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Abstract: Targets of inference that establish causality are phrased in terms of counterfactual responses to inter-
ventions. These potential outcomes operationalize cause effect relationships by means of comparisons of cases and
controls in hypothetical randomized controlled experiments. In many applied settings, data on such experiments is not
directly available, necessitating assumptions linking the counterfactual target of inference with the factual observed
data distribution. This link is provided by causal models. Originally defined on potential outcomes directly (Rubin,
1976), causal models have been extended to longitudinal settings (Robins, 1986), and reformulated as graphical mod-
els (Spirtes et al., 2001; Pearl, 2009). In settings where common causes of all observed variables are themselves
observed, many causal inference targets are identified via variations of the expression referred to in the literature as
the g-formula (Robins, 1986), the manipulated distribution (Spirtes et al., 2001), or the truncated factorization (Pearl,
2009).

In settings where hidden variables are present, identification results become considerably more complicated. In
this manuscript, we review identification theory in causal models with hidden variables for common targets that arise
in causal inference applications, including causal effects, direct, indirect, and path-specific effects, and outcomes of
dynamic treatment regimes. We will describe a simple formulation of this theory (Tian and Pearl, 2002; Shpitser and
Pearl, 2006b,a; Tian, 2008; Shpitser, 2013) in terms of causal graphical models, and the fixing operator, a statistical
analogue of the intervention operation (Richardson et al., 2017).
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1. Introduction

In causal inference, the relationship between causes (termed exposures or treatments) and effects
(termed outcomes) is quantified via responses of outcomes to different hypothetical assignments
of values to causes. These responses are called potential outcomes, and were first defined in the
context of analysis of experimental data in (Neyman, 1923). Randomized treatment assignment
in trials of the kind considered by Neyman implies variation in outcomes in response to changes
in treatment assignments, detected by standard statistical inference methods, could be used to
draw valid causal inferences.

In datasets where treatment assignment is not randomized, causal inference is not always pos-
sible due to spurious associations between treatments and outcomes introduced by their unob-
served common causes. Nevertheless, certain assumptions, given by causal models, allow a link
to be made between data that is actually observed, and causal parameters involving outcomes that
would have occurred under hypothetical treatment assignments. An early example of such a link
via the conditionally ignorable model and the stable unit treatment value assumption (SUTVA)
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is found in (Rubin, 1976). More general models which allow identification of causal parameters
in longitudinal observational data via the g-computation algorithm formula (g-formula) were de-
veloped in (Robins, 1986). Causal models in general settings were reconceptualized in terms of
graphical models by Pearl (2009) and Spirtes et al. (2001), with early versions for the case of lin-
ear causal relationships given in (Wright, 1921; Haavelmo, 1943). Graphical models were used
to derive algorithms which express causal parameters of interest as functions of observed data,
and which generalize g-computation (Tian and Pearl, 2002; Shpitser and Pearl, 2006b,a). These
algorithms have also been extended to mediation analysis problems, where effects along causal
pathways are of interest (Shpitser, 2013; Shpitser and Tchetgen Tchetgen, 2016), and problems,
such as those encountered in precision medicine, where responses to treatments are assigned by
a policy (Tian, 2008).

In this paper, we review modern non-parametric identification theory for parameters of in-
terest in causal models represented by directed acyclic graphs (DAGs), possibly with hidden
variables. We describe how functionals of the observed data corresponding to causal parameters
identified under a fully observed DAG model have a close relationship to a truncated version
of the Markov factorization associated with DAGs. Similarly, we describe how not every causal
parameter is identified if hidden variables are present, and that causal parameters that are identi-
fied under a hidden variable DAG model have a close relationship to a truncated version of the
nested Markov factorization of the observed marginal distribution, associated with a mixed graph
representing that hidden variable DAG (Richardson et al., 2017). We reformulate existing iden-
tification theory in terms of this factorization, phrased in terms of mixed graphs, kernels (which
generalize conditional densities), and a fixing operation which can be viewed as a statistical ana-
logue of interventions, and which generalizes marginalization, conditioning, and applications of
the g-formula .

2. Preliminaries

We will associate random variables with vertices in graphs. We will denote both a single vertex
and a single corresponding random variable as an uppercase Roman letter, e.g. A. Sets of vertices
(and corresponding random variables) will be denoted by upper case vectors, e.g.~A. For a random
variable V , we denote the state space of V as XV . For example if V is binary, then XV = {0,1}. We
denote elements of a set XA (values of A) by lowercase Roman letters: a ∈ XA. The state space
of a set ~V of random variables is simply the Cartesian product of the individual state spaces:
X~V = ×V∈~V (XV ). Sets of values corresponding to sets of random variables will be denoted by
lowercase vectors, e.g.~a ∈X~A. Sometimes we will denote a restriction of a set of values by a set
subscript. That is if~v is a set of values of ~V , and ~A⊆~V , then~v~A is a restriction of~v to values in
~A.

2.1. The Intervention Operation

Just like statistical models are sets of joint distributions representing uncertainty about an ob-
servable situation, causal models are sets of joint distributions representing uncertainty about a
counterfactual situation. Counterfactual situations are represented by means of an intervention
operation (Pearl, 2009), and hypothetical responses to this operation (Neyman, 1923).
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For a subset ~A of random variables ~V , and a value assignment ~a to ~A, an intervention is a
forced assignment of ~A to an element of X~A. The intervention operation which maps ~A to ~a ∈
X~A was denoted by do(~a) by Pearl (2009). The result of the intervention operation do(~a) is a
counterfactual world “minimally altered” from the factual world such that variables in ~A have
values~a. If the factual world is represented by a set of factual random variables~V , and their joint
distribution p(~V ), the counterfactual world is represented by a set of potential outcome random
variables {V (~a) | V ∈ ~V \~A}, and their joint distribution written as p(~V \~A | do(~a)). In general,
the intervention operation do(~a) does not correspond to conditioning on the event ~A = ~a. To
define potential outcomes, and the notion of “minimal alteration” formally, we first introduce
graphs, graphical models, and causal models.

2.2. Acyclic Directed Graphs

We will define causal models using directed graphs. A directed graph only contains directed
edges (→). We will denote graphs by capital calligraphy letters G , and when necessary will
explicitly add their vertex sets as part of the notation: G (~V ). A directed graph may contain at
most one edge between two vertices.

We denote edges as ordered pairs of distinct vertices subscripted by the type of edge. For
example (AB)→ is a directed edge from A to B. We omit the subscript when the edge type is not
relevant. A path is a sequence of edges of the form 〈(V1V2),(V2V3), . . . ,(Vk−2Vk−1),(Vk−1Vk)〉,
where V1 6= Vk. Edges in a path may only occur once, and vertices may appear at most twice as
elements of edges that are adjacent on the path. We will denote paths by indexed Greek letters,
e.g. πi, and sets of paths by Greek letters, e.g. π .

A directed path from V1 to Vk has the form 〈(V1V2)→,(V2V3)→, . . . ,(Vk−2Vk−1)→,(Vk−1Vk)→〉.
A directed graph G has a directed cycle if it contains a path of the form
〈(V1V2)→,(V2V3)→, . . . ,(Vk−2Vk−1)→,(Vk−1Vk)→〉, and an edge (Vk,V1)→. A directed acyclic graph
(DAG) is a directed graph with no directed cycles. Given a DAG G (~V ), and a subset~A⊂~V , define
the induced subgraph G (~V )~A as the DAG containing vertices ~A and any edge in G (~V ) between
elements in ~A.

Given a DAG G , define the following genealogic sets: parents, children, ancestors, and de-
scendants of V , to be

paG (V )≡ {Z ∈~V | (ZV )→ exists in G },
chG (V )≡ {Z ∈~V | (V Z)→ exists in G },
anG (V )≡ {Z ∈~V | 〈(ZV1)→, . . . ,(VkV )→〉 exists in G },
deG (V )≡ {Z ∈~V | 〈(VV1)→, . . . ,(VkZ)→〉 exists in G }.

Define the set of non-descendants of V ∈ ~V to be ndG (V ) ≡ ~V \ deG (V ). By convention, for
any V ∈ ~V , V ∈ anG (V )∩ deG (V ). A total ordering ≺ on elements in ~V in a DAG G is called
topological with respect to G if for all distinct V1,V2 ∈~V , whenever V1 ≺V2, V1 6∈ deG (V2).

DAGs have been used to define a statistical model via sets of conditional independence state-
ments represented by Markov properties and a factorization. We review this model as a prelude
for the more complex definition of a causal model of a DAG.
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2.3. Statistical Models Of A DAG

A statistical model of a DAG G (~V ), or a Bayesian network, is a set of distributions p(~V ) such
that

p(~V ) = ∏
V∈~V

p(V | paG (~V )(V )). (1)

Any distribution in the above set is said to Markov factorize or be Markov relative to G (~V ). An
alternative formulation of statistical models of a DAG is in terms of the global Markov property
defined via d-separation (Pearl, 1988), which we reproduce below.

A sequence of two consecutive edges on a path is called a triple. A triple of the form 〈(AC)→(CB)←〉
is called a collider, a triple of the form 〈(AC)→(CB)→〉 is called a chain, and a triple of the
form 〈(AC)←(CB)→〉 is called a fork. The latter two types of triples are collectively called
non-colliders. Given a DAG G (~V ), disjoint vertices A,B ∈ ~V , and a set ~C, such that A,B 6∈ ~C,
a path from A to B in G (~V ) is said to be d-separated given a set ~C if there exists a collider
〈(AC)→,(CB)←〉 such that deG (~V )(C)∩~C = /0 or a non-collider 〈(AC),(CB)〉 such that C ∈ ~C. For

three disjoint sets ~A,~B,~C, we say ~A is d-separated from ~B given ~C in G (~V ), written (~A⊥⊥ ~B | ~C)G
as a shorthand, if every path from any A ∈ ~A to any B ∈ ~B is d-separated by ~C. The d-separation
criterion states d-separation always implies conditional independence in statistical DAG models.
That is, if p(~V ) is Markov relative to a DAG G (~V ), the following implication holds:

if (~A⊥⊥ ~B | ~C)G (~V ) then (~A⊥⊥ ~B | ~C)p(~V ),

where (~A⊥⊥ ~B | ~C)p(~V ) is a shorthand for the statement “~A is independent of ~B conditional on ~C

in p(~V ).” The global Markov property given by d-separation and the Markov factorization (1) are
equivalent ways of defining the statistical DAG model, without requiring that elements p(~V ) of
the model be positive distributions. Such a requirement is necessary for the Hammersley-Clifford
theorem for undirected graphical models. See (Lauritzen, 1996) for details.

2.4. Atomic Potential Outcomes and Causal Models Of A DAG

Just as a statistical model of G (~V ) is a set of distributions p(~V ) defined by (1), a causal model of
G (~V ) is a set of distributions over (atomic) potential outcome random variables in the set

V≡ {V (~vpaG (V )) = fV (~vpaG (V ),εV ) |V ∈~V , any set of values~v of ~V} (2)

defined by some restrictions 1. Here, fV is a structural equation which maps values ~vpaG (V ) of
paG (V ) and a random variable εV , representing unobserved exogenous factors, to values v of V .
Thus, fV ,~v and the random variable εV induce the random variable V (~vpaG (V )).

We consider a causal model of G , described in (Pearl, 2009) and (Richardson and Robins,
2013). The functional model, also known as the multiple worlds model (Shpitser and Tchet-
gen Tchetgen, 2016), or the non-parametric structural equation model with independent errors

1 To avoid measure-theoretic complications, we consider finite state spaces here.
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(NPSEM-IE) is the set of all distributions p(V) such that variables in{{
V (~apaG (V )) :~apaG (V ) any set of values of paG (V )

}
: V ∈~V

}
(3)

are mutually independent. The assumption (3) corresponding to the functional model can be in-
terpreted to mean that the joint distribution p({εV |V ∈~V}) factorizes as ∏V∈~V p(εV ). The name
“non-parametric structural equation model with independent errors” comes from this property,
and the fact the structural equations fV are unrestricted. As an example, the binary functional
model associated with the DAG in Fig. 1 (a) asserts that sets of random variables {W},{A(w) |
w ∈ {0,1}},{M(a,w) | a ∈ {0,1},w ∈ {0,1}},{Y (a,m,w) | a ∈ {0,1},m ∈ {0,1}} are mutually
independent.

Weaker models than the functional model exist, such as the finest fully randomized causally
interpreted structured tree graph (FFRCISTG) model, also known as the single world model
(Robins, 1986; Shpitser and Tchetgen Tchetgen, 2016; Richardson et al., 2017). In the interests
of space, we will not discuss this model further in this paper, although its assumptions generally
suffice for identification of any targets described in this paper other than path-specific effects.

2.5. Defining Arbitrary Potential Outcomes

Given a set of atomic potential outcomes of the form V (~vpaG (V )), other potential outcomes of the
form V (~a), where ~A is an arbitrary subset of~V , can be defined by means of recursive substitution:

Y (~a)≡ Y (~apaG (Y )∩~A
,{W (~a) |W ∈ paG (Y )\~A}) (4)

In words, this states that the response of Y had we applied the intervention operator do(~a), that
is had we, possibly contrary to fact, set values of ~A to ~a, is defined as the potential outcome for
Y where

(a) all parents of Y which are in ~A are counterfactually assigned an appropriate value from~a,
and

(b) all other parents W ∈ paG (Y )\~A are counterfactually assigned whatever value they would
have attained had we applied the intervention operator do(~a).

Responses involving W are themselves counterfactual and defined recursively. The definition
terminates because of the lack of directed cycles in G . For example, in the graph in Fig. 1 (a),
Y (a) =Y (a,M(a,W ),W ). The appearance of W as a capital letter in the expression is interpreted
to mean “counterfactually assign W to whatever value is actually observed.” Recursively setting
all ancestors of Y to their actually observed values results in the factual random variable Y ≡
Y (A,M(A,W ),W ). More generally, every factual variable V ∈ ~V that is a part of the observed
data distribution p(~V ) can be formed in this way.

The causal model may impose restrictions on counterfactual variables defined via (4). For
example, it is a straightforward consequence of (4) that for any ~A ⊆ ~V , such that paG (V ) ⊆ ~A,
and any~a1,~a2 ∈X~A\paG (V ),~a0 ∈XpaG (V ), V (~a0,~a1) =V (~a0,~a2). In other words, V is not affected
by interventions on any variable outside the set paG (V ), as long as all variables in the set paG (V )
are already intervened on. In this sense, the variables in paG (V ) can be viewed as the observed
direct causes of V , and the structural equation fV as the causal mechanism determining the value
of V in terms of values of observed direct causes, and the exogenous direct cause εV .
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The causal model may impose restrictions on factual variables as well. In particular, for the
set ~V of factual variables obtained via (4) from atomic counterfactuals V, it is known that if
p(V) lies in the functional causal model of G (~V ), then p(~V ) obeys (1), in other words p(~V ) lies
in the statistical model of G (V ). As a matter of convenience, and to avoid complications with
identifiability, we will assume positive observed data distributions p(~V ) from this point on.

2.6. The Fundamental Problem Of Causal Inference

Most random variables defined via (4) are counterfactual, meaning realizations from these vari-
ables are not available as observed data. Observed data is restricted to realizations of the observed
distribution p(~V ). Making inferences about any counterfactual parameter thus entails building a
link between factual and counterfactual variables.

A standard assumption which provides this link is called consistency, and states that for any
~a ∈ X~A,

~b ∈ X~B, and Y , ~A(~b) = ~a implies Y (~b) = Y (~a,~b). Though consistency (in the simple
form where ~b is empty) is often stated as a standalone part of the stable unit treatment value
assumption (SUTVA) (Rubin, 1976), it is also a logical consequence of (4) above, see (Malinsky
et al., 2019) for a simple proof. In words, consistency states that in any given counterfactual
situation where ~B were intervened on values ~b, if it were the case that random variables ~A(~b)
were observed to attain values ~a, then any counterfactual random variable Y (~b) in that situation
is equal to the counterfactual random variable Y (~a,~b) representing the situation where ~A were
also intervened on to the values ~a. Viewed in terms of structural equations, consistency asserts a
kind of mechanism modularity: for every V , fV reliably maps inputs to outputs regardless of the
type of process that may have set those inputs.

Given an observed dataset specifying values yi,ai, for i = 1, . . . ,n, consistency allows infer-
ences to be made about Y (ai) from realizations Yj(ai) where j is such that a j = ai. However, for
all rows j, realizations of Y (ai) are missing from the dataset for row j, if ai 6= a j. This means that
for any row j, only half of the potential outcomes are available (possibly less if A has more than
two values). This missing data problem is referred to as the fundamental problem of causal in-
ference (Rubin, 1976). Making inferences using counterfactual realizations missing in observed
data is not always possible, and when it is, relies on additional assumptions over and above
consistency, given by a causal model.

2.7. Identification

If assumptions imposed by a particular causal model imply a counterfactual quantity is a unique
functional of the observed data distribution in every element of the model, we say the coun-
terfactual is identified in the model. Here we concentrate on identification of counterfactual
distributions. Formally, a distribution p̃ or parameter θ̃ is said to be identified from p(~V ) in a
causal model, if there exists a function of p(~V ) which yields p̃ (or θ̃ ) in every element of the
model. Identification in this sense is important to establish before estimating p̃ from observed
data. A distribution p̃ or parameter θ̃ is said to be non-identified from p(~V ) in a causal model
if there exist two elements in the model which share p(~V ) but differ in p̃ (or θ̃ ). Estimation for
non-identified parameters or distributions is an ill-posed problem.
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3. Targets of Inference

We now describe common targets of inference, phrased in terms of potential outcome random
variables, that arise in causal inference applications.

3.1. Average Treatment Effects

The relationship of a set of treatments ~A and an outcome Y is quantified via a comparison of
potential outcomes Y (~a), Y (~a′) under two hypothetical value assignments ~a and ~a′ to ~A, repre-
senting cases and controls. These comparisons are often made on the mean difference scale. This
contrast is known as the average causal effect (ACE):

E[Y (~a)]−E[Y (~a′)].

For a set of treatments ~A, a comparison of interest might include the controlled direct effect,
where outcomes Y are compared for two treatment trajectories ~a ∈ X{A1,...,Ak} that agree on all
values~a−i ≡ {a1, . . . ,ai−1,ai+1, . . . ,ak except values ai,a′i:

E[Y (~a−i,ai)]−E[Y (~a−i,a′i)].

Identifiable average causal effects and controlled direct effects, possibly also conditioned on a
vector of baseline covariates, are sometimes modeled directly in semi-parametric approaches
based on structural nested models and marginal structural models (Robins, 1999a,b).

3.2. Mediation Analysis And Path-Specific Effects

Given that a treatment effect of A on Y is established, it is often desirable to understand the
mechanism by which the causal influence takes place. A simple type of mechanisms analysis is
mediation analysis – the decomposition of the treatment effect into components associated with
causal pathways from A to Y .

While controlled direct effects capture a type of direct effect of A on Y (that is, the effect not
mediated by other variables), it suffers from two disadvantages. First, since other direct causes
are fixed to a set of reference values, the controlled direct effect is best viewed not as a single
contrast, but a potentially high dimensional mapping from the values of other direct causes of the
outcome to contrasts. This makes this type of effect potentially difficult to estimate and interpret.
Second, there is no corresponding version of the indirect effect.

An alternative, proposed in (Robins and Greenland, 1992; Pearl, 2001), is to define natu-
ral direct and indirect effects by means of nested counterfactuals of the form Y (a,M(a′)), and
Y (a′,M(a)), where a is the treatment value corresponding to cases, and a′ the treatment value
corresponding to controls. These direct and indirect effects are defined in such a way that they
form a decomposition of the average treatment effect on the appropriate scale. For example, the
following definitions give an additive decomposition of the average treatment effect defined on
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the mean difference scale:

E[Y (a)]−E[Y (a′)] = (E[Y (a)]−E[Y (a,M(a′))])︸ ︷︷ ︸
total indirect effect

+(E[Y (a,M(a′))]−E[Y (a′)])︸ ︷︷ ︸
pure direct effect

= (E[Y (a)]−E[Y (a′,M(a))])︸ ︷︷ ︸
total direct effect

+(E[Y (a′,M(a))]−E[Y (a′)])︸ ︷︷ ︸
pure indirect effect

.

One way of conceptualizing these types of effects (Robins and Richardson, 2010) is to assume
a treatment A can be partitioned into two components: a component that only directly influences
the outcome Y , and a component that only directly influences a mediator variable M. In the toy
example discussed in (Robins and Richardson, 2010), we may believe smoking affects health due
to the presence of smoke in the lungs, which may cause cancer, and by means of nicotine in the
bloodstream, which may contribute to heart disease. If we are interested in the effect of smoking
mediated by cancer, we may consider comparing smokers to a population which only received
the component of the treatment where the influence of smoke is absent, and the influence of
nicotine is present, such as a nicotine patch. If we view Y as health status, M as cancer, and
A as smoking, then the expected value contrast above corresponding to the total indirect effect
of smoking would represent the comparison of health outcomes in smokers and nicotine patch
users.

The intuition behind direct and indirect effects can be generalized to settings where an effect
along a particular causal path is of interest. Consider an example from (Miles et al., 2017) rep-
resented by Fig. 1 (b), representing a cross-sectional study of HIV patients. Here, W is a set of
baseline characteristics, A is exposure to one of two HIV treatments, M is treatment toxicity, Z
is a measure of treatment adherence (how much of the prescribed treatment the patient actually
took), and Y is the outcome such as viral failure. In this example, we may be interested in assess-
ing not only the effectiveness of the drug itself, as quantified by the average causal effect, but
also the extent to which the drug might influence the outcome through adherence but not toxic-
ity. This type of adherence might be affected by the size of the pill, if the drug is ingested in pill
form, or a patient in a low food security situation being prescribed a drug that must be taken with
a meal. The influence of the drug on the outcome involved in this type of adherence corresponds
to the influence of A on Y along the path 〈(AZ)→,(ZY )→〉. Another issue of possible interest
is lack adherence due to toxicity of the drug. The influence of A on Y involved in this type of
adherence corresponds to the influence of A on Y along the path 〈(AM)→,(MZ)→,(ZY )→〉.

Effects of treatments on outcomes along a predefined set of paths are called path-specific
effects (Pearl, 2001). Such effects are defined using a special type of potential outcome, where
the treatment is set to one value a with respect to variables on the set of paths of interest, and to
another value a′ with respect to variables on all other paths. A single variable may occur in both
types paths: those of interest, and those that are not of interest. We can modify (4) to define these
types of potential outcomes as follows. Fix a set of directed paths π from A to Y , and let paπ

G (Y )
be the set of parents of Y along an edge which is a part of a path in π , and paπ̄

G (Y ) be the set of
all other parents of Y . Given π and values a,a′, define the π-specific potential outcome Y as

Y (π,a,a′)≡ a if Y = A (5)

Y (π,a,a′)≡ Y ({W (π,a,a′) |W ∈ paπ

G (Y )},{W (a′) |W ∈ paπ̄

G (Y )})
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where W (a′)≡ a′ if W = A. This definition says that the π-specific potential outcome Y (π,a,a′)
is defined by setting values of paG (Y ) using the following four cases:
◦ If A ∈ paG (Y ) and (AY )→ is in a path in π , set A to a.
◦ If A ∈ paG (Y ) and (AY )→ is not in a path in π , set A to a′.
◦ If W ∈ paG (Y )\{A} and (WY )→ is not in any path in π , set W to the value it would have

attained under potential outcomes W (a′).
◦ If W ∈ paG (Y ) \ {A} and (WY )→ is in some path in π , set W to the value it would have

attained under the (recursively defined) π-specific potential outcome W (π,a,a′).
As was the case with (4), the inductive definition terminates because G is acyclic. This definition
is a natural generalization of the way natural direct effects were defined above, with the direct
path 〈(AY )→〉 being a path of interest, and the indirect path 〈(AM)→,(MY )→〉 being a path not
of interest.

Applying this definition to π consisting of a single path 〈(AZ)→,(ZY )→〉 in Fig. 1 (b) yields

Y (π,a,a′)≡ Y (a′,Z(a,M(a′,W )),M(a′,W ),W ).

By analogy with direct and indirect effects, we can use this counterfactual to define the total
effect not through π as

E[Y (a)]−E[Y (π,a,a′)] = E[Y (a)]−E[Y (a′,Z(a,M(a′,W )),M(a′,W ),W )].

and the pure π-specific effect as

E[Y (π,a,a′)]−E[Y (a′)] = E[Y (a′,Z(a,M(a′,W )),M(a′,W ),W )]−E[Y (a′)].

Equation (5) generalizes in a natural way to multiple treatments ~A, and multiple outcomes ~Y . In
such cases, attention is restricted to sets π of proper causal paths for ~A and~Y , which are directed
paths from an element in ~A to any element in~Y that otherwise does not intersect ~A. In such cases,
definition (5) is applied to every Y ∈~Y , with a set of proper causal paths π , a set of case values
~a, and a set of control values~a′. The resulting distribution is p({Y (π,~a,~a′) | Y ∈~Y}).

3.3. Dynamic Treatment Regimes

All targets considered so far represented potential outcomes where treatments were set to specific
constant values, representing case and control treatments. Distributions over these outcomes can
be used to make quantitative comparisons of how different treatments affect average responses in
a population. However, in settings such as precision medicine, the primary goal is obtaining good
outcomes for every individual, rather than assessing average treatment effects in a population.
This difference in crucial where treatments can cause allergies and side effects – a treatment may
be both very effective on average and extremely harmful for certain subsets of patients.

In simple versions of this setting, shown in Fig. 1 (a), the goal is not to learn the potential out-
come Y (a) given a particular treatment assignment a, but the potential outcome Y (A = g(W )),
where A is counterfactually set not to a fixed value a, but to a value given by a policy or dy-
namic treatment regime g(W ) that depends on the vector of baseline factors W (Chakraborty and
Moodie, 2013). Policy quality can be assessed by comparing two different policies, as was done

Journal de la Société Française de Statistique, Vol. 161 No. 1 91-119
http://www.sfds.asso.fr/journal

© Société Française de Statistique et Société Mathématique de France (2020) ISSN: 2102-6238



100 Shpitser

with treatment effects, or finding the optimal policy directly. Just as was the case with Y (a), the
response Y (A = g(W )) to a dynamic treatment regime is a counterfactual random variable, and
is not necessarily identified from observed data, as we will see below. This is because assign-
ment to A given W in the observed data is not necessarily according to the policy of interest g(.).
There is a close relationship between the distinction between factual and counterfactual policies
and off-policy learning in the reinforcement learning literature.

More generally, given a temporally ordered set of treatments ~A = {A1, . . . ,Ak}, assessing the
quality of a set of policies ~g~A = {gA1 , . . . ,gAk} with respect to a response Y might be of interest.
In such settings, complex interdependence between policies is possible. For a simple example,
consider Fig. 1 (b), where W is a set of baseline factors, A,Z are treatments of interest, M is
an intermediate outcome, and Y is the final outcome. We assume a temporal order W,A,M,Z,Y
on the variables, and allow the policy determining the value of each treatment to depend on the
entire observed history, that is gA is a function of W and gZ is a function of M,A,W . In medical
settings, A may represent first line treatments, and Z secondary treatment options given poor
response to the first line treatment. The interdependence of policies gA and gZ occurs because gZ

depends on the entire observed history up to Z, and specifically on M, which itself depends on
gA. Defining Y (~g~A) entails recursively setting all parents of Y to values they would have attained
under~g~A, with the result being the following generalization of (4):

Y (~g~A)≡ Y (A = gA(W ),Z = gZ(A = gA(W ),M = M(~g~A),W ),W )

M(~g~A)≡M(A = gA(W ),W ), (6)

In oncology, an example corresponding to Fig. 1 (b) would represent assigning treatments to
cancer patients, with A representing types of induction chemotherapy, and Z being either contin-
uation of induction chemotherapy, or a switch to salvage chemotherapy in patients that are not
responding to primary induction chemotherapy. Naturally, a policy gZ which switches treatments
effectively would depend on the intermediate outcome M(A = gA(W ),W ), which measures the
degree of response to induction chemotherapy. This intermediate outcome would itself depend
on the choice of induction therapy. This choice, in turn, may be governed by patient age, and
other baseline covariates that form a part of W .

The definition of the response Y to an arbitrary set of policies is as follows. Given a set
of treatments ~A in a causal model represented by a DAG G (~V ), fix a topological ordering ≺
on ~V consistent with G (typically the temporal order for variables in the data), and consider
for every A ∈ ~A a set of variables ~WA earlier in the ordering ≺ than A. Fix a set of policies
~g~A ≡ {gA(~WA) | A ∈ ~A} that determine the value of each A ∈ ~A using values of ~WA. For any
Y ∈~V \~A, the counterfactual response Y had every A ∈ ~A been determined by~g~A is defined using
the appropriate generalization of the recursive substitution definition (4):

Y (~g~A) = Y ({A = gA(~WA(~g~A))|A ∈ paG (Y )∩~A},{W (~g~A)|W ∈ paG (Y )\~A}). (7)

In words, this says that to define the response of Y given a set of policies~g~A, we counterfactually
set each element of paG (Y ) as follows. Each element A of paG (Y )∩~A is set to the value of
the appropriate gA evaluated given the values of its inputs ~WA which are themselves evaluated
recursively given ~g~A. Each element W of paG (Y )\~A is set to a value it would have attained had
it been evaluated, recursively, under the policy set~g~A.
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FIGURE 1. (a) A simple causal DAG, with a single treatment A, a single outcome Y , a vector W of baseline variables,
and a single mediator M. (b) A more complex causal DAG with two mediators M and Z. (c) A version of the DAG in
(b) with an unobserved confounder H. (d) The ADMG obtained from the DAG in (c) via the latent projection operation
collapsing over the unobserved variable H.

The quality of the policy set~g~A is often expressed as the outcome expectation under the policy
set: E[Y (~g~A)], or any other appropriate function of Y (~g~A).

4. Identification In Fully Observed Causal Models Of A DAG

Having given the necessary preliminaries, and defined appropriate targets of inference, we now
consider the question of their identification. In causal models of a DAG where all variables
are observed, interventional distributions of the form p(~Y | do(~a)) and responses to dynamic
treatment regimes are always identified, while path-specific effects are identified according to a
simple criterion on the graph, given further below.

4.1. Identification Of Interventional Distributions And Responses To Dynamic Treatment
Regimes

For any value set~a of ~A⊆~V , the interventional distribution p(~V \~A | do(~a)) over counterfactuals
{V (~a) |V ∈~V \~A} is identified by

p(~V \~A | do(~a)) = ∏
V∈~V\~A

p(V | paG (V ))|~A=~a (8)

This equation is known as the g-formula (Robins, 1986), the manipulated distribution (Spirtes
et al., 2001), or the truncated factorization (Pearl, 2009).

The g-formula asserts that in the functional model corresponding to a DAG G (~V ), the effect
of setting any set of variables ~A to values ~a using the intervention operation do(~a) amounts to
replacing the set of structural equations { fV : XpaG (V )∪{εV }→ XV |V ∈ ~A or ~A∩paG (V ) 6= /0} by
another set

{ f̃V : X(paG (V )\~A)∪{εV }→ XV |V ∈~V \~A}∪{ f̃A : /0→{a} | A ∈ ~A},

where for every V , and ~w ∈ XpaG (V )\~A, f̃V (~w,εV ) = fV (~w,~̃a,εV ), where ~̃a is the subset of values

of ~a corresponding to paG (V )∩~A. In words, do(~a) is implemented by replacing all structural
equations that determine elements A∈~A, by new structural equations f̃A that ignore all inputs and
set A to the appropriate value for A in ~a, and replacing all structural equations fV that determine
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elements V ∈ ~V \~A by structural equations f̃V that agree with fV , except they always evaluate
paG (V )∩~A using the appropriate subset of values in~a.

Implementing interventions by replacing structural equations generalizes in a straightforward
way to yield responses to a set of dynamic treatment regimes~g~A. Such responses are generated by
replacing fA :XpaG (A)→XA, for each A∈~A, not by f̃A : /0→{a}, but by gA :X~WA

→XA. Similarly,
for each V such that paG (V )∩~A 6= /0, f̃V : X(paG (V )\~A) agree with fV , except they always evaluate

paG (V )∩~A using the appropriate subset of values of~A determined by~g~A. This immediately yields
the following expression as the identifying formula for the distribution p({V (~g~A)|V ∈ ~V \~A})
over responses in ~V \~A to a treatment regime~g~A

∏
V∈~V\~A

p(V |paG (V )\~A,{A = gA(~WA)|A ∈ paG (V )∩~A}) (9)

This formula is a generalization of (8).
The expression (8) has a number of well-known special cases. For instance, in Fig. 1 (a),

p(Y | do(a)) = ∑
M,W

p(Y,M,W | do(a)) = ∑
M,W

p(Y |M,a,W )p(M | a,W )p(W )

= ∑
W

p(Y | a,W )p(W ), (10)

where the last equality follows by marginalizing out M and chain rule. This recovers the well-
known adjustment or backdoor formula (Pearl, 2009). In Fig. 1 (b),

p(Y | do(a,z)) = ∑
M,W

p(Y,M,W | do(a,z)) = ∑
M,W

p(Y | a,z,M,W )p(M | a,W )p(W ).

Let gA be a mapping from values of W to values of A, and gZ be a mapping from values of
M,A,W to values of Z. Then the distribution of the potential outcome Y (~g~A) = Y ({gA,gZ}) is
identified as

p(Y (~g~A)) = ∑
W,M

p(Y |A = gA(W ),Z = gZ(M,A = gA(W ),W ),M,W )p(M|A = gA(W ),W )p(W ).

The first expression recovers the g-computation algorithm formula (Robins, 1986) for inferring
causal effects in longitudinal studies, while the second gives the appropriate generalization for
dynamic treatment regimes. Both expressions are given here for two time points, but generalize
in a straightforward way.

4.2. Identification Of Path-Specific Effects

Potential outcomes associated with path-specific effects and defined via (5) are more complicated
objects than potential outcomes defined via (4) due to the presence of two conflicting treatment
assignments within the same object. A consequence of this is that even in causal models of a DAG
G (~V ) where every element of~V is observed, distributions over some such potential outcomes are
not identified. A characterization of identifiable π-specific potential outcomes exists, based on a
feature of the graph G and the path set π (Avin et al., 2005).

Journal de la Société Française de Statistique, Vol. 161 No. 1 91-119
http://www.sfds.asso.fr/journal

© Société Française de Statistique et Société Mathématique de France (2020) ISSN: 2102-6238



Identification 103

Fix a set of treatments ~A, a set of outcomes ~Y , and a set π of proper causal paths for ~A and
~Y in a DAG G (~V ). A variable W ∈ ~V \~A is called a recanting witness for π if there exists
a directed path in π of the form 〈(AW )→, . . . ,(Z1Y1)→〉 for some Y1 ∈ ~Y , and another proper
causal path of the form 〈(AW )→, . . . ,(Z2Y2)→〉 for some Y2 ∈ ~Y that is not in π . As an exam-
ple, in Fig. 1 (b), if we are interested in the path-specific effect of A on Y along a single path
〈(AM)→,(MY )→〉, that is if π = {〈(AM)→,(MY )→〉}, then M is a recanting witness for π , since
the path 〈(AM)→,(MZ)→,(ZY )→〉 is a proper causal path for A and Y , is not an element of π ,
and has as its first edge (AM)→ which is also the first edge of 〈(AM)→,(MY )→〉. Despite the
existence of a recanting witness, the potential outcome Y (π,a,a′) is still definable via (5), and is
equal to Y (a′,Z(a′,M(a′,W )),M(a,W ),W ). Both potential outcomes M(a′,W ) and M(a,W ) ap-
pear in this expression, and this is what prevents identification. This issue arises because the same
child M of the intervened on variable A, appears both in a path of interest 〈(AM)→,(MY )→〉 and
in another path 〈(AM)→,(MZ)→,(ZY )→〉 that is not of interest, but that was involved in defining
the potential outcome.

In fact, identification of potential outcomes {Y (π,~a,~a′) | Y ∈~Y} involved in a path-specific
effect is characterized in DAGs by the absence of a recanting witness. Specifically, given disjoint
vertex sets ~A,~Y in a DAG G (~V ), and a set π of proper causal paths for ~A and ~Y , the distribution
p({Y (π,~a,~a′) | Y ∈ ~Y}) is identified if and only if there are no recanting witnesses for π . If
the recanting witness does not exist, then the joint counterfactual distribution over variables
{Y (π,~a,~a′) | Y ∈~Y} is identified via a generalization of equation (8) called the edge g-formula
(Shpitser and Tchetgen Tchetgen, 2016), with an early version appearing in (Avin et al., 2005):

p({Y (π,~a,~a′)|Y ∈~Y}) = ∑
~V\(~A∪~Y )

∏
V∈~V\~A

p(V |~apaπ

G (V )∩~A,~a
′
paπ

G (V )∩~A,paG (V )\~A). (11)

Just as the ordinary g-formula, the edge g-formula can be viewed as a truncated DAG factoriza-
tion. However, in the edge g-formula a variable A∈~A∩paG (V ) in a Markov factor p(V | paG (V ))
can be set to either its value in ~a or its value in ~a′, depending on whether the edge (AV )→ is a
part of a path in π or not.

As an example, a recanting witness does not exist for the path-specific effect of A on Y along
the set of paths π ≡ {〈(AM)→,(MY )→〉;〈(AM)→,(MZ)→,(ZY )→〉} in Fig. 1 (b). The counter-
factual distribution p(Y (π,a,a′)) corresponding to this set of paths is then identified as

p(Y (π,a,a′)) = ∑
W,M,Z

p(Y |M,W,Z,a′)p(Z |M,W,a′)p(M |W,a)p(W ).

In the classical mediation analysis setting shown in Fig. 1 (a), where we are interested in the
direct effect of A on Y , in other words in the path set π ≡ {〈(AY )→〉}, the counterfactual distri-
bution p(Y ({〈(AY )→},a,a′)) = p(Y (a,M(a′))) is identified by the edge g-formula as

p(Y (a,M(a′))) = ∑
W,M

p(Y |M,W,a)p(M | a′,W )p(W ).

If we are interested in the pure direct effect E[Y (a,M(a′))]−E[Y (a′)], the formula above recovers
the well-known mediation formula (Pearl, 2011):

E[Y (a,M(a′))]−E[Y (a′)] = ∑
W,M
{E[Y |M,W,a]−E[Y |M,W,a′]}p(M | a′,W )p(W ).
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5. Identification In Causal Models Of A DAG With Hidden Variables

Identification results described so far assumed a causal model of a DAG G (~V ) where every
element in ~V corresponds to an observed variable. Unfortunately, this assumption is unrealistic
in practice. For example, in observational studies in healthcare, compliance and health status of
enrolled patients are generally not completely observed, except through imperfect proxies. This
motivates the study of causal models of a DAG G (~V ∪ ~H) where ~V corresponds to observed
variables, and ~H to hidden variables.

The presence of hidden variables considerably complicates identification theory. We will de-
scribe a simple characterization of identifiable targets of causal inference in hidden variable
causal DAGs, based on mixed graphs, and the fixing operation that can be viewed as a statistical
version of the intervention operation. This characterization was described in (Richardson et al.,
2017) in the context of treatment effects, and generalized for mediation analysis and dynamic
treatment regime problems in (Shpitser and Sherman, 2018).

In a fully observed DAG G (~V ), all identified functionals are based on the g-formula (4), which
is a truncated version of the Markov factorization of p(~V ) associated with G (~V ). In a hidden vari-
able DAG G (~V ∪ ~H), all identified functionals are also based on a truncated version of a Markov
factorization. However, this nested Markov factorization is of a marginal distribution p(~V ), and
with respect not to the DAG G (~V ∪ ~H), but a special mixed graph we denote G (~V ) obtained
by a latent projection operation (Verma and Pearl, 1990) from G (~V ∪ ~H). This factorization is
defined in terms of objects called kernels that generalize conditional distributions and which can
be “put together” to construct the observed marginal p(~V ), as well as certain other distributions
that correspond to causal targets of inference.

We now give the roadmap for the definitions we will need that will define the nested factor-
ization. First, we describe special mixed graphs called acyclic directed mixed graphs (ADMGs),
and their conditional versions (CADMGs), and generalize existing definitions, and genealogic
relations defined for DAGs in Section 2.2 to ADMGs and CADMGs. Then we define a special
ADMG called a latent projection (Verma and Pearl, 1990) which represents identification the-
ory for an infinite class of “structurally similar” hidden variable DAGs. We then describe how
targets of inference can be defined on this ADMG directly in a way that represents the target
in any hidden variable DAG in its class. We then describe kernels, which are generalizations of
conditional distributions that will represent terms of the nested factorization. Next, we define the
fixing operator (Richardson et al., 2017) on graphs and kernels which will be used iteratively to
give the nested factorization. The nested factorization will link CADMG and kernel pairs, with
the pair derived from G (~V ) and p(~V ) via the fixing operator.

Finally, we define the nested factorization of a distribution with respect to an ADMG, refor-
mulate the ID algorithm (Tian and Pearl, 2002; Shpitser and Pearl, 2006b) as a truncated version
of this factorization (Richardson et al., 2017), and generalize this formulation to also give iden-
tifying functionals for responses to dynamic treatment regimes and path-specific potential out-
comes. We also describe the potential outcomes calculus (Malinsky et al., 2019), a generalization
of Pearl’s do-calculus defined in terms of single world intervention graphs (SWIGs) (Richardson
and Robins, 2013) and potential outcomes, and show how this calculus may be used to give a
complete identification theory for conditional interventional distributions.
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5.1. Mixed Graphs

A mixed graph only contains directed (→) and bidirected (↔) edges, although other types of
mixed graphs have been considered in the literature (Lauritzen, 1996; Drton, 2009; Shpitser,
2015). In mixed graphs representing causal systems, directed edges represent the possible pres-
ence of a direct causal relationship between the vertices sharing the edge, while bidirected edges
represent the possible presence of a particular type of spurious association between the vertices
sharing the edge, as would occur had there been some unnamed and unobserved common cause.
A mixed graph may contain at most two edges between two vertices. Moreover, if two vertices
have two edges in common, one of them must be directed and one must be bidirected. An acyclic
directed mixed graph (ADMG) is a mixed graph with no directed cycles.

A conditional ADMG (CADMG) G (~V , ~W ) (Richardson et al., 2017) is a graph with a vertex
set ~V ∪ ~W where for every W ∈ ~W it is the case that neither (ZW )→ nor (ZW )↔ edges exist in
G for any Z ∈ ~V ∪ ~W . That is, in any CADMG G (~V , ~W ), there is no edge of any kind with an
arrowhead pointing into any element W ∈ ~W . Although every element in ~W has this property,
there may also exist elements V ∈~V such that neither (ZV )→ nor (ZV )↔ edges exist in G (~V , ~W )
for any Z ∈ ~V ∪ ~W . The distinction between elements in ~W and elements in ~V does not come
from the way these vertex sets are defined, but from how they are used when defining graphical
models. Vertices in ~V correspond to random variables, as in the statistical model of a DAG.
Vertices in ~W correspond to variables that were fixed to a value. CADMGs will correspond
to sets of distributions that depend on values in X~W . These distributions, called kernels, along
with CADMGs, will be used later to concisely express identification in terms of a truncated
factorization.

A bidirected path from V1 to Vk has the form 〈(V1V2)↔,(V2V3)↔, . . . ,(Vk−2Vk−1)↔,(Vk−1Vk)↔〉.
For V ∈~V , define the district (Richardson and Spirtes, 2002) or the c-component (Tian and Pearl,
2002) of V as the set

disG (~V ,~W )(V )≡ {Z ∈~V | 〈(ZV1)↔, . . . ,(VkV )↔〉 exists in G (~V , ~W )}.

The set of districts of G (~V , ~W ), denoted by D(G (~V , ~W )) is a partition of~V . Specifically, elements
of D(G (~V , ~W )) correspond to connected components in the graph derived from G (~V , ~W ) by
dropping all vertices in ~W and edges adjacent to such vertices, and all directed edges. In such
a graph, vertices in connected components are connected by bidirected paths only, and thus
correspond precisely to districts in the original CADMG. The same definition applies to any
ADMG G (~V ) to yield D(G (~V )).

Other definitions, and genealogic relations defined on DAGs in Section 2.2, generalize in
a straightforward way to ADMGs and CADMGs. In particular, d-separation generalizes to m-
separation (Richardson, 2003) in ADMGs. In an ADMG, triples of the form 〈(AC)→,(CB)←〉;
〈(AC)↔,(CB)←〉; 〈(AC)→,(CB)↔〉; 〈(AC)↔,(CB)↔〉 are called colliders, and any other kind of
triple a non-collider. Given an ADMG G (~V ), disjoint vertices A,B ∈ ~V , and a set ~C, such that
A,B 6∈ ~C, a path from A to B is said to be m-separated given a set ~C if there exists a collider
〈(AC),(CB)〉 such that deG (~V )(C)∩~C = /0 or a non-collider 〈(AC),(CB)〉 such that C ∈ ~C.
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5.2. Latent Projections

Identification theory in a causal model described by a hidden variable DAG G (~V ∪ ~H), where ~V
correspond to observed variables and ~H to hidden variables, is often described in terms of the
ADMG G (~V ) constructed from G (~V ∪ ~H) via the latent projection operation (Verma and Pearl,
1990).

Given a DAG G (~V ∪ ~H), a latent projection onto ~V is the following ADMG G (~V ). First,
G (~V ) contains all directed edges in G (~V ∪ ~H) between elements in ~V . Second, for every pair
V1,V2 ∈~V , whenever a directed path from V1 to V2 exists in G such that all intermediate elements
of the path are in ~H, G (~V ) contains an edge (V1V2)→. Finally, whenever a path from V1 to V2
without collider triples exists in G , where all intermediate elements of the path are in ~H, the first
edge points to V1, and the last edge points to V2, G (~V ) contains an edge (V1V2)↔. As an example,
the latent projection of a hidden variable DAG in Fig. 1 (c), where W,A,M,Y are observed, and
H is hidden is an ADMG shown in Fig. 1 (d), while the latent projection of a hidden variable
DAG in Fig. 2 (a), where W,A,Y are observed, and H is hidden is an ADMG shown in Fig. 2 (b).
Corresponding to the ADMG G (~V ) is the class of all hidden variable DAGs G (~V ∪ ~H) such that
the latent projection of G (~V ∪ ~H) onto ~V results in G (~V ).

The latent projection of a hidden variable DAG G (~V ∪ ~H) where vertices in ~H correspond-
ing to hidden variables are “projected out” is written as G (~V ). Similarly, the marginal distribu-
tion of p(~V ∪ ~H) where variables in ~H are marginalized out is written as p(~V ). The notation
for latent projections in graphs thus intentionally resembles the notation for marginalization in
distributions, as the latent projection operation can be viewed as the graphical analogue of the
marginalization operation.

5.3. Targets Of Inference In Hidden Variable DAG Models

Defining Y (~a) via (4), Y (π,~a,~a′) via (5), and Y (~g~A) via (7) in a hidden variable DAG G (~V ∪ ~H)

can, in certain cases, be done directly on a latent projection G (~V ), and in a way that only variables
in ~V are mentioned, without changing the meaning of the counterfactual. For Y (~a) the only
requirement is that Y ∈ ~V , and ~A ⊆ ~V . For Y (~g~A), where ~g~A = {gA(~WA) | A ∈ ~A}, in addition it
must be the case that for every A, ~WA ⊆~V .

Since directed paths in π may involve vertices in ~H, defining a version of Y (π,~a,~a′) on the
latent projection G (~V ) involves considering a counterfactual Y (π̃,~a,~a′), where π̃ is a set of di-
rected paths containing only vertices in ~V . Specifically, π̃ is the set of directed paths consisting
of, for every path πi ∈ π , the largest subpath of πi consisting only of elements in ~V . Every path
in π yields a path in π̃ , but multiple paths in π may end up yielding the same path in π̃ . The
counterfactual Y (π̃,~a,~a′) is well defined if for any π̃k ∈ π̃ formed from πi ∈ π , it is not the case
that there exists π j 6∈ π such that the largest subpath of π j consisting only of elements in ~V is π̃k.
This requirement is necessary for elements in π̃ to have a consistent value assignment.

Under conditions mentioned above, defining Y (~a) via (4), Y (π̃,~a,~a′) via (5), and Y (~g~A) via (7)
in G (~V ) yields the same counterfactual as if these definitions were applied in G (~V ∪ ~H) to define
Y (~a), Y (π,~a,~a′) and Y (~g~A), respectively. These results follow from the way these counterfactuals
are defined via (4), (5) and (6), and the definition of the latent projection ADMG, and are also
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described in (Shpitser, 2017). We will restrict attention to counterfactuals that can be defined on
G (~V ) directly.

5.4. Kernels As Generalized Conditional Distributions

Functionals of identified causal parameters based on the g-formula described in section 4 can
be viewed as (functions of) truncated versions of the DAG factorization (1) of p(~V ). In hidden
variable DAGs represented by latent projection ADMGs, the functionals for identified causal
parameters can also be viewed as truncated versions of a particular factorization of p(~V ) with
respect to the latent projection ADMG G (~V ). However, pieces of this factorization are not simple
functions of the observed distribution corresponding to conditional distributions. Instead, these
pieces must be obtained from the observed distribution by an operator that sequentially applies
a certain fixing operation. To describe this operator, we introduce a special type of distribution
that represents, along with CADMGs introduced earlier, the operator’s intermediate inputs and
outputs.

A kernel q~V (~V | ~W ) (Lauritzen, 1996) is a mapping from values ~w of ~W to normalized densities
q~V (~V | ~w) over~V . For ~W ′ ⊆ ~W , q~V (~V | ~w

′, ~W \~W ′) is a restriction of q~V (~V | ~W ) to a mapping from
values ~w~W\~W ′ of ~W \ ~W ′ to normalized densities q~V (~V | ~w

′ ∪~w~W\~W ′). A conditional distribution
is a type of kernel, though other types of kernels are possible. For example, the identifying
functional in (10) is a kernel q(Y | a) ≡ ∑W p(Y | a,W )p(W ) that is not in general equal to the
conditional distribution p(Y | a). Given a subset ~A ⊆ ~V , marginalization and conditioning for
kernels are defined in the usual way:

q~V (~A | ~W )≡ ∑
~V\~A

q~V (~V | ~W ); q~V (~V \~A | ~A∪ ~W )≡
q~V (~V | ~W )

q~V (~A | ~W )
.

CADMGs and kernels involved in identification are derived from G (~V ) and p(~V ) by sequential
application of the fixing operation, defined in (Richardson et al., 2017).

5.5. The Fixing Operation And Reachable And Intrinsic Sets

Given a CADMG G (~V , ~W ), a vertex V ∈~V is said to be fixable if deG (V )∩disG (V )= {V}. Given
a fixable vertex V in G define the fixing operator on graphs φV (G (~V , ~W )) to be an operator that
produces a CADMG G̃ (~V \ {V}, ~W ∪ {V}) which is obtained from G (~V , ~W ) by removing all
edges of the form (WV )→, (WV )↔. As an example, M is fixable in the ADMG G (e) shown in
Fig. 2 (e), since deG (e)(M)∩disG (e)(M) = {M}. The CADMG φM(G (e)) is shown in Fig. 2 (g).

Given a CADMG G (~V , ~W ) and a kernel q~V (~V | ~W ), and any fixable V in G , define the fixing
operator on kernels φV (q~V (~V | ~W );G (~V , ~W )) to be one that produces the kernel

q̃~V\{V}(~V \{V} | ~W ∪{V})≡
q~V (~V | ~W )

q~V (V | ndG (V )∪ ~W )
.

We remind the reader that the set of non-descendants of V , ndG (V ) is defined as every element
that is not a descendant of V : (~V ∪ ~W ) \ deG (V ). As an example, given the joint distribution
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FIGURE 2. (a) A causal DAG with an unobserved common cause of the treatment A and the outcome Y which prevents
identification of p(Y (a)). (b) The ADMG obtained from the DAG in (a) via the latent projection operation collapsing
over the unobserved variable H. (c) A subgraph of the ADMG in (b) relevant for identification of p(Y | do(a)). (d) A
causal DAG with an unobserved common cause of the baseline variables W, the treatment A and the outcome Y . This
DAG also contains a mediator M that “captures” all the causal influence of A on Y that is also not confounded by
H. (e) The ADMG G obtained from the DAG in (d) via the latent projection operation collapsing over the unobserved
variable H. (f) A subgraph of the ADMG in (e) relevant for identification of p(Y | do(a)). (g) The CADMG φM(G )
obtained from the ADMG in (e). (h) The CADMG φ〈M,A〉(G ) = φ{M,A}(G ) obtained from the ADMG in (e). (i) The
CADMG φY (G ) obtained from the ADMG in (e). (j) The CADMG φ〈Y,A〉(G ) = φ{Y,A}(G ) obtained from the ADMG
in (e).

p(W,A,M,Y ) associated with the ADMG G (e) shown in Fig. 2 (e), we have, since M is fixable
in G (e),

φM(p(W,A,M,Y );G (e)) =
p(W,A,M,Y )

p(M | ndG (e)(M))
=

p(W,A,M,Y )
p(M |W,A)

= p(Y |W,A,M)p(W,A).

The fixing operator is applied iteratively to CADMG/kernel pairs, starting with the latent
projection G (~V ) of a hidden variable DAG G (~V ∪ ~H) and the observed distribution p(~V ) which
is a marginal of the true distribution p(~V ∪ ~H) that is Markov relative to G (~V ∪ ~H). Not all
sequences of fixing operations are allowed.

Given a vertex set {V1, . . . ,Vk} = ~A ⊆ ~V in a CADMG G (~V , ~W ), we will denote sequences
on elements in ~A as σ~A or 〈V1, . . . ,Vk〉. Given σ~A ≡ 〈V1, . . .〉, where ~A is not the empty set, the
operator τ(σ~A) yields the subsequence σ~A consisting of all but the first element V1, in the same
order as in σ~A.

A sequence σ~A of the set ~A≡ {V1, . . . ,Vk} is said to be fixable in a CADMG G (~V , ~W ) if
(a) σ~A = 〈〉, that is if ~A is the empty set, or
(b) σ~A ≡ 〈V1, . . .〉 has at least one element, V1 is fixable in G (~V , ~W ), and τ(σ~A) is a sequence

fixable in φV1(G (~V , ~W )).
If there exists σ~A fixable in G (~V , ~W ), we say~A is fixable in G (~V , ~W ), and ~R≡~V \~A is reachable in
G (~V , ~W ). A reachable set ~R is said to be intrinsic if G (~V )~R contains a single district. In particular,
for any reachable ~R (due to a fixable sequence σ~V\~R), all districts in φσ~V\~R

(G ) are intrinsic sets.

The notions of reachable and intrinsic sets are purely graphical, hence every ADMG G (~V ) has a
fixed set of reachable and intrinsic subsets of ~V , we denote the latter by I (G (~V )).
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Given a CADMG G (~V , ~W ), a kernel q~V (~V | ~W ), a set ~A ⊆ ~V , and a sequence σ~A fixable in
G (~V , ~W ), we define the fixing operator for both graphs and kernels for σ~A as follows:

If σ~A ≡ 〈〉, that is if ~A is the empty set,

φσ~A
(G (~V , ~W ))≡ G (~V , ~W ) and φσ~A

(q~V (~V | ~W );G (~V , ~W ))≡ q~V (~V | ~W ),

If σ~A ≡ 〈V1, . . .〉,

φσ~A
(G (~V , ~W ))≡ φτ(σ~A)

(φV1(G (~V , ~W ))) and

φσ~A
(q~V (~V | ~W );G (~V , ~W ))≡ φτ(σ~A)

(φV1(q~V (~V | ~W );G (~V , ~W ));φV1(G (~V , ~W ))).

For any two distinct sequences σ1
~A
≡ 〈Vi1 , . . . ,Vik〉, σ2

~A
≡ 〈Vj1 , . . . ,Vjk〉 of vertices in ~A ⊆ ~V

fixable in G (~V , ~W ), it is known (Richardson et al., 2017) that φ
σ1
~A
(G (~V , ~W )) = φ

σ2
~A
(G (~V , ~W )).

That is, any fixable sequence applied to the same set of vertices in the same original CADMG
yields the same final CADMG. Hence, we define the fixing operator on graphs for reachable ~R
directly on sets as φ~V\~R(G (~V )) to mean “apply the fixing operator to elements in~V \~R according
to some (any) fixable sequence.”

As an example, the sequence 〈M,A〉 is fixable in the ADMG G (e) shown in Fig. 2 (e). The
result of applying φ〈M,A,〉(G

(e)) is a CADMG shown in Fig. 2 (h). Similarly, the result of applying
the fixing operator according to this sequence to p(W,A,M,Y ) and G (e) yields

φ〈M,A,〉(p(W,A,M,Y );G (e)) = φA

(
p(W,A,M,Y )
p(M |W,A)

;G (g)
)
=

p(Y |W,A,M)p(W,A)
p(Y |W,A,M)p(W,A)

∑A p(Y |W,A,M)p(W,A)

= ∑
A

p(Y |W,A,M)p(W,A).

5.6. The Nested Markov Factorization

A distribution p(~V ) is said to nested Markov factorize with respect to, or be nested Markov
relative to G (~V ) if there exists a set of kernels {q̃~S(~S | paG (~S)\~S) : ~S ∈I (G (~V ))} such that for
every reachable ~R and any corresponding fixable sequence σ~V\~R,

φσ~V\~R
(p(~V );G (~V )) = ∏

~D∈D(φ~V\~R(G (~V )))

q̃~D(~D | paG (~V )(~D)\~D).

In words, this says that p(~V ) nested Markov factorizes with respect to an ADMG G (~V ) if
(a) there exists a set of intrinsic kernels corresponding to intrinsic sets in G (~V ), such that
(b) every kernel corresponding to a reachable set ~R, obtained by applying the fixing operator

to p(~V ) and G (~V ) using the fixable sequence σ~V\~R,
(c) factorizes into a product of intrinsic kernels corresponding to the districts of the CADMG

corresponding to ~R,
(d) where this CADMG is obtained by applying the fixing operator to the graph G (~V ) and

the set ~V \~R.
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The factorization is nested because it describes the factorization for many kernels corresponding
to many reachable sets, some “nested” within others. In particular, the set ~V is (trivially) reach-
able in G (~V ), so all other reachable sets are “nested” within ~V . Since ~V is reachable, the nested
factorization asserts that the original distribution p(~V ) factorizes according to districts in G (~V ).

If p(~V ) is nested Markov relative to the ADMG G (~V ), then for any two distinct sequences
σ1
~A
≡ 〈Vi1 , . . . ,Vik〉, σ2

~A
≡ 〈Vj1 , . . . ,Vjk〉 of vertices in ~A⊆~V fixable in G (~V ), it is known (Richard-

son et al., 2017) that φ
σ1
~A
(p(~V );G (~V ))= φ

σ2
~A
(p(~V );G (~V )). In other words, if p(~V ) is in the nested

Markov model, then any distinct fixable sequences on the same set applied to p(~V ) and G (~V )
lead to the same kernel. This result justifies restating the fixing operation on kernels in terms of
sets as well. For any reachable ~R, we write φ~V\~R(p(~V );G (~V )) to mean “the kernel obtained from

applying the fixing operator to p(~V ) and G (~V ) according to some (any) fixable sequence.”
In addition, it can be shown (Richardson et al., 2017) that the set of intrinsic kernels is, in fact

{φ~V\~S(p(~V );G (~V )) :~S ∈I (G (~V ))}, and the nested Markov factorization can be rephrased as:

φ~V\~R(p(~V );G (~V )) = ∏
~D∈D(φ~V\~D(G (~V ))

φ~V\~D(p(~V );G (~V )),

for every ~R reachable in G (~V ).

5.7. The ID Algorithm

Given a hidden variable DAG G (~V ∪~H) representing a causal model, assume we are interested in
identification of the interventional distribution p(~Y | do(~a)), for arbitrary disjoint subsets ~A,~Y of
~V , from the observed distribution p(~V ). This identification problem was given a general solution
in terms of a recursive algorithm called the ID algorithm (Tian and Pearl, 2002) which was shown
to be complete in (Shpitser and Pearl, 2006b; Huang and Valtorta, 2006). Here we give a simple
one line reformulation of the ID algorithm as a truncated nested factorization.

Let G (~V ) be the latent projection of G (~V ∪ ~H) onto observable vertices ~V , and let ~Y ∗ ≡
anG (~V )~V\~A

(~Y ), be the set of ancestors of ~Y via only directed paths that exclude elements in ~A

(in particular, ~Y ∗ does not contain any element of ~A). Let G (~V )~Y ∗ be the induced subgraph of
G (~V ) containing only elements in~Y ∗ and edges in G (~V ) among those elements. Let D(G (~V )~Y ∗)

be the set of districts in G (~V )~Y ∗ . If every ~D ∈D(G (~V )~Y ∗) is an intrinsic set, then

p(~Y | do(~a)) = ∑
~Y ∗\~Y

∏
~D∈D(G (~V )~Y∗ )

φ~V\~D(p(~V );G (~V ))|~A=~a. (12)

If some ~D ∈D(G (~V )~Y ∗) is not intrinsic, then p(~Y | do(~a)) is not identifiable in the causal model,
meaning no other algorithm can obtain the identifying expression for p(~Y | do(~a)) without addi-
tional assumptions. In words, this says that p(~Y | do(~a)) is identifiable if and only if the induced
graph G (~V )~Y ∗ for a certain set ~Y ∗ factorizes into districts that all correspond to intrinsic sets in
the original ADMG G (~V ). ~Y ∗ may not be reachable itself, but still yield this sort of factoriza-
tion. The factorization implies the interventional distribution of interest may be obtained from
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the product of the corresponding intrinsic kernels (which are all themselves identifiable), and
possibly a marginalization operation that sums out elements in~Y ∗ \~Y .

The proof of soundness of the original formulation of the ID algorithm appears in (Tian and
Pearl, 2002), and of completeness in (Shpitser and Pearl, 2006b; Huang and Valtorta, 2006).
The proof of soundness of the simplified version shown in (12) appears in (Richardson et al.,
2017). Since preconditions for the application of (12), and all expressions within (12) itself
were phrased in terms of the latent projection G (~V ), and not the original hidden variable DAG
G (~V ∪ ~H), all hidden variable DAGs that share the latent projection G (~V ) agree on which dis-
tributions p(~Y | do(~a)) are identifiable and which are not, and further agree on all identifying
functionals. An implementation of the ID algorithm, and a number of related algorithms, exists
in the causaleffect package in the R programming language.

We now illustrate how (12) is applied with two examples. The first example is the causal model
corresponding to the DAG in Fig. 2 (a). This DAG contains an unobserved common cause of A
and Y , which will prevent identification of p(Y | do(a)), as we now show. The latent projection
of this graph is the ADMG G ({W,A,Y}) shown in Fig. 2 (b). Here ~Y ∗ = anG{Y,W}(Y ) = {Y,W},
with G~Y ∗ shown in Fig. 2 (c). Then D(G~Y ∗) = {{W,Y}}, and the set ~V \ {W,Y} = {A} is not
fixable, since Y is a descendant of A and lies in the district of A. Thus p(Y | do(a)) = p(Y (a)) is
not identified in the causal model represented by Fig. 2 (a).

Next, consider the causal model corresponding to the DAG in Fig. 2 (d). Like in Fig. 2 (a),
there is a common cause of A and Y . However, in Fig. 2 (d) there is, in addition, a mediator
variable M which lies on a causal pathway from A to Y , indicated by the presence of a directed
path A→ M→ Y . In fact, this is the only directed path from A to Y , meaning that M captures
or mediates all of the causal influence of A on Y . Finally, M is not a child of H, meaning it is
determined entirely by W and A and remains unconfounded by H, unlike A and Y . The presence
of this type of mediator allows p(Y | do(a)) to be identified, as we now show.

The latent projection of Fig. 2 (d) is the ADMG G ({W,A,M,Y}) shown in Fig. 2 (e). Here
~Y ∗ = anG{Y,W,M}(Y ) = {Y,M,W}, with G~Y ∗ shown in Fig. 2 (f). It’s easy to verify that D(G~Y ∗) =

{{Y,W},{M}}. In this case, the sets ~V \{Y,W}= {A,M} and ~V \{M}= {Y,W,A} are fixable.
We first consider {A,M}. M is fixable in Fig. 2 (e), which yields the CADMG in Fig. 2 (g), with
the corresponding kernel

q{W,A,Y}(W,A,Y |M) =
p(W,A,M,Y )
p(M | A,W )

= p(Y |M,A,W )p(A,W ).

In this CADMG, A becomes fixable (it was not fixable in Fig. 2 (e)), yielding the CADMG in
Fig. 2 (h), with the corresponding kernel

q{W,Y}(W,Y | A,M) =
q{W,A,Y}(W,A,Y |M)

q{W,A,Y}(A |W,Y,M)
= ∑

A
p(Y |M,A,W,)p(A,W ).

Similarly, the set {Y,W,A} is also fixable. First, Y is fixable in Fig. 2 (e), yielding the CADMG
in Fig. 2 (i), with the corresponding kernel

q{W,A,M}(W,A,M | Y ) = p(W,A,M,Y )
p(Y |W,A,M)

= p(W,A,M).

Journal de la Société Française de Statistique, Vol. 161 No. 1 91-119
http://www.sfds.asso.fr/journal

© Société Française de Statistique et Société Mathématique de France (2020) ISSN: 2102-6238



112 Shpitser

Next, A becomes fixable in Fig. 2 (i), yielding the CADMG in Fig. 2 (j), with the corresponding
kernel

q{W,M}(W,M | A,Y ) =
q{W,A,M}(W,A,M | Y )

q{W,A,M}(A |W,Y )
= p(M | A,W )p(W ).

Finally, W is fixable in Fig. 2 (j), yielding a CADMG obtained from Fig. 2 (j) by drawing W as
a square, with the corresponding kernel

q{M}(M |W,A,Y ) =
q{W,M}(W,M | A,Y )

q{W,M}(W | A,Y )
= p(M | A,W ).

Combining these two kernels into (12), where~Y \~Y ∗= {W,M}, and evaluating q{M}(M |W,A,Y )
at A = a yields

p(Y | do(a)) = ∑
W,M

φ
a
{Y,A,W}(p(W,A,M,Y );G )φ{A,M}(p(W,A,M,Y );G )

= ∑
W,M

q{M}(M |W,a,Y )q{W,Y}(W,Y | A,M)

= ∑
W,M

p(M | a,W )

(
∑
A

p(Y |M,A,W )p(A,W )

)
.

This is known as the front-door formula (Pearl, 2009).
Expressions obtained from (12) may become quite complicated in arbitrary ADMGs. How-

ever, the ID algorithm as expressed in (12) may be still be viewed as a kind of “nested g-formula”
appropriate to the hidden variable DAG setting, in the following sense. Just as was the case in
(8), no term in (12) is a density over any element in ~A. This is because no variable in ~A is an
element of any ~D ∈ D(G (~V )~Y ∗), which means all elements in ~A are fixed in every term in (12).
In fact, removing terms of the form p(A | paG (A)) from the DAG factorization corresponds to
fixing in DAGs without hidden variables.

5.8. Path-Specific Effects

Path-specific effects in DAGs with all variables observed were not always identified due to the
presence of recanting witnesses. In hidden variable DAGs, an additional type of graphical struc-
ture may also prevent identification.

Given a latent projection ADMG G (~V ), fix disjoint sets ~A,~Y and a set of proper causal
paths π for ~A and ~Y , where each A ∈ ~A is the origin of at least one path in π . Let ~Y ∗ ≡
anG~V\~A

(~Y ). Then ~D ∈ D(G (~V )~Y ∗) is said to be a recanting district for π if there exists a path
in π of the form 〈(AD1)→, . . . ,(W2Y1)→〉, and another proper causal path not in π of the form
〈(AD2)→, . . . ,(W2Y2)→〉, where D1,D2 ∈ ~D, and Y1,Y2 ∈~Y . Identification of potential outcomes
{Y (π,~a,~a′) |Y ∈~Y} involved in a path-specific effect is characterized in DAGs with hidden vari-
ables by the absence of a recanting district, and identifiability of the effect of ~A on ~Y along all
paths. Specifically, given disjoint vertex sets ~A,~Y in a DAG G (~V ), and a set π of proper causal
paths for ~A and ~Y , the distribution p({Y (π,~a,~a′) | Y ∈~Y}) is identified if and only if there does
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not exist a recanting witness for π , and p(~Y | do(~a)) is identified. If p({Y (π,~a,~a′) | Y ∈~Y}) is
identified, its identifying expression is

p({Y (π,~a,~a′) | Y ∈~Y}) = ∑
~Y ∗\~Y

∏
~D∈D(G~Y∗ )

φ~V\~D(p(~V );G (~V ))|paG (~V )(
~D)∩~A=~̃apa

G (~V )
(~D)∩~A

, (13)

where ~̃apaG (~D)∩~A is defined to be ~apaG (~D)∩~A if all elements in paG (~D)∩~A are connected to ele-

ments in ~D via edges in π , defined to be ~a′
paG (~D)∩~A if all elements in paG (~D)∩~A are connected

to elements in ~D via edges not in π , and defined to be the empty set if paG (~D)∩~A = /0. The ab-
sence of a recanting district guarantees these three possibilities are exhaustive. Just as (12) was
the appropriate nested generalization of the g-formula (8) to hidden variable DAGs, so is (13)
the appropriate nested generalization of the edge g-formula (11) to hidden variable DAGs. The
original version of this algorithm was described in (Shpitser, 2013), with the above reformulation
based on the fixing operator found in (Shpitser and Sherman, 2018).

Consider Fig. 1 (c), where we are interested in the path-specific effect of A on Y via the
path 〈(AZ)→,(ZY )→〉. The latent projection of this graph is shown in Fig. 1 (d). Here ~Y ∗ =
{W,M,Z,Y}, and D(G~Y ∗) = {{W},{Z},{M,Y}}. Note that there is no recanting district – the
district containing the first post-exposure variable on the only path of interest is {Z}, and no
path other than 〈(AZ)→,(ZY )→〉 has the first post-exposure variable in this district. Furthermore,
p(Y | do(a)) is identifiable. Thus, the counterfactual corresponding to the path-specific effect is
identified:

p(Y (π,a,a′)) = ∑
W,Z,M

(
φ{W,A,Z}(p;G (d))|A=a′

)
·
(

φ{W,A,M,Y}(p;G (d))|A=a

)
·
(

φ{A,M,Z,Y}(p;G (d))
)

= ∑
W,Z,M

(
p(Y | a′,M,Z,W )p(M | a′,W )

)
p(Z | a,M,W )p(W ),

where G (d) is the graph shown in Fig. 1 (d).
On the other hand, if we were interested in the path-specific effect of A on Y along paths

π = {〈(AZ)→,(ZY )→〉;〈(AY )→〉}, this path-specific effect is not identified. This is because the
path 〈(AM)→,(MY )→〉 is not in π but has (AM)→ as the first edge, while 〈(AY )→〉 is a path in π .
M and Y share a district in G (~V )~Y ∗ , where~Y ∗ = {W,M,Z,Y}. This implies {M,Y} is a recanting
district, and will prevent identification of p(Y (π,a,a′)).

5.9. Responses To Dynamic Treatment Regimes

An adaption of the ID algorithm for identification of distributions over responses to dynamic
treatment regimes of the form p({Y (~g~A) | Y ∈ ~Y}) in causal models represented by a hidden
variable DAG G (~H ∪~V ) was given in (Tian, 2008).

As before, we rephrase this algorithm in terms of the fixing operation, CADMGs and kernels.
Given a latent projection G (~V ) of G (~H ∪~V ), define the graph G (~V )~g~A to be an ADMG obtained
from G (~V ) by removing all edges pointing into ~A and adding a directed edge W → A for any
W ∈ ~WA. Define ~Y ∗ ≡ anG (~V )~g~A

(~Y )\~A. Then p({Y (~g~A) | Y ∈~Y}) is identified if p(~Y ∗ | do(~a)) is
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identified. Moreover, the identification formula is

p({Y (~g~A) | Y ∈~Y}) = ∑
(~Y ∗∪~A)\~Y

∏
~D∈D(G (~V )Y∗ )

φ~V\~D(p(~V );G (~V ))|paG (~V )(
~D)∩~A=~̃apa

G (~V )
(~D)∩~A

,

where for every ~D, ~̃apaG (~V )(
~D)∩~A is defined to be {A = gA(~WA) | A∈ paG (~V )(

~D)∩~A} if paG (~V )(
~D)∩

~A is not empty, and is defined to be the empty set otherwise. The sum over ~A is vacuous if ~g~A is
a set of deterministic policies, since in this case there is no variation in values of ~A in any Y (~g~A).
This algorithm was shown to be complete in (Shpitser and Sherman, 2018).

As an example, in Fig. 1 (c), if ~g~A = {gA(W ),gZ(M,A,W )}, G (~V ) is shown in Fig. 1 (d), and
G (~V )~g~A is the same graph as G (~V ). Since p(Y,M,W | do(a,z)) is identified as

φ{A,M,Z,Y}(p;G (~V ))φ{W,A,Z}(p;G (~V ))|A=a,Z=z = p(W )p(Y | z,M,a,W )p(M | a,W ),

p(Y (~g~A)) is also identified as

∑
W,M,A,Z

φ{A,M,Z,Y}(p;G (~V ))φ{W,A,Z}(p;G (~V ))|{A=gA(W ),Z=gZ(M,A,W )}

= ∑
W,M,A,Z

p(W )p(Y |Z = gZ(M,A = gA(W ),W ),M,A = gA(W ),W )p(M|A = gA(W ),W ).

6. Conditional Counterfactual Distributions

A common version of the identification problem is identification of conditional interventional
distributions p(~Y |~Z,do(~a)) = p(~Y (~a) |~Z(~a)) which is defined as p(~Y ∪~Z | do(~a))/p(~Z | do(~a))
or p(~Y (~a)∪~Z(~a))/p(~Z(~a)). These types of distributions are of interest in causal inference appli-
cations where effect modification, variation of causal effects within particular subpopulations, is
of interest.

Characterizing identification of these distributions is possible using (12), (13) and a subset of
~Z obtained using a generalized version of a conditional ignorability argument, where the neces-
sary conditional independence is read off from a particular version of a causal graph. Prior work
phrased the independence needed in terms of rule 2 of do-calculus (Pearl, 2009). Here we de-
scribe a generalization of do-calculus called potential outcome calculus that describes identities
governing distributions on potential outcomes defined via (4), based on graphs describing the
Markov properties of distributions over these potential outcomes. These graphs are called single
world intervention graphs (SWIGs) (Richardson and Robins, 2013). The advantage of the formu-
lation we describe here is it generalizes in a straightforward way to counterfactuals not readily
expressed by means of Pearl’s do(.) operator, such as counterfactuals that describe path-specific
effects (Malinsky et al., 2019).

6.1. Single World Intervention Graphs

Given a causal DAG G (~V ) and a set of variables ~A we wish to intervene on, we construct the
SWIG G (~a) as follows from G (~V ). Each vertex A ∈ ~A in G (~V ) is split into a random vertex A

Journal de la Société Française de Statistique, Vol. 161 No. 1 91-119
http://www.sfds.asso.fr/journal

© Société Française de Statistique et Société Mathématique de France (2020) ISSN: 2102-6238



Identification 115

A M Y

H

(a)

A M Y

(b)

A a M(a) Y(a)

H

(c)

A a M(a) Y(a)

(d)

FIGURE 3. (a) A hidden variable graph corresponding to the observed data distribution. (b) The latent projection of
the graph in (a), assuming H is a hidden variable. (c) A SWIG corresponding to the world where A is set to value a,
derived from the DAG in (a). (d) A latent projection version of the SWIG in (c).

and a fixed vertex a (note the lower case). All edges with arrowheads into A in G (~V ) are inherited
by the random vertex, and all directed edges out of A in G (~V ) are inherited by the fixed vertex.
All other edges in G (~V ) remain in G (~a). Finally, a vertex in G (~a) corresponding to V in G (~V ) is
labeled as a counterfactual V (~aV ) with a subset~aV consisting of all elements of~a with a directed
path in G (~a) to the vertex corresponding to V . As an example, given a hidden variable DAG G
in Fig 3 (a), the SWIG G (a) is shown in Fig. 3 (c).

The resulting vertices {V (~aV ) : V ∈~V} correspond to the set of counterfactuals ~V (~a)≡V (~a)
defined by (4). The following result was proved in (Richardson and Robins, 2013):

p(~V (~a)) = ∏
V (~aV )∈~V (~a)

p(V (~aV )|paG (~a)(V (~aV ))).

In other words p(~V (~a)) Markov factorizes with respect to the SWIG G (~a). An important conse-
quence of this result is that conditional independences in p(~V (~a)) may be directly read off from
G (~a) using d-separation. As an example, p(A,H,M(a),Y (a)) Markov factorizes with respect to
the SWIG shown in Fig. 3 (c):

p(A,H,M(a),Y (a)) = p(H)p(A | H)p(Y (a) |M(a),H)p(M(a)).

We can therefore use d-separation in the SWIG to obtain independence statements that hold
in the model. For example, the conditional ignorability constraint (A ⊥⊥ Y (a) | H) holds by d-
separation in Fig. 3 (c).

SWIGs may be constructed from latent projection ADMGs G (~V ) of a hidden variable DAG
G (~V ∪ ~H) by an identical “splitting” procedure, and conditional independences of a marginal
counterfactual distribution p(~V (~a)) may be directly read off from G (~a) using m-separation, by
a simple corollary of the above result. As an example, the SWIG G (a) in Fig. 3 (d) is obtained
from the latent projection in Fig. 3 (b) obtained from Fig. 3 (a). In this SWIG, A⊥⊥M(a) can be
obtained by m-separation.

6.2. The Potential Outcomes Calculus

Potential outcomes calculus is the following three identities with preconditions given by d-
separation (or m-separation) on SWIGs. Fix disjoint subsets~Y ,~Z, ~W ,~X of ~V . Then

1 p(~Y (~x)|~Z(~x), ~W (~x)) = p(~Y (~x)|~Z(~x)) if (~Y (~x)⊥⊥~Z(~x) | ~W (~x)) in G (~x).

Journal de la Société Française de Statistique, Vol. 161 No. 1 91-119
http://www.sfds.asso.fr/journal

© Société Française de Statistique et Société Mathématique de France (2020) ISSN: 2102-6238



116 Shpitser

2 p(~Y (~x,~z)) = p(~Y (~x)|~W (~x),~Z(~x) =~z) if~Y (~x,~z)⊥⊥~Z(~x,~z) | ~W (~x,~z) in G (~x,~z).

3 p(~Y (~x,~z)) = p(~Y (~x)) if~Y (~x,~z)⊥⊥~z in G (~x,~z).

Rule 1 encodes the fact that conditional independences in a counterfactual distribution p(~V (~x))
may be read off by d-separation or m-separation in the appropriate SWIG G (~x). Rule 2 is a kind
of generalized conditional ignorability that governs where interventions on~z are equivalent with
conditioning on~z, for a particular set of variables given that other variables were either intervened
on (~X), or conditioned on (~W ). Classical conditional ignorability assumption is often assumed
directly, whereas here conditional ignorability type statements are read off by m-separation from
the appropriate SWIG G (~x,~z).

Rules 1 and 2 are straightforward analogues of Pearl’s do-calculus rules, rephrased in terms
of SWIGs and potential outcomes. Rule 3 we state here is far simpler than Pearl’s rule 3, and
states that a counterfactual ~Y (~x,~z) does not depend on~z if it is the case that the corresponding
set of fixed vertices in the SWIG G (~x,~z) are d-separated (or m-separated) from~Y (~x,~z), meaning
that there is no directed path from the former to the latter. This rule simply encodes the fact
that recursive substitution (4) for any Y (~a) may yield a counterfactual that does not depend on
some values in~a. This may occur if the corresponding variables are in the future relative to Y , or
due to some exclusion restriction in the causal model, as may happen with instrumental variable
models. Importantly, it was shown in (Malinsky et al., 2019) that simplifying Pearl’s rule 3 in
this way is without loss of generality: all do-calculus derivations are still possible to derive with
the 3 rules given here, including the simpler rule 3.

Rule 1 may be termed the “interventional global Markov property,” rule 2 may be termed
“generalized conditional ignorability,” and rule 3 may be termed “causal irrelevance.” Rule 2 is
of particular relevance to identification theory we present below.

6.3. Conditional Causal Effects

Given rule 2 of potential outcomes calculus, identification of distributions of the form p(~Y (~a) |
~Z(~a) =~z) is quite simple to characterize. Let ~W be any maximal subset of ~Z such that for any~z,
p(~Y (~a) | ~Z(~a) =~z) = p(~Y (~a,~w) | {Z(~a,~w) : Z ∈ ~Z \ ~W}). Such a set is the unique largest set to
which rule 2 applies.

Given this set, the distribution p(~Y (~a) |~Z(~a)=~z) is identifiable if and only if p(~Y (~a),{Z(~a,~w) :
Z ∈~Z \ ~W}) is identifiable. Moreover, the identification formula is given by

p(~Y (~a) |~Z(~a) =~z) =
p(~Y (~a),{Z(~a,~w) = z : Z ∈~Z \ ~W})

p({Z(~a,~w) = z : Z ∈~Z \ ~W})
,

where p(~Y (~a),{Z(~a,~w) = z : Z ∈~Z \~W}) is identified via (12), and p({Z(~a,~w) = z : Z ∈~Z \~W})
is obtained from p(~Y (~a),{Z(~a,~w) = z : Z ∈ ~Z \ ~W}) via marginalization (Shpitser and Pearl,
2006a).

As an example, in G (e) shown in Fig. 2 (e), if the conditional interventional distribution
p(Y (a) |W (a) = w) is of interest, we conclude that p(Y (a) |W (a) = w) = p(Y (a) |W = w) 6=
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p(Y (a,w)), since W and Y (a,w) are not m-separated in the SWIG G (a,w) derived from G (e).
Thus, to identify p(Y (a) |W (a) = w) we first identify p(Y (a),W (a)) as

∑
M

p(M | a,W )

(
∑
A

p(Y |M,A,W )p(A,W )

)
,

which yields

p(Y (a) |W (a) = w) =
Y (a),W (a) = w

p(W (a)
|W (a)=w = ∑

M
p(M | a,w)

(
∑
A

p(Y |M,A,w)p(A | w)

)
An extension of these results that gives a complete identification formula for conditional distri-
butions associated with path-specific effects, using rule 2 of the potential outcomes calculus is
described in (Malinsky et al., 2019).

7. Conclusion

In this paper we introduced a number of functions of potential outcome random variables used
in causal inference applications, including treatment effects, direct, indirect, and path-specific
effects, and responses to dynamic treatment regimes. We described a simple characterization of
identifiability of these targets in fully observed causal models of a directed acyclic graph based
on variations of the g-formula (Robins, 1986). Finally, we gave a simplified description of iden-
tification algorithms for these targets in causal models of a directed acyclic graph where some
variables are unobserved, which first appeared in (Tian and Pearl, 2002; Tian, 2008; Shpitser
and Pearl, 2006a; Shpitser, 2013). This description was based on a truncated nested Markov
factorization, which is itself based on conditional mixed graphs, kernels, and the fixing opera-
tor described in (Richardson et al., 2017). The identification algorithms described are known to
be complete for treatment effects, conditional treatment effects, and path-specific effects, and
responses to dynamic treatment regimes.
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