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Solutions entiéres de I’équation Y™ = f(X).

par DimiTrios POULAKIS

Résumé — Soit K un corps de nombres. Dans ce travail nous calculons
des majorants effectifs pour la taille des solutions en entiers algébriques de
K des équations, Y2 = f(X), ot f(X) € K[X] a au moins trois racines
d’ordre impair, et Y™ = f(X) o m > 3 et f(X) € K[X] a au moins deux
racines d'ordre premier &4 m. On améliore ainsi les estimations connues
([2,[9]) pour les solutions de ces équations en entiers algébriques de K.

Abstract — Let K be a number field. In this work we give effective upper
bounds for the size of solutions in algebraic integers of K, of equations
Y2 = f(X), where f(X) € K[X] has at least three roots of odd order, and
Y™ = f(X) where f(X) € K[X] has at least two roots of order prime to m.
We thus improve the known estimations ([2],[9]) for the solutions of these
equations in algebraic integers of K.

1. Introduction.

Soit K un corps de nombres et A son anneau des entiers. On considére
les équations

) Y? = f(X)
ou f(X) € K[X] a au moins trois racines d’ordre impair et
(1) Y™ = f(X)

oum > 3 et f(X) € K[X] a au moins deux racines d’ordre premier & m.

Baker ([1]), dans le cas ou f(X) € Z[X], a calculé explicitement, en
fonction de m et des coefficients de f, un majorant de la taille des solutions
de (I) et (II) en entiers rationnels. Plus tard l’estimation de Baker a été
améliorée par Sprindzuk ([8]). Trelina ([9]) et Brindza ([2]) ont donné des

majorants effectifs pour la taille des solutions de (I) et (II) en S-entiers de
K.
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Dans ce travail nous calculons un majorant effectif pour la taille des
solutions de (I) et (II) en entiers algébriques de K. Dans ce cas notre résultat
est meilleur que ceux de Trelina, Brindza et Baker. En revanche dans le
cas ou K = Q, le résultat de Sprindzuk pour (I) est meilleur que le nétre.

Soit Mi(k) ’ensemble canonique des valeurs absolues de K ([5)] chapitre
IT §1). Soient z = (zo,...,%,) un point de ’espace projectif P*(K) et

v € M(K) ; on note
|£|" = max{IzOIm ceey Ixnlv}-

La quantité

dvr
HK(I) = H Iﬁlv
vEM(K)
ol d, sont les degrés locaux, est appelée “hauteur” de z (relativement a

K) et la quantité
H(z) = Hy(z)'/*

ol d est le degré de K, “hauteur absolue” de z. Si f € K[X] on définit

|flo, Hi(f), H(f) en termes du vecteur des coefficients de f. Sia € K
on note Hy(a) = Hy(1,a) et H(a) = H(1,a). Aussi pour z réel positif
posons log* z = max(1,logz). On notera Dx le discriminant de K. Nous
montrons les résultats suivants :

THEOREME 1. Soit f(X) un polynéme de K[X] ayant au moins trois
racines d’ordre impair. Alors si (z,y) € Ax A est une solution de I’équation
Y?=f(X)ona

max{H(z), Hx(y)} < exp{c(d,n)W" Wg"}

Wi = DI2H i (f)" | W, = (log* | Dxc|)* (log* Hrc(f))*
et

C(d, n) < 2300427:2"‘

THEOREME 2. Soit m un entier > 3 f(X) un polynéme de K[X] ayant au
moins deux racines d’ordre premier & m. Alors si (z,y) € A x A est une
solution de I’équation Y™ = f(X) on a

max{Hr(z), Hx(y)} < exp{c(d,n, m)W?'"'“"’n 2dm3nn}
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Wy = |Di|Hi(f)*™, Wy = log* |Dx|(log* Hx (f))?

et
ﬁd2n2n

c(d,n,m) < 2°'™

La méthode que nous utilisons est une généralisation de la méthode
employée par Schmidt pour démontrer le théoréme 2 de [6].

On va utiliser les notations habituelles suivantes. Soit ¥ un corps de
nombres. On note Dj son discriminant et Rj son régulateur. Si a € k
on note Nj(a) sa norme et [alla plus grande des valeurs absolues de ses
conjugués. Aussi quand I est un idéal entier de k on note Ni(I) sa norme.

Notre outil principal sera la proposition suivante :

PROPOSITION. Soient M un corps de nombres de degré m et my, mq, my
des entiers algébriques non nuls de M tels que :

maxq my || ma||ma]) < A.

Alors chaque solution (u1,us2,us), ol uy,uz,uy sont des unités de M de
I’équation :

miX1+meXe+myXs =0

satisfait :
max{(ar L [a7 L[5 1} < exp{(16(m-+2)m) ™14 (Ras log* Rar)?(Rar-+log A)).

On peut consulter [3] pour une preuve de ce résultat.

2. Démonstration du Théoréme 1

Soient L le corps de décomposition du polynéme f sur K et A son degré ;
alors on a

F(X) = a0 [T(X —e5).
e
Par hypothése trois au moins des t;, disons t;,%3,%3, sont impairs.

Soit & le plus petit entier positif tel que les nombres 62ag, 62e1, ..., 6%en
soient entiers dans L. On multiplie les deux membres de ’équation Y? =
f(X) par 62(»*") et on obtient I’équation :

V2 = f’(U) = 0052Un + 0154[]"_1 + ...+ an62("+])
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ou U=~62XetV =6""Y. Aussion a
Hic(f') < Hie(£)8% < Hie(F)* ™+,

On est ramené ainsi au cas ou ay, €1, ..., €, sont des entiers de K.

Soit x,y une solution de Y2 = f(X) en entiers de K avec y # 0. On peut
écrire
(z—e))=1LJ; (7=1,2,3)
ol I;,J; sont des idéaux entiers de L et I; est sans facteur carré. Soit P

un idéal premier divisant I;. Alors P divise (y)? avec un exposant impair ;
il en résulte que P divise

s

(a0 [J (= - €;)").

=2

Donc ou bien P|(ag) ou bien il existe j # 1 tel que P|(z — e;). Dans ce
dernier cas P|(eq — e;). Par conséquent on conclut que

Lif(ao JT (er—e5))-

1<j<s

De méme on obtient que

I (a0 [J(er —j)) (r=2,3).

J#r
Donc
3 s
LhoL|(@ ] (ei—e)? ] I] (ei—ei)-
1<i<;<3 i=1j=1+1

On sait, d’apres [5] chap. V §4, qu’il existe un idéal entier J} dans la classe
de J; tel que sa norme est Ny,(J}) < |D,|'/2. Soit J;-' un idéal entier dans

la classe inverse de celle de JJ'- ; alors JjJ; = (§;), ou &; est un entier de L.
On a donc

T—¢€; =T’]€3 (]= 112)3)

ou 7; est un entier de L tel que (7;) = IjJ;".
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Notons A=aj ] (ei—€;)?[I ] (ei—ej);ona
1<i<i<3 i=1 j=it1

INL(mmem)| < [NL(A)] |Dr]*.

Soit M = L(\/7,,/M,>/1;) ; son degré est m < 8X et on note Dy son
discriminant. Alors la formule de transitivité des discriminants donne

|Dar| < 42D N1(m)* Nr.(n2)* Ni.(ma)*

1
(1) < 4DON; (A

LEMME 1. Soient k un corps de nombres de degré v et a un entier algé-
brique de k. Alors il existe un entier b et une unité e de k tels que

a = be

et
[b] < [Nk(a)]'/ e )

ot ¢;(v) = v(6v*/logv)”.

Démonstration. Il existe un ensemble d’unités fondamentales de k €, ..., €,
tel que

(*) H max(log[€; ], 1) < c¢(v) Rk

ot ¢(v) = (6v7/logv)” ([3]).
Soient al® i = 1,...,v les conjugués de a. Le nombre (a?)"/N(a) est
une unité de k. Alors

(@) /N (a) = (7). (D)
ou ( est une racine de 'unitéet v, €Z i =1,...,r; d’ou
log(|a®|/|N(a)'/*) = 3 (7:/v) log €.
i=1
Soient A; = [yi/v] i=1,2,...,v ; considérons 'unité u de K avec

u® = (D)™ (D).
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Posons b = au. Alors

log(I6D)/IN(a)|"*) < > log e

Jj=1
<rk

ou E = max;<j<-{log[€;]}. On déduit donc de (*)

6] < |N(a)|]'/¥e™ MR (i =1,2,...,v)

d’ou le lemme 1.
Les nombres o; = \/n:€; (i = 1,2, 3) sont des entiers de M. On a

ei—ej=0; -0l =(0;+0:)(0;—03) (i#J)

et
[Nam(oj £0:)| < [Nar(e: —e;)| < [Nmr(A)]-

- Le lemme précédent entraine alors que pour toute permutation cyclique
(i,j,h) de (1,2,3) on peut écrire

Uj+0i:bh€h et O'j—-a','=gh6h
ou €5, 6y sont des unités de M et by, g5 des entiers de M avec

|Nr,.(A)|'/’\e"‘ (M)Rm
|54 1Tgn ]

(h=1,2,3).

(2) max{] b | [ga ]} <

Le triplet (€1, €2, 63) est une solution en unités de 1’équation
b1 X1 — b2 X2 — g3 X3 =0.
La proposition citée a 'introduction entraine donc
H(er,€2,63) < exp{ca(N)R}y(log* Rar)? log* | N1(A)}

ol
ea()) < A280A+3091520A+165

La méme inégalité est valable pour les quantités H (e, €3, 61) et H(es, €1, 62).
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LEMME 2. Soient k un corps de nombres de degré v et «, 33, ...,
Bps 2y --y7q des éléments de k avec a # 0. Alors on a

H(CY, ﬁ?) '“7:BIH72) "'17q) S H(aaﬁ2) L) ﬁp)H(a{’Y?, --~,7q)-

Démonstration. Pour tout £ € k et £ # 0 on a la formule du produit

II lzl =1

vEM(k)

ou v, sont les degrés locaux ([5] page 99).
Il en résulte que si zg,2y,...,2, Ek et zg #0on a

Hi(zo,z1,...,2n) = Hi(1,21 /20, ...,2,/20). On peut donc supposer que
a = 1. Alors pour tout v € M(k) on a

max{1, |G|y, ..., IIBva, [71lvs e '7q|v}
<max{L, |5, ..., '/BI’I"} max{1, |71 |u, .., I'quv}

d’ott le lemme 2.

Le lemme 2 et la majoration pour H(e;,€;,65) entrainent
H(er,€2,€3,61,62,03) < exp{302(/\)R"fw(log* RM)2 log* IN.(A)]}.
En particulier on a
(3) H(ey,61) < exp{3ca(A)R}s(log* Rar)* log* N7.(A)|}.
Des majorations (2) et (3) on déduit

Har(1,bve0/9161) < Har(1,01/91)Har(1, 61 /63)

(4) < exp{9c2(A) R}, (log* Rar)? log* |N1.(A)]}).

~

Pour tout z € M notons z(¥ (¢t = 1,...,m) ses conjugués. Alors (4) entraine
|(b1e)P1/1(9161)P| < exp{es(A)Ty log* Ty} = C.

Il en résulte

[(by 61)(')|2 < Cl(brergn 51)(1)|

(5)
< Clel = ).
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Comme Hpr(1,b1€1/9161) = Har(1, g161/b1€1), on déduit de méme que
(6) (9180 < Cle§” — €f"].

On a .
z—ey3=0° = 2(9151 + bi€y)

Alors (5) et (6) entrainent
(7) (= — ea) ] < Clef” — e,
On sait d’aprés un résultat de Siegel ([7]), que

R < cy(m)|Dy['/*(log* [ Dar )™

ou
ca(m) = 3m?[e/(m — 1) .
Il en résulte

(8) |(xz—e3)?|< legf) _ egt)lx
x exp{cs(A)DI"N1.(A)%(log* |Dr.|log* |N1.(A))* 1}

ol
ca(X) < AI00AH40 9175024210
Considérons le polynéme g(X) = H(X — e;) et notons D(g) son dis-
=1
criminant. Alors on a

Ni(A) < INL(D(g9))] £ (sts*)*H(9)™*

(9) S 4n2,\(n!nn)4\HL(f)2n——2'

(la derniére inégalité résulte de [4] chap. 3 proposition 2.4).

On a aussi

(10) e, 18] < nH L (f).



Equation Y™ = f(X). 195

LEMME 3. On a D;, < (s!s")‘\"""4"2'\D';‘!,H;((g)ﬂ"')"‘!.

Démonstration.

Posons L; = K(ey,...,e;) et g;(X) = (X —e;)...(X —es) (1 =1,2,...,5) ;
alors Ly_y = L, = L et g(X) = ¢1(X). La formule de transitivité des
discriminants et [5] III, prop. 13 donnent :

|Dr.,| L |Dk|*|INk(Dr, yxc)l < |Dic|*INe(D(9)),

|Dr,| < |Dr, "' INT, (Dryyr ) < 1Dy 1P~V NT, (D(g2))],

1Dr,_| £ D1, o PINE,_o(Dr, a1, o)l S 1D o INT, o (D(g4-2))|
IDr.| < |Dr,_,*INT,_,(Diyr,_,)l € 1D1. o P INL,_,(D(ga-1))I-

On a donc

|Dr| < |Dic|" [ Nre(D(9))| =" | N1, (D(g2))| "~ 2"...

N1, _o(D(9s=2))PIN T, _,(D(gs-1))l

< (s!s"))‘""! |DK|"!H}((g)g("_n("_])!H[,, (92)2(.4—2)(.1—2)!“.
wHr,_(94—2)*Hr,_,(9:-1)*.

Comme Hr,;(gj41) < 4""\H,"(g)?7:—37, on obtient

1442 s! s—1)s!
IDTsl S (S!S")'\""‘l' ,\lDKI 'H]((g)2( 1) '.
Alors le lemme 3, les majorations (8), (9), (10) et I'inégalité n! < e(Z)™
entrainent le résultat.
3. Démonstration du théoréme 2.
Soient L le corps de décomposition du polynome f et A son degré ; on a
F(X)=ao [T(X —e;)".
j=1

Par hypothése deux au moins des t;, soient t;,%, sont premiers & m.
Comme dans la démonstration du théoréeme 1 on se raméne au cas ou
ag, ey, ..., e, sont des entiers de L.

Soit z,y une solution de Y™ = f(X) en entiers de K. On peut écrire

(:c—-ej) = IJJJm (] = 1,2)



196 D. POULAKIS

ou I;,J; sont des idéaux entiers de L et I; n’est divisible par aucune puis-
sance m-iéme d’un idéal premier.

Soit P un idéal premier divisant Iy. Alors P divise (z — e1) avec un
exposant < m. Comme (t;,m) =1 et que

y™ = (z—er)"ap [[(z — €)',
i#1
il en résulte que P divise (ag [](z — e;)").
i#1
Donc ou bien P|(ag) ou bien il existe ¢ # 1 tel que P|(z — e;). Dans ce
dernier cas on a P|(e; —ey). On a donc que

I] ((10 H(81 et ei))"" .
1=2

De méme on a

12 (ao H(62 - ei))"" .

i#2
Alors
L L|(A)
ot A = (a3(er — e2)? H(Bl —ei) H(e2 — €)™
=3 =1

Comme dans la démonstration du théoréme 1, il existe des entiers ;, £; (j =
1,2) tels que
z-e; =0l (i=1,2)
et
(1) Ni(mme) < Ni.(A)D7.

Soit M = L({, ©/m, ©/nz2), ou ( est une racine primitive m-iéme de I’unité ;
son degré est u < Ap(m)m? ou ¢ est la fonction d’Euler.

LEMME 4. On a

Dy < mll)\mzq:(m.)D?zsﬁ(m)(?m—UNL(A)(m—1)m,2t;:(m)‘

Démonstration. Soient Ly = L({) et L2 = L1( ©/m7). On a

D’-I S D?(m)INT(DI'1/])I S Df(m)mlgc(m,).
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Alors
DT-’: < D'r:', Iqu (Df.-a/fn )l < D;'n, |NT.1 (Nf.z/h (""I;"_I ))I
< 1)1,71.1 m,\m(,a(m)NLz(Th )m—l < D?%‘(m)m?)\m@(m)N’A(n] )(m—l)mq:(m).

On obtient donc
Dy < DT,IN7,(Dagyr,)l < D'rf';m'\mzv(m)Nr.,(m)m‘]
1)').2 m m m m— m-e(m
< DF M mAmi e N ()N ()] D em)

d’ou le résultat.

Posons o; = §; g/7, (i = 1,2). On élimine x et on a
oy — 0y = ey —e.

Alors
(0’1 - 0’2)(0’] - CUQ)H.(OH —Cm_10’2) =€ — €.

Comme m > 3, il existe des entiers de K 6y, 82,65 avec §jles — ey (§ =
1,2,3) et des unités ey, ez, e3 tels que

(2) o1 — oy =€;6; (j=0,1,2).
D’aprés le lemme 1 du §2 on peut supposer que

(3) [8;1< |Nas(8;)]"/* exp(er (1) Rar)-

On élimine o4 et o2 entre les trois équations (2) en multipliant la j-ieme
équation par (¥ — ¢! avec {j,k,1} = {0,1,2} :

€161(C2 = Q) + €262(1 = ¢®) + €363(¢ = 1) = 0.
On a:

max(| &(¢s — C2) b1 62(¢1 — Ga) b 83 (G2 = (1) ) < 2exp{er (m)Rur} Nas(A).

Par conséquent la proposition citée a la fin de I'introduction implique :
(4) max{lerle e} < exp{es(A, m)R}, (log* Rar)® log™ [N (A)l}

ou
cs(A, m) < (8Am?)35Am I+,
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Il résulte donc de (3) et (4) que
(5) H(e161,€262) < exp{3mes(X, m)RY,(log* Rar)?log* [Ny (A)]} =C
D’autre part on déduit de (2) que

€161 — €20, _ €161 — €202

C-—]_ e o1 = C-—l

09 =

Alors on a

€161¢ — €269
0y = ———09

€1 5] - 6262

Cela entraine

om H(€151C €262 ) =es—e

€1 61 - 6262
et on a Cers 5
€66, — ¢
H(of") < H(ez — &) H(®(——22)),
€1 61 - 6252
ou #(X) = ml:[ (X = ¢?). Alors (5) entraine
J—
C1€151 €269 16161 — €262 1,
1°171 — 22\ <« 12171~ "272ym
H@EI= )  (m 4 L=
<2™(m+1)C™.
Donc
H(.’E) S 2H(l‘ - CQ)H(CQ)
< 2™V H(eq — e1)H(ez)(m +1)C™
d’ou
©) FL(X) < 020N m 1 1O (£,

La majoration
1 —
Rar < ca(p)|Dar]* (log™ | D))"

la majoration (9) du §2 et le lemme 4 entrainent
(1) R < cs(A,m,n)|Dif™ Hi(f)™ = (log* | Dy |log* Hr.(H))*™"~".

ou
a 24 4
cﬁ(A,m,n) < /\Am +1m.'ln, m An.'ln,m A.
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On en déduit

(8)

Hi(X) < exp{c7(A,m,n)|Dy, |3m4Hr.(f)3m(""1)(log* |D; log* H;,(f))“’\""ﬁ}.

ou

4.3 3 2 4 4 2.,
CT(A,m,n) < 2‘20Am n A45)‘m m?OAn m nlﬁm An n!

Alors (8) et le lemme 3 entrainent la majoration annoncée dans le théoréme

2.

(1]
(2]
(3]

(4]
(8]
(6]
(7]

(8]
(9]
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