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Solutions entières de l’équation Ym = f(X).

par DIMITRIOS POULAKIS

Résumé 2014 Soit K un corps de nombres. Dans ce travail nous calculons
des majorants effectifs pour la taille des solutions en entiers algébriques de
K des équations, Y2 = f(X), où f(X) ~ K[X] a au moins trois racines
d’ordre impair, et Ym = f(X) où m ~ 3 et f(X) ~ K[X] a au moins deux
racines d’ordre premier à m. On améliore ainsi les estimations connues
([2],[9]) pour les solutions de ces équations en entiers algébriques de K.

Abstract 2014 Let K be a number field. In this work we give effective upper
bounds for the size of solutions in algebraic integers of K, of equations
Y2 = f(X), where f(X) ~ K[X] has at least three roots of odd order, and
Ym= f(X) where f(X) ~ K[X] has at least two roots of order prime to m.
We thus improve the known estimations ([2],[9]) for the solutions of these
equations in algebraic integers of K.

1. Introduction.

Soit K un corps de nombres et A son anneau des entiers. On considère
les équations

où f(X~ E K[X] a au moins trois racines d’ordre impair et

où m &#x3E; 3 et f (X ) E K[X] a au moins deux racines d’ordre premier à m.
Baker ([1]), dans le cas où f(X) E Z[X], a calculé explicitement, en

fonction de m et des coefficients de f, un majorant de la taille des solutions
de (I) et (II) en entiers rationnels. Plus tard l’estimation de Baker a été

améliorée par Sprindzuk ([8]). Trelina ([9]) et Brindza ([2]) ont donné des
majorants effectifs pour la taille des solutions de (I) et (II) en S-entiers de
K.
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Dans ce travail nous calculons un majorant effectif pour la taille des
solutions de (I) et (II) en entiers algébriques de K. Dans ce cas notre résultat
est meilleur que ceux de Trelina, Brindza et Baker. En revanche dans le
cas où K = Q, le résultat de Sprindzuk pour (I) est meilleur que le nôtre.

Soit l’ensemble canonique des valeurs absolues de K ([5)] chapitre
II §1). Soient x = (x~, ..., x") un point de l’espace projectif et

v E h4(1) ; on note

La quantité

où d" sont les degrés locaux, est appelée "hauteur" de ; (relativement à

K) et la quantité

où d est le degré de K, "hauteur absolue" de x. Si f E on définit

~ f ~", HT«f), H(f) en termes du vecteur des coefficients de f . Si a E li
on note HT«a) = a) et H(a) = H(l, a). Aussi pour z réel positif
posons log* z = max(1 , log z). On notera DT, le discriminant de K. Nous
montrons les résultats suivants :

THÉORÈME 1. Soit f(X) un polynôme de K[X] ayant au moins trois
racines d’ordre impair. Alors si (x, y) E A x A est une solution de l’équation
y2 = f(X) on a

où

et

THÉORÈME 2. Soit m un enti.er &#x3E; 3 f (X ) un polynôme de Ii[X] ayant au
moins deux racines d’ordre premier à m. Alors si (x, y) E A x A est une
solution de l’équation Y"’~ = f(X) on a
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où

et

1 1 1 1

La méthode que nous utilisons est une généralisation de la méthode
employée par Schmidt pour démontrer le théorème 2 de [6].
On va utiliser les notations habituelles suivantes. Soit k un corps de

nombres. On note Dk son discriminant et Rk son régulateur. Si a E ~
on note Nk (a) sa norme et I n I la plus grande des valeurs absolues de ses
conjugués. Aussi quand I est un idéal entier de k on note Nk(I) sa norme.

Notre outil principal sera la proposition suivante :

PROPOSITION. Soient M un corps de nombres de degré m et m2, m~

des entiers algébriques non nuls de M tels que :

Alors chaque solution (Ul,U2,U:¡), où Ul,U2,U3 sont des unités de M de
l’équation :

sa tisfai t :

On peut consulter [3] pour une preuve de ce résultat.

2. Démonstration du Théorème 1

Soient L le corps de décomposition du polynôme f sur K et A son degré ;
alors on a

.

Par hypothèse trois au moins des t J, disons sont impairs.
Soit 6 le plus petit entier positif tel que les nombres 62 an, ..., 62en

soient entiers dans L. On multiplie les deux membres de l’équation y2 =

f ~X ~ par 62(n+l) et on obtient l’équation :
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On est ramené ainsi au cas où ao , ei , ..., en sont des entiers de K.

Soit x,y une solution de Y’ = f (X ~ en entiers de K avec y # 0. On peut
écrire 

-n _ _

où Ij, Jj sont des idéaux entiers de L et Ij est sans facteur carré. Soit P
un idéal premier divisant 1,. Alors P divise (y~2 avec un exposant impair ;
il en résulte que P divise

Donc ou bien PI(an) ou bien il existe j # 1 tel que ej). Dans ce
dernier cas ej ). Par conséquent on conclut que

De même on obtient que

Donc

On sait, d’après [5] chap. V §4, qu’il existe un idéal entier Ji dans la classe
de Jj tel que sa norme est NT; (J~ ~  Soit un idéal entier dans

la classe inverse de celle de J ; alors = (Zj), où ej est un entier de L.i i
On a donc 

-

où i7j est un entier de L tel que (1Jj) = Ij J~2.
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Notons 4

Soit M = ~2’ ~,~) ; son degré est m  8À et on note D A1 son
discriminant. Alors la formule de transitivité des discriminants donne

LEMME 1. Soient k un corps de nombres de degré v et a un entier algé-
brique de k. Alors il existe un entier b et une unité E de k tels que

et

Démonstration. Il existe un ensemble d’unités fondamentales de k 6~,..., for

tel que

où ( est une racine de l’unité et -ii e Z i = 1, ..., r ; d’où

Soient Ai = [q, /v] 1 = 1, 2, ..., v ; considérons l’unité u de K avec
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Posons b = au. Alors

où J . On déduit donc de (*)

d’où le lemme 1.

sont des entiers de M. On a

. Le lemme précédent entraîne alors que pour toute permutation cyclique
(ij,h) de (1,2,3) on peut écrire

où sont des unités de M et bh, gh des entiers de M avec

Le triplet f2, 5j) est une solution en unités de l’équation

La proposition citée à l’introduction entraîne donc

où

La même inégalité est valable pour les quantités H(E2, E,~, b~ ) et H (f3, 61, 62).
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LEMME 2. Soien t k un corps de nombres de degré v et a, fl’2) ...,
/?p)72) ’")7.7 des éléments de k a ve c cx ~ 0 . Alors on a

Démonstration. Pour tout x et x e 0 on a la formule du produit

sont les degrés locaux ([5] page 99).
Il en résulte que si XO, Xl, ..., zn E 1~ et xn e 0 on a

Hk (xo, xl) ..., = Xl IXO, ..., Xn/ XO). On peut donc supposer que
a = 1. Alors pour tout v E M(k) on a

d’où le lemme 2.

Le lemme 2 et la majoration pour y, bh) entraînent

En particulier on a

Des majorations (2) et (3) on déduit

Pour tout x E M notons (t = 1, ..., m) ses conjugués. Alors (4) entraîne

Il en résulte
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, on déduit de même que

On a

Alors (5) et (6) entraînent

On sait d’après un résultat de Siegel ([7]), que

où

Il en résulte

où

Considérons le polynôme ~ et notons D(g) son dis-

criminant. Alors on a

(la dernière inégalité résulte de [4] chap. 3 proposition 2.4).
On a aussi
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Démonstration.

discriminants et [5] III, prop. 13 donnent :

Alors le lemme 3, les majorations (8), (9), (10) et l’inégalité n!  
entraînent le résultat.

3. Démonstration du théorème 2.

Soient L le corps de décomposition du polynôme f et a son degré ; on a

Par hypothèse deux au moins des tj, soient sont premiers à m.
Comme dans la démonstration du théorème 1 on se ramène au cas où

ao,6i,...~ sont des entiers de L.

Soit x, y une solution de Y~’ = f (X ~ en entiers de K. On peut écrire
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où 7j, Jj sont des idéaux entiers de L et h n’est divisible par aucune puis-
sance m-ième d’un idéal premier.

Soit P un idéal premier divisant h . Alors P divise (~ - avec un

exposant  m. Comme (t1, m) = 1 et que

il en résulte que P divise 1

Donc ou bien PI(ao) ou bien il existe i ~ 1 tel que ei). Dans ce
dernier cas on a PI (ei - ei ). On a donc que

De même on a

Alors

Comme dans la démonstration du théorème 1, il existe des entiers ~~ ( j =
1, 2) tels que

et

Soit M = "~/~2~ où ( est une racine primitive m-ième de l’unitê ;
son degré est p  est la fonction d’Euler.

LEMME 4. On a

Démonstration. Soient J
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Alors

On obtient donc

d’où le résultat.

Posons o-i = ~~ (i = 1, 2). On élimine x et on a

Alors

Comme m &#x3E; 3, il existe des entiers de K 61 ,62,63 avec 5j[e2 - ei y ( j =
1, 2, 3) et des unités e3 tels que

D’après le lemme 1 du §2 on peut supposer que

On élimine ai et a2 entre les trois équations (2) en multipliant la j-ième
équation par (k - (1 avec ~j, k,1} _ {0, 1, 2} :

Par conséquent la proposition citée à la fin de l’introduction implique :

où
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Il résulte donc de (3) et (4) que

D’autre part on déduit de (2) que

Alors on a

Cela entraîne

et on a

Donc

d’où

La majoration

la majoration (9) du §2 et le lemme 4 entraînent

où
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On en déduit

où

Alors (8) et le lemme 3 entraînent la majoration annoncée dans le théorème
2.
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