1/3. . (If no such i
exists, then qi  b~ ~‘~ for all i and hence by Corollary 4, n  b1/3(1+10g2 b) . )

Note that i = O(b1/3Iogb), by Corollary 4. Since b~ ~‘~, and the
ai are strictly decreasing, we have 2b 2/3 for i + 1  j  n. Now an
argument similar to that in the proof of Theorem 2 shows that there can
be at most O(b~ ~‘~+~) subscripts j &#x3E; i + 1 such that aj - 2b~ f ‘~ .
Similarly, there can be at most o(b~ ~‘~ ) subscripts j &#x3E; i + 1 such that

2b~ ~~ . We conclude that there are O(b~ ~‘~+f ) subscripts j in
the range i + 1  j  n, and hence n - i = o(b~ ~~+f ).

Adding our estimates for i and n - i, we conclude that E(a, b) = n =
. 0

3. Lower bounds for P(a, b) and Q(b).
In this section we prove some lower bounds for P(a, b) and Q(b).
In [11], it was proved that

infinitely often. Actually, a very simple argument gives a better result:

THEOREM 6.

There exists a constant c &#x3E; 0 such that P(a, b) &#x3E; c log b infinitely often.

Proo f.
Let a = n and b = lcm(1, 2, 3, ... , n) - 1. Then it is easy to see that
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so P(a, b) = n. However,

where ~(x) _ Epk5x logp and we have used an estimate from [10]. This

proves the theorem with c = (1.03883)-l. D

REMARK.

It is trivial to find a similar lower bound for Engel’s series, as E(2" -
1, 2’) = n.

We now prove a result on the average complexity of the algorithm (1).

THEOREM 7.

Q(b) = Q(log log b).

Proof.
Let Tb(j) be the total number of times that j appears as a term in the

Pierce expansions of 1/6, 2/b, ... , (b - 1)lb, 1.

Clearly

The idea is to find a lower bound for this last sum. More precisely, we find
a bound for

Fix a j, 1  j  log b. Now every real number in the open interval

has a Pierce series expansion that begins ~x~ , x2, ... , xk, j, ... ) provided
Xk  j. (Actually, the endpoints of the open interval given in (8) should
be reversed if k is even.)

There are bill + 0(1) rationals with denominator b contained in the
interval I, and the interval I is of size
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Now let us sum blil + 0(1) over all possible values for Xl, X2, ... , Xk;
this gives us an estimate for Tb(j). We find

Now, using the observation that

we get

Now consider We get

Thus, using (7), we see

4. Worst cases: numerical results.

In this section we report on some computations done to find the least b
such that P(a, b) = n and E(a, b) = n, for some small values of n.

The following table gives, for each n  42, the least b such that there
exists an a, I  a  b, with P(a, b) = n. If there is more than one such
a for a particular b, the smallest such a is listed. This table extends one

given in Mays [6].
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Table I: Worst Cases for Pierce Expansions

[Note added in proof: the following entry extending Table I has recently
been discovered by computer : n = 43, a = 490652, b = 830939.]

The next table reports the results of a similar computation for E(a, b):
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Table II: Worst Cases for Engel Expansions
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