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Abstract: Our ambition is to present a gentle introduction to the field of targeted learning. As an example, we consider
statistical inference on a simple causal quantity that is ubiquitous in the causal literature. We use this exemplar
parameter to introduce key concepts that can be applied to more complicated problems. The introduction weaves
together two main threads, one theoretical and the other computational. It also contains exercises. The code is written
in the programming language R, which is widely used among statisticians and data scientists to develop statistical
software and data analysis. It uses tlrider, a package that we built specifically for this project.

Résumé : Notre ambition est de présenter une introduction accessible au domaine de l’apprentissage ciblé. À titre
d’exemple, nous considérons l’inférence statistique d’une quantité causale simple souvent rencontrée dans la littéra-
ture causale. Nous utilisons ce paramètre exemplaire pour introduire des concepts-clefs qui jouent un rôle important
dans des problèmes plus difficiles. L’introduction entrelace deux fils narratifs, l’un théorique et l’autre computation-
nel. Elle contient aussi des exercices. Le code est écrit dans le langage R, qui est largement utilisé par les statisticiens
et data scientists pour développer des programmes statistiques et des analyses de données. Il s’appuie sur le paquetage
tlrider, composé spécifiquement pour ce projet.
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1. A ride

1.1. Introduction

Our ambition is to present a gentle introduction to the field of targeted learning. 1 As an example,
we consider statistical inference on a simple causal quantity that is ubiquitous in the causal
literature. We use this exemplar parameter to introduce key concepts that can be applied to more
complicated problems. The introduction weaves together two main threads, one theoretical and
the other computational.

1.1.1. A causal story

We focus on a causal story where a random reward (a real number between 0 and 1) is given based
on an action undertaken (one among two) and the random context where the action is performed
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202 Benkeser & Chambaz

(summarized by a real number between 0 and 1). The causal quantity of interest is the average
difference of the two counterfactual rewards. This is a story as old as time. Should we take the
red pill or the blue pill? Should we show our customers advertisement A or advertisement B?
Should we require individuals to undergo cancer screening? At their core, each of these questions
is asking what action should be taken to maximize a “reward.”

We will build several estimators and discuss their respective merits, theoretically and com-
putationally. The construction of the most involved estimator will unfold in targeted learning
territory, at the frontier of machine learning and semiparametrics, the statistical theory of infer-
ence based on semiparametric models.

1.1.2. The tlrider package

The computational illustrations will be developed based on the companion package tlrider.
The package can be installed by running the following code:

devtools::install_github("achambaz/tlride/tlrider")

The version used in this document is 1.1.0.

Additional packages are also required, including tidyverse (Wickham and Grolemund,
2016), caret (Kuhn, 2020) and ggdag (Barrett, 2018). Assuming that these are installed too,
we can run the next chunk of code:

set.seed(3141516) ## because reproducibility matters...
library(tidyverse)
library(caret)
library(ggdag)
library(tlrider)

1.1.3. What we will discuss

To begin, we discuss the nature of the parameter of interest, viewing it as the value of a statis-
tical mapping evaluated at the law of the data (Section 2), with an emphasis on the smoothness
and double-robustness properties inherited from the mapping (Sections 3 and 4). We then turn
to the estimation of the parameter of interest. We first introduce and comment upon a simple
inference strategy assuming provisionally that a relevant feature of the law of the data is known
to us (Section 6). Second, we present the notion of nuisance parameters and adopt an algorith-
mic stance on their estimation (Section 7). Third, we introduce and comment upon two “naive”
inference strategies (Section 8), the one-step correction procedure (Section 9) and, finally, the
targeted minimum loss estimation procedure tailored to the inference of the parameter of main
interest. In the appendix, we collect our notation (Section A), and present some results that are
used in the main text and their proofs (Sections B and C).
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1.2. A simulation study

1.2.1. Reproducible experiment as a law

We are interested in a reproducible experiment. Every time this experiment is run, it generates an
observation that we call O. We view O as a random variable drawn from the law of the experiment
that we denote by P0.

We view P0 as an element of the model M . The model is a collection of laws. In particular, the
model contains all laws that we think may plausibly describe the law of the experiment. Thus,
the choice of model is based on our scientific knowledge of the experiment. The more we know
about the experiment, the smaller is M . In all our examples, we use large models that reflect a
lack of knowledge about many aspects of the experiment.

1.2.2. A synthetic reproducible experiment

Instead of considering a real-life reproducible experiment, we focus for pedagogical purposes on
a synthetic reproducible experiment. Thus we can from now on take on two different roles: that
of an oracle knowing completely the nature of the experiment, and that of a statistician eager to
know more about the experiment by observing some of its outputs.

Let us run the example built into the tlrider package:

example(tlrider)

A few objects have been defined:

ls()
#> [1] "another_experiment" "experiment" "expit"
#> [4] "filter" "logit" "sigma0"

The function expit implements the link function expit : R→]0,1[ given by expit(x) .
= (1+

e−x)−1. The function logit implements its inverse function logit :]0,1[→R given by logit(p) .
=

log[p/(1− p)].
Let us take a look at experiment:

experiment
#> A law for (W,A,Y) in [0,1] x {0,1} x [0,1].
#>
#> If the law is fully characterized, you can use method
#> ’sample_from’ to sample from it.
#>
#> If you built the law, or if you are an _oracle_, you can also
#> use methods ’reveal’ to reveal its relevant features (QW, Gbar,
#> Qbar, qY -- see ’?reveal’), and ’alter’ to change some of them.
#>
#> If all its relevant features are characterized, you can use
#> methods ’evaluate_psi’ to obtain the value of ’Psi’ at this law
#> (see ’?evaluate_psi’) and ’evaluate_eic’ to obtain the efficient
#> influence curve of ’Psi’ at this law (see ’?evaluate_eic’).
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The law P0 of the synthetic experiment experiment built by us generates a generic observa-
tion O that decomposes as

O .
= (W,A,Y ) ∈ [0,1]×{0,1}× [0,1].

We interpret W as a real valued summary measure of a random context where an action A chosen
among two is undertaken, leading to a real valued reward Y .

We can sample from the experiment (simply run ?sample_from to see the man page of
method sample_from). The next chunk of code runs the experiment five times, independently:

(five_obs <- sample_from(experiment, n = 5))
#> W A Y
#> [1,] 0.414 1 0.996
#> [2,] 0.409 1 0.669
#> [3,] 0.404 0 0.825
#> [4,] 0.462 1 0.539
#> [5,] 0.404 1 0.986

1.2.3. Revealing experiment

Acting as oracles, we can peek into experiment and reveal a selection of relevant features
(simply run ?reveal to see the man page of method reveal). Made by us, the selection exhibits
features that will play an important role in the text.

relevant_features <- reveal(experiment)
names(relevant_features)
#> [1] "QW" "Gbar" "Qbar" "qY" "sample_from"

We have an oracular knowledge of experiment and can thus comment upon the features of
P0 revealed in relevant_features.

QW The QW feature describes the marginal law of W , that we call Q0,W . 2

relevant_features$QW
#> function(W,
#> mixture_weights = c(1/10, 9/10, 0),
#> mins = c(0, 11/30, 0),
#> maxs = c(1, 14/30, 1)) {
#> out <- sapply(1:length(mixture_weights),
#> function(ii){
#> mixture_weights[ii] *
#> stats::dunif(W,
#> min = mins[ii],
#> max = maxs[ii])
#> })
#> return(rowSums(out))

2 A summary of the notation used throughout the text is presented there, in Appendix A.

Journal de la Société Française de Statistique, Vol. 161 No. 1 201-286
http://www.sfds.asso.fr/journal

© Société Française de Statistique et Société Mathématique de France (2020) ISSN: 2102-6238



A Ride in Targeted Learning Territory 205

#> }
#> <environment: 0xf3ca190>

It appears that Q0,W is a mixture of the uniform laws over [0,1] (weight 1/10) and
[11/30,14/30] (weight 9/10). 3

Gbar The Gbar feature describes the conditional probability of action A = 1 given W . For each
a ∈ {0,1}, we denote

Ḡ0(W )
.
= PrP0(A = 1|W ),

`Ḡ0(a,W )
.
= PrP0(A = a|W ).

Obviously,

`Ḡ0(A,W ) = AḠ0(W )+(1−A)(1− Ḡ0(W )).

relevant_features$Gbar
#> function(W) {
#> expit(1 + 2 * W - 4 * sqrt(abs((W - 5/12))))
#> }
#> <environment: 0xf3ca190>

Note how real numbers of the form 1+2W −4∗
√
|W −5/12|) are mapped into the interval

[0,1] by the expit link function. We refer the reader to Figure 6 for a visualization of Ḡ0.

qY The qY feature describes the conditional density of Y given A and W . For each y ∈]0,1[, we
denote by q0,Y (y,A,W ) the conditional density evaluated at y of Y given A and W .

relevant_features$qY
#> function(obs, Qbar, shape10 = 2, shape11 = 3){
#> A <- obs[, "A"]
#> AW <- obs[, c("A", "W")]
#> QAW <- Qbar(AW)
#> shape1 <- ifelse(A == 0, shape10, shape11)
#> stats::dbeta(Y,
#> shape1 = shape1,
#> shape2 = shape1 * (1 - QAW) / QAW)
#> }
#> <environment: 0xf3ca190>

It appears that the conditional law of Y given A and W is the Beta law with conditional mean
and variance characterized by the Qbar feature of experiment (see below) and the shape10
and shape11 parameters.

3 We fine-tuned the marginal law Q0,W of W to make it easier later on to drive home important messages.
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Qbar As for the Qbar feature, it describes the conditional mean of Y given A and W .

relevant_features$Qbar
#> function(AW) {
#> A <- AW[, "A"]
#> W <- AW[, "W"]
#> A * (cos((-1/2 + W) * pi) * 2/5 + 1/5 +
#> (1/3 <= W & W <= 1/2) / 5 +
#> (W >= 3/4) * (W - 3/4) * 2) +
#> (1 - A) * (sin(4 * W^2 * pi) / 4 + 1/2)
#> }
#> <bytecode: 0x104fa668>
#> <environment: 0xf3ca190>

We denote Q̄0(A,W ) = EP0(Y |A,W ) the conditional mean of Y given A and W . Note how
Q̄0(A,W ) does depend heavily on A and W . We refer the reader to Section 1.3 for a visualization
of Q̄0.

sample_from Finally, the sample_from feature is the function called by method
sample_from when it is applied to an object of class LAW, like experiment.

relevant_features$sample_from
#> function(n, ideal = FALSE) {
#> ## preliminary
#> n <- R.utils::Arguments$getInteger(n, c(1, Inf))
#> ideal <- R.utils::Arguments$getLogical(ideal)
#> ## ## ’Gbar’ and ’Qbar’ factors
#> Gbar <- experiment$.Gbar
#> Qbar <- experiment$.Qbar
#> ## sampling
#> ## ## context
#> params <- formals(experiment$.QW)
#> mixture_weights <- eval(params$mixture_weights)
#> mins <- eval(params$mins)
#> maxs <- eval(params$maxs)
#> W <- sample_from_mixture_of_uniforms(n, mixture_weights,
#> mins, maxs)
#> ## ## counterfactual rewards
#> zeroW <- cbind(A = 0, W)
#> oneW <- cbind(A = 1, W)
#> Qbar_zeroW <- Qbar(zeroW)
#> Qbar_oneW <- Qbar(oneW)
#> Yzero <- stats::rbeta(n,
#> shape1 = 2,
#> shape2 = 2 * (1 - Qbar_zeroW) / Qbar_zeroW)
#> Yone <- stats::rbeta(n,
#> shape1 = 3,
#> shape2 = 3 * (1 - Qbar_oneW) / Qbar_oneW)
#> ## ## action undertaken
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#> A <- stats::rbinom(n, size = 1, prob = Gbar(W))
#> ## ## actual reward
#> Y <- A * Yone + (1 - A) * Yzero
#> ## ## observation
#> if (ideal) {
#> obs <- cbind(W = W, Yzero = Yzero, Yone = Yone, A = A, Y = Y)
#> } else {
#> obs <- cbind(W = W, A = A, Y = Y)
#> }
#> return(obs)
#> }
#> <bytecode: 0xedf6bc0>
#> <environment: 0xf3ca190>

We will comment upon the ideal argument in the above sample_from feature in Section 2.1.

1.3. Visualization

1. Run the following chunk of code. It visualizes the conditional mean Q̄0.

Gbar <- relevant_features$Gbar
Qbar <- relevant_features$Qbar
QW <- relevant_features$QW

features <- tibble(w = seq(0, 1, length.out = 1e3)) %>%
mutate(Qw = QW(w),

Gw = Gbar(w),
Q1w = Qbar(cbind(A = 1, W = w)),
Q0w = Qbar(cbind(A = 0, W = w)),
blip_Qw = Q1w - Q0w)

features %>% select(-Qw, -Gw) %>%
rename("Q(1,.)" = Q1w,

"Q(0,.)" = Q0w,
"Q(1,.) - Q(0,.)" = blip_Qw) %>%

pivot_longer(-w, names_to = "f", values_to = "value") %>%
ggplot() +
geom_line(aes(x = w, y = value, color = f), size = 1) +
labs(y = "f(w)", title = bquote("Visualizing" ~ bar(Q)[0])) +
ylim(NA, 1)
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Visualizing Q0

2. Adapt the above chunk of code to visualize the marginal density Q0,W and conditional
probability Ḡ0.

1.4. Make your own experiment

You can easily make your own experiment.

1. Check out the man page of method alter by running ?alter.

2. Run the following chunk of code:

my_experiment <- LAW() ## creates an object of class ’LAW’
alter(my_experiment, ## characterize its relevant features

QW = function(W) {
out <- rep_len(0, length(W))
out[W == 0] <- 1/4
out[W == 1] <- 3/4
return(out)

},
Gbar = function(W) {

out <- rep_len(0, length(W))
out[W == 0] <- 1/3
out[W == 1] <- 3/5
return(out)

},
Qbar = function(AW) {

probs <- matrix(c(1/2, 2/3, 7/8, 4/5), ncol = 2,
dimnames = list(c("A=0", "A=1"),

c("W=0", "W=1")))
probs[cbind(AW[, "A"] + 1, AW[, "W"] + 1)]

},
qY = function(obs) {

probs <- matrix(c(1/2, 2/3, 7/8, 4/5), ncol = 2,
dimnames = list(c("A=0", "A=1"),
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c("W=0", "W=1")))
probs <- probs[cbind(obs[, "A"] + 1, obs[, "W"] + 1)]
obs[, "Y"] * probs + (1 - obs[, "Y"]) * (1 - probs)

},
sample_from = function(n) {

## preliminary
n <- R.utils::Arguments$getInteger(n, c(1, Inf))
## ’QW’, ’Gbar’ and ’Qbar’ features
QW <- my_experiment$.QW
Gbar <- my_experiment$.Gbar
Qbar <- my_experiment$.Qbar
## sampling
W <- rbinom(n, size = 1, prob = QW(1))
A <- rbinom(n, size = 1, prob = Gbar(W))
AW <- cbind(W = W, A = A)
Y <- rbinom(n, size = 1, Qbar(AW))
return(cbind(AW, Y = Y))

})

3. What does the next chunk do?

(sample_from(my_experiment, 3))
#> W A Y
#> [1,] 1 0 1
#> [2,] 0 0 1
#> [3,] 1 1 1

4. Characterize entirely the law of my_experiment. Hint:

obs <- sample_from(my_experiment, 1e4)
obs %>% as_tibble %>% group_by(W, A, Y) %>%

summarize(how_many = n()) %>% ungroup
#> # A tibble: 8 x 4
#> W A Y how_many
#> <int> <int> <int> <int>
#> 1 0 0 0 826
#> 2 0 0 1 833
#> 3 0 1 0 286
#> 4 0 1 1 561
#> 5 1 0 0 376
#> 6 1 0 1 2564
#> # ... with 2 more rows
obs %>% as_tibble %>% group_by(W, A) %>%

summarize(prob = mean(Y)) %>% ungroup
#> # A tibble: 4 x 3
#> W A prob
#> <int> <int> <dbl>
#> 1 0 0 0.502
#> 2 0 1 0.662
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#> 3 1 0 0.872
#> 4 1 1 0.798

5. Now, make your own experiment.

2. The parameter of interest

2.1. The parameter of interest

2.1.1. Definition

It happens that we especially care for a finite-dimensional feature of P0 that we denote by ψ0.
Its definition involves two of the aforementioned infinite-dimensional features, the marginal law
Q0,W of W and the conditional mean Q̄0 of Y given A and W :

ψ0
.
=
∫ (

Q̄0(1,w)− Q̄0(0,w)
)

dQ0,W (w) (1)

= EP0 (EP0(Y | A = 1,W )−EP0(Y | A = 0,W )) .

Acting as oracles, we can compute explicitly the numerical value of ψ0. The evaluate_psi
method makes it very easy (simply run ?estimate_psi to see the man page of the method):

(psi_zero <- evaluate_psi(experiment))
#> [1] 0.0832

2.1.2. A causal interpretation

Our interest in ψ0 is of causal nature. Taking a closer look at the sample_from feature of
experiment reveals indeed that the random making of an observation O drawn from P0 can
be summarized by the following directed acyclic graph:

dagify(
Y ~ A + Y1 + Y0, A ~ W, Y1 ~ W, Y0 ~ W,
labels = c(Y = "Actual reward",

A = "Action",
Y1 = "Counterfactual reward\n of action 1",
Y0 = "Counterfactual reward\n of action 0",
W = "Context of action"),

coords = list(
x = c(W = 0, A = -1, Y1 = 1.5, Y0 = 0.25, Y = 1),
y = c(W = 0, A = -1, Y1 = -0.5, Y0 = -0.5, Y = -1)),

outcome = "Y",
exposure = "A",
latent = c("Y0", "Y1")) %>% tidy_dagitty %>%
ggdag(text = TRUE, use_labels = "label") + theme_dag_grey()

In words, the experiment unfolds like this (see also Section B.1):
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FIGURE 1. Directed acyclic graph summarizing the inner causal mechanism at play in experiment.

1. a context of action W ∈ [0,1] is randomly generated;
2. two counterfactual rewards Y0 ∈ [0,1] and Y1 ∈ [0,1] are generated conditionally on W ;
3. an action A ∈ {0,1} (among two possible actions called a = 0 and a = 1) is undertaken,

(i) knowing the context but not the counterfactual rewards, and (ii) in such a way that both
actions can always be considered;

4. the action yields a reward Y , which equals either Y0 or Y1 depending on whether action
a = 0 or a = 1 has been undertaken;

5. summarize the course of the experiment with O .
= (W,A,Y ), thus concealing Y0 and Y1.

The above description of the experiment is useful to reinforce what it means to run the “ideal”
experiment by setting argument ideal to TRUE in a call to sample_from for experiment (see
Section 2.1.3). Doing so triggers a modification of the nature of the experiment, enforcing that
the counterfactual rewards Y0 and Y1 be part of the summary of the experiment eventually. In
light of the above enumeration,

O .
= (W,Y0,Y1,A,Y )

is output, as opposed to its summary measure O. This defines another experiment and its law,
that we denote P0.

It is straightforward to show that

ψ0 = EP0 (Y1−Y0) (2)

= EP0(Y1)−EP0(Y0).

Thus, ψ0 describes the average difference of the two counterfactual rewards. In other words, ψ0
quantifies the difference in average of the reward one would get in a world where one would
always enforce action a = 1 with the reward one would get in a world where one would always
enforce action a = 0. This said, it is worth emphasizing that ψ0 is a well-defined parameter
beyond its causal interpretation, and that it describes a standardized association between the
action A and reward Y .
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2.1.3. A causal computation

We can use our position as oracles to sample observations from the ideal experiment. We call
sample_from for experiment with its argument ideal set to TRUE in order to numerically
approximate ψ0. By the law of large numbers, the following code approximates ψ0 and shows it
approximate value.

B <- 1e6
ideal_obs <- sample_from(experiment, B, ideal = TRUE)
(psi_approx <- mean(ideal_obs[, "Yone"] - ideal_obs[, "Yzero"]))
#> [1] 0.083

The object psi_approx contains an approximation to ψ0 based on B observations from the
ideal experiment. The random sampling of observations results in uncertainty in the numerical
approximation of ψ0. This uncertainty can be quantified by constructing a 95% confidence inter-
val for ψ0. The central limit theorem and Slutsky’s lemma allow us to build such an interval as
follows.

sd_approx <- sd(ideal_obs[, "Yone"] - ideal_obs[, "Yzero"])
alpha <- 0.05
(psi_approx_CI <- psi_approx + c(-1, 1) *

qnorm(1 - alpha / 2) * sd_approx / sqrt(B))
#> [1] 0.0824 0.0836

We note that the interpretation of this confidence interval is that in 95% of draws of size B
from the ideal data generating experiment, the true value of ψ0 will be contained in the generated
confidence interval.

2.2. An alternative parameter of interest

Equality (2) shows that parameter ψ0 (1) is the difference in average rewards if we enforce
action a = 1 rather than a = 0. An alternative way to describe the rewards under different actions
involves quantiles as opposed to averages.

Let
Q0,Y (y,A,W )

.
=
∫ y

0
q0,Y (u,A,W )du

be the conditional cumulative distribution of reward Y given A and W , evaluated at y ∈]0,1[, that
is implied by P0. For each action a ∈ {0,1} and c ∈]0,1[, introduce

γ0,a,c
.
= inf

{
y ∈]0,1[:

∫
Q0,Y (y,a,w)dQ0,W (w)≥ c

}
. (3)

(Note: inf merely generalizes min, accounting for the fact that the minimum may fail to be
achieved.)

It is not very difficult to check (see Problem 1 below) that

γ0,a,c = inf{y ∈]0,1[: PrP0(Ya ≤ y)≥ c} . (4)
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Thus, γ0,a,c can be interpreted as the c-th quantile reward when action a is enforced. The differ-
ence

δ0,c
.
= γ0,1,c− γ0,0,c (5)

is the c-th quantile counterpart to parameter ψ0 (1).

1. ☡ Prove (4).

2. ☡ Compute the numerical value of γ0,a,c for each (a,c)∈ {0,1}×{1/4,1/2,3/4} using the
appropriate features of experiment (see relevant_features). Based on these results,
report the numerical value of δ0,c for each c ∈ {1/4,1/2,3/4}.

3. Approximate the numerical values of γ0,a,c for each (a,c) ∈ {0,1} × {1/4,1/2,3/4}
by drawing a large sample from the “ideal” data experiment and using empirical
quantile estimates. Deduce from these results a numerical approximation to δ0,c for
c ∈ {1/4,1/2,3/4}. Confirm that your results closely match those obtained in the
previous problem.

2.3. The statistical mapping of interest

The noble way to define a statistical parameter is to view it as the value of a statistical mapping
at the law of the experiment of interest. Beyond the elegance, this has paramount statistical
implications.

2.3.1. Opening discussion

Oftentimes, the premise of a statistical analysis is presented like this. One assumes that the law
P0 of the experiment of interest belongs to a statistical model

{Pθ : θ ∈ T}

(where T is some index set). The statistical model is identifiable, meaning that if two elements
Pθ and Pθ ′ coincide, then necessarily θ = θ ′. Therefore, there exists a unique θ0 ∈ T such that
P0 = Pθ0 , and one wishes to estimate θ0.

For instance, each Pθ could be the Gaussian law with mean θ ∈ T .
= R and variance 1, and

one could wish to estimate the mean θ0 of P0. To do so, one could rely on n observations X1, . . . ,
Xn drawn independently from P0. The empirical mean

θn
.
=

1
n

n

∑
i=1

Xi

estimates θ0. More generally, if we assume that VarP0(X1) is finite, then θn satisfies many useful
properties. In particular, it can be used to construct confidence intervals.

Of course, the mean of a law is defined beyond the small model {Pθ : θ ∈ R}. Let M be the
set of laws P on R such that VarP(X) is finite. In particular, P0 ∈M . For every P ∈M , the mean
EP(X) is well defined. Thus, we can introduce the statistical mapping Θ : M → R given by

Θ(P) .
= EP(X).
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Interestingly, the empirical measure Pn
4 is an element of M . Therefore, the statistical map-

ping Θ can be evaluated at Pn:

Θ(Pn) =
1
n

n

∑
i=1

Xi = θn.

We recover the empirical mean, and understand that it is a substitution estimator of the mean: in
order to estimate Θ(P0), we substitute Pn for P0 within Θ. 5

Substitution-based estimators are particularly valuable notably because they, by construction,
satisfy all the constraints to which the targeted parameter is subjected. For example, if X is a
binary random variable and the support of all distributions in our model is {0,1}, then Θ can
be interpreted as the probability that X = 1, a quantity known to live in the interval [0,1]. A
substitution estimator will also be guaranteed to fall into this interval. Some of the estimators
that we will build together are substitution-based, some are not.

2.3.2. The parameter as the value of a statistical mapping at the experiment

We now go back to our main topic of interest. Suppose we know beforehand that O drawn from
P0 takes its values in O

.
= [0,1]×{0,1}× [0,1] and that Ḡ0(W )

.
= PrP0(A = 1|W ) is bounded

away from zero and one Q0,W -almost surely (this is the case indeed). Then we can define model
M as the set of all laws P on O such that

Ḡ(W )
.
= PrP(A = 1|W )

is bounded away from zero and one QW -almost surely, where QW is the marginal law of W under
P.

Let us also define generically Q̄ as

Q̄(A,W )
.
= EP(Y |A,W ).

Note how we have suppressed the dependence of Ḡ and Q̄ on P for notational simplicity.
Central to our approach is viewing ψ0 as the value at P0 of the statistical mapping Ψ from M

to [0,1] characterized by

Ψ(P) .
=
∫ (

Q̄P(1,w)− Q̄P(0,w)
)

dQW (w) (6)

= EP
(
Q̄P(1,W )− Q̄P(0,W )

)
,

a clear extension of (1) where, for once, we make the dependence of Q̄ on P explicit to emphasize
how Ψ(P) truly depends on P.

4 The empirical measure Pn is the law such that (i) X drawn from Pn takes its values in {X1, . . . ,Xn}, and (ii) X = Xi
with probability n−1

5 There are many interesting parameters Θ for which Θ(Pn) is not defined, see for instance (6), our parameter of main
interest.
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2.3.3. The value of the statistical mapping at another experiment

When we ran example(tlrider) earlier, we created an object called another_experiment:

another_experiment
#> A law for (W,A,Y) in [0,1] x {0,1} x [0,1].
#>
#> If the law is fully characterized, you can use method
#> ’sample_from’ to sample from it.
#>
#> If you built the law, or if you are an _oracle_, you can also
#> use methods ’reveal’ to reveal its relevant features (QW, Gbar,
#> Qbar, qY -- see ’?reveal’), and ’alter’ to change some of them.
#>
#> If all its relevant features are characterized, you can use
#> methods ’evaluate_psi’ to obtain the value of ’Psi’ at this law
#> (see ’?evaluate_psi’) and ’evaluate_eic’ to obtain the efficient
#> influence curve of ’Psi’ at this law (see ’?evaluate_eic’).
reveal(another_experiment)
#> $QW
#> function(x, min = 1/10, max = 9/10){
#> stats::dunif(x, min = min, max = max)
#> }
#> <environment: 0x10837e90>
#>
#> $Gbar
#> function(W) {
#> sin((1 + W) * pi / 6)
#> }
#> <environment: 0x10837e90>
#>
#> $Qbar
#> function(AW, h) {
#> A <- AW[, "A"]
#> W <- AW[, "W"]
#> expit( logit( A * W + (1 - A) * W^2 ) +
#> h * 10 * sqrt(W) * A )
#> }
#> <environment: 0x10837e90>
#>
#> $qY
#> function(obs, Qbar, shape1 = 4){
#> AW <- obs[, c("A", "W")]
#> QAW <- Qbar(AW)
#> stats::gdbeta(Y,
#> shape1 = shape1,
#> shape2 = shape1 * (1 - QAW) / QAW)
#> }
#> <environment: 0x10837e90>
#>
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#> $sample_from
#> function(n, h) {
#> ## preliminary
#> n <- R.utils::Arguments$getInteger(n, c(1, Inf))
#> h <- R.utils::Arguments$getNumeric(h)
#> ## ## ’Gbar’ and ’Qbar’ factors
#> Gbar <- another_experiment$.Gbar
#> Qbar <- another_experiment$.Qbar
#> ## sampling
#> ## ## context
#> params <- formals(another_experiment$.QW)
#> W <- stats::runif(n, min = eval(params$min),
#> max = eval(params$max))
#> ## ## action undertaken
#> A <- stats::rbinom(n, size = 1, prob = Gbar(W))
#> ## ## reward
#> params <- formals(another_experiment$.qY)
#> shape1 <- eval(params$shape1)
#> QAW <- Qbar(cbind(A = A, W = W), h = h)
#> Y <- stats::rbeta(n,
#> shape1 = shape1,
#> shape2 = shape1 * (1 - QAW) / QAW)
#> ## ## observation
#> obs <- cbind(W = W, A = A, Y = Y)
#> return(obs)
#> }
#> <environment: 0x10837e90>
(two_obs_another_experiment <- sample_from(another_experiment, 2, h = 0))
#> W A Y
#> [1,] 0.101 0 0.00841
#> [2,] 0.620 1 0.51166

By taking an oracular look at the output of reveal(another_experiment), we discover
that the law Π0 ∈M encoded by default (i.e., with h=0) in another_experiment differs starkly
from P0.

However, the parameter Ψ(Π0) is well defined. Straightforward algebra shows that Ψ(Π0) =
59/300. The numeric computation below confirms the equality.

(psi_Pi_zero <- evaluate_psi(another_experiment, h = 0))
#> [1] 0.197
round(59/300, 3)
#> [1] 0.197

2.4. Alternative statistical mapping

We now resume the exercise of Section 2.2. Like we did in Section 2.3, we introduce a generic
version of the relevant features q0,Y and Q0,Y . Specifically, we define qY (y,A,W ) to be the condi-
tional density of Y given A and W , evaluated at y, that is implied by a generic P ∈M . Similarly,
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we use QY to denote the corresponding cumulative distribution function.
The covariate-adjusted c-th quantile reward for action a ∈ {0,1}, γ0,a,c (3), may be viewed as

the value at P0 of a mapping Γa,c from M to [0,1] characterized by

Γa,c(P) = inf
{

y ∈]0,1[:
∫

QY (y,a,w)dQW (w)≥ c
}
.

The difference in c-th quantile rewards, δ0,c (5), may similarly be viewed as the value at P0 of a
mapping ∆c from M to [0,1], characterized by

∆c(P)
.
= Γ1,c(P)−Γ0,c(P).

1. Compute the numerical value of Γa,c(Π0) for (a,c) ∈ {0,1}×{1/4,1/2,3/4} using the
relevant features of another_experiment. Based on these results, report the numerical
value of ∆c(Π0) for each c ∈ {1/4,1/2,3/4}.

2. Approximate the value of Γ0,a,c(Π0) for (a,c) ∈ {0,1} × {1/4,1/2,3/4} by drawing
a large sample from the “ideal” data experiment and using empirical quantile esti-
mates. Deduce from these results a numerical approximation to ∆0,c(Π0) for each
c ∈ {1/4,1/2,3/4}. Confirm that your results closely match those obtained in the
previous problem.

3. Building upon the code you wrote to solve the previous problem, construct a confidence
interval with asymptotic level 95% for ∆0,c(Π0), with c ∈ {1/4,1/2,3/4}.

2.5. Representations

In Section 2.3, we reoriented our view of the target parameter to be that of a statistical functional
of the law of the observed data. Specifically, we viewed the parameter as a function of specific
features of the observed data law, namely QW and Q̄.

2.5.1. Yet another representation

It is straightforward to show an equivalent representation of the parameter as

ψ0 =
∫ 2a−1

`Ḡ0(a,w)
ydP0(w,a,y)

= EP0

(
2A−1

`Ḡ0(A,W )
Y
)
. (7)

Viewing again the parameter as a statistical mapping from M to [0,1], it also holds that

Ψ(P) =
∫ 2a−1

`Ḡ(a,w)
ydP(w,a,y)

= EP

(
2A−1

`Ḡ0(A,W )
Y
)
. (8)
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2.5.2. From representations to estimation strategies

Our reason for introducing this alternative view of the target parameter will become clear when
we discuss estimation of the target parameter. Specifically, the representations (1) and (7) natu-
rally suggest different estimation strategies for ψ0, as hinted in Section 2.3.1. The former sug-
gests building an estimator of ψ0 using estimators of Q̄0 and of QW,0. The latter suggests building
an estimator of ψ0 using estimators of `Ḡ0 and of P0.

We return to these ideas in later sections.

2.6. Alternative representation

1. ☡ Show that for a′ = 0,1, γ0,a′,c as defined in (3) can be equivalently expressed as

inf
{

z ∈]0,1[:
∫ 1{a = a′}

`Ḡ(a′,W )
1{y≤ z}dP0(w,a,y)≥ c

}
.

3. Smoothness

3.1. Fluctuating smoothly

Within our view of the target parameter as a statistical mapping evaluated at the law of the
experiment, it is natural to inquire of properties this functional enjoys. For example, we may be
interested in asking how the value of Ψ(P) changes as we consider laws that get nearer to P in
M . If small deviations from P0 result in large changes in Ψ(P0), then we might hypothesize that
it will be difficult to produce stable estimators of ψ0. Fortunately, this turns out not to be the case
for the mapping Ψ, and so we say that Ψ is a smooth statistical mapping.

To discuss how Ψ(P) changes for distributions that get nearer to P in the model, we require a
more concrete notion of what it means to get near to a distribution in a model. The notion hinges
on fluctuations (or fluctuating models).

3.1.1. The another_experiment fluctuation

In Section 2.3.3, we discussed the nature of the object called another_experiment that was
created when we ran example(tlrider):

another_experiment
#> A law for (W,A,Y) in [0,1] x {0,1} x [0,1].
#>
#> If the law is fully characterized, you can use method
#> ’sample_from’ to sample from it.
#>
#> If you built the law, or if you are an _oracle_, you can also
#> use methods ’reveal’ to reveal its relevant features (QW, Gbar,
#> Qbar, qY -- see ’?reveal’), and ’alter’ to change some of them.
#>
#> If all its relevant features are characterized, you can use
#> methods ’evaluate_psi’ to obtain the value of ’Psi’ at this law
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#> (see ’?evaluate_psi’) and ’evaluate_eic’ to obtain the efficient
#> influence curve of ’Psi’ at this law (see ’?evaluate_eic’).

The message is a little misleading. Indeed, another_experiment is not a law but, rather, a
collection of laws indexed by a real-valued parameter h. This oracular statement (we built the
object!) is evident when one looks again at the sample_from feature of another_experiment:

reveal(another_experiment)$sample_from
#> function(n, h) {
#> ## preliminary
#> n <- R.utils::Arguments$getInteger(n, c(1, Inf))
#> h <- R.utils::Arguments$getNumeric(h)
#> ## ## ’Gbar’ and ’Qbar’ factors
#> Gbar <- another_experiment$.Gbar
#> Qbar <- another_experiment$.Qbar
#> ## sampling
#> ## ## context
#> params <- formals(another_experiment$.QW)
#> W <- stats::runif(n, min = eval(params$min),
#> max = eval(params$max))
#> ## ## action undertaken
#> A <- stats::rbinom(n, size = 1, prob = Gbar(W))
#> ## ## reward
#> params <- formals(another_experiment$.qY)
#> shape1 <- eval(params$shape1)
#> QAW <- Qbar(cbind(A = A, W = W), h = h)
#> Y <- stats::rbeta(n,
#> shape1 = shape1,
#> shape2 = shape1 * (1 - QAW) / QAW)
#> ## ## observation
#> obs <- cbind(W = W, A = A, Y = Y)
#> return(obs)
#> }
#> <bytecode: 0xf3593b0>
#> <environment: 0x10837e90>

Let us call Πh ∈M the law encoded by another_experiment for a given h taken in ]−1,1[.
Note that

P
.
= {Πh : h ∈]−1,1[}

defines a collection of laws, i.e., a statistical model.
We say that P is a submodel of M because P ⊂M . Moreover, we say that this submodel

is through Π0 since Πh = Π0 when h = 0. We also say that P is a fluctuation of Π0.
One could enumerate many possible submodels in M through Π0. It turns out that all that

matters for our purposes is the form of the submodel in a neighborhood of Π0. We informally
say that this local behavior describes the direction of a submodel through Π0. We formalize this
notion Section 3.3.

We now have a notion of how to move through the model space P ∈M and can study how
the value of the parameter changes as we move away from a law P. Above, we said that Ψ is
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a smooth parameter if it does not change “abruptly” as we move towards P in any particular
direction. That is, we should hope that Ψ is differentiable along our submodel at P. This idea too
is formalized in Section 3.3. We now turn to illustrating this idea numerically.

3.1.2. Numerical illustration

The code below evaluates how the parameter changes for laws in P , and approximates the
derivative of the parameter along the submodel P at Π0. Recall that the numerical value of
Ψ(Π0) has already been computed and is stored in object psi_Pi_zero.

approx <- seq(-1, 1, length.out = 1e2)
psi_Pi_h <- sapply(approx, function(t) {

evaluate_psi(another_experiment, h = t)
})
slope_approx <- (psi_Pi_h - psi_Pi_zero) / approx
slope_approx <- slope_approx[min(which(approx > 0))]
ggplot() +

geom_point(data = data.frame(x = approx, y = psi_Pi_h), aes(x, y),
color = "#CC6666") +

geom_segment(aes(x = -1, y = psi_Pi_zero - slope_approx,
xend = 1, yend = psi_Pi_zero + slope_approx),

arrow = arrow(length = unit(0.03, "npc")),
color = "#9999CC") +

geom_vline(xintercept = 0, color = "#66CC99") +
geom_hline(yintercept = psi_Pi_zero, color = "#66CC99") +
labs(x = "h", y = expression(Psi(Pi[h])))

−1

0

1

−1.0 −0.5 0.0 0.5 1.0
h

Ψ
(Π

h)

FIGURE 2. Evolution of statistical mapping Ψ along fluctuation {Πh : h ∈ H}.

The red curve represents the function h 7→Ψ(Πh). The blue line represents the tangent to the
previous curve at h = 0, which indeed appears to be differentiable around h = 0. In Section 3.4,
we derive a closed-form expression for the slope of the blue curve.

Journal de la Société Française de Statistique, Vol. 161 No. 1 201-286
http://www.sfds.asso.fr/journal

© Société Française de Statistique et Société Mathématique de France (2020) ISSN: 2102-6238



A Ride in Targeted Learning Territory 221

3.2. Yet another experiment

1. Adapt the code from Problem 1 in Section 1.3 to visualize w 7→ EΠh(Y |A = 1,W = w),
w 7→ EΠh(Y |A = 0,W = w), and w 7→ EΠh(Y |A = 1,W = w)−EΠh(Y |A = 0,W = w), for
h ∈ {−1/2,0,1/2}.

2. Run the following chunk of code.

yet_another_experiment <- copy(another_experiment)
alter(yet_another_experiment,

Qbar = function(AW, h){
A <- AW[, "A"]
W <- AW[, "W"]
expit( logit( A * W + (1 - A) * W^2 ) +

h * (2*A - 1) / ifelse(A == 1,
sin((1 + W) * pi / 6),
1 - sin((1 + W) * pi / 6)) *

(Y - A * W + (1 - A) * W^2))
})

3. Justify that yet_another_fluctuation characterizes another fluctuation of Π0. Com-
ment upon the similarities and differences between {Πh : h ∈]− 1,1[} and {Π′h : h ∈
]−1,1[}.

4. Repeat Problem 1 above with Π′h substituted for Πh.

5. Re-produce Figure 2 for the {Π′h : h ∈]− 1,1[} fluctuation. Comment on the similarities
and differences between the resulting figure and Figure 2. In particular, how does the
behavior of the target parameter around h = 0 compare between laws Π0 and Π′0?

3.3. ☡ More on fluctuations and smoothness

3.3.1. Fluctuations

Let us now formally define what it means for statistical mapping Ψ to be smooth at every P∈M .
Let H be the interval ]− 1/M,M[. For every h ∈ H, we can define a law Ph ∈M by setting
Ph� P 6 and

dPh

dP
.
= 1+hs, (9)

where s : O → R is a (measurable) function of O such that s(O) is not equal to zero P-almost
surely, EP(s(O)) = 0, and s bounded by M. We make the observation that

(i) Ph|h=0 = P, (ii)
d

dh
log

dPh

dP
(O)

∣∣∣∣
h=0

= s(O). (10)

Because of (i), {Ph : h ∈ H} is a submodel through P, also referred to as a fluctuation of P.
The fluctuation is a one-dimensional submodel of M with univariate parameter h ∈ H. We note

6 That is, Ph is dominated by P: if an event A satisfies P(A) = 0, then necessarily Ph(A) = 0 too. Because Ph � P,
the law Ph has a density with respect to P, meaning that there exists a (measurable) function f such that Ph(A) =∫

o∈A f (o)dP(o) for any event A. The function is often denoted dPh/dP.
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that (ii) indicates that the score of this submodel at h = 0 is s. Thus, we say that the fluctuation
is in the direction of s.

Fluctuations of P do not necessarily take the same form as in (9). No matter how the fluctuation
is built, for our purposes the most important feature of the fluctuation is its direction.

3.3.2. Smoothness and gradients

We are now prepared to provide a formal definition of smoothness of statistical mappings. We
say that a statistical mapping Ψ is smooth at every P ∈M if for each P ∈M , there exists a
(measurable) function D∗(P) : O → R such that EP(D∗(P)(O)) = 0, VarP(D∗(P)(O))< ∞, and,
for every fluctuation {Ph : h ∈ H} with score s at h = 0, the real-valued mapping h 7→ Ψ(Ph) is
differentiable at h = 0, with a derivative equal to

EP (D∗(P)(O)s(O)) . (11)

The object D∗(P) in (11) is called a gradient of Ψ at P. 7

3.3.3. A Euclidean perspective

This terminology has a direct parallel to directional derivatives in the calculus of Euclidean
geometry. Recall that if f is a differentiable mapping from Rp to R, then the directional derivative
of f at a point x (an element of Rp) in direction u (a unit vector in Rp) is the scalar product of the
gradient of f and u. In words, the directional derivative of f at x can be represented as a scalar
product of the direction that we approach x and the change of the function’s value at x.

In the present problem, the law P is the point at which we evaluate the function Ψ, the score s
of the fluctuation is the direction in which we approach the point, and the gradient describes the
change in the function’s value at the point.

3.3.4. The canonical gradient

In general, it is possible for many gradients to exist 8. Yet, in the special case that the model
is nonparametric, only a single gradient exists. The unique gradient is then referred to as the
canonical gradient or, for reasons that will be clarified in Section 3.5, the efficient influence
curve. In the more general setting, the canonical gradient may be defined as the minimizer of
D 7→ VarP(D(O)) over the set of all gradients of Ψ at P.

It is not difficult to check that the efficient influence curve of statistical mapping Ψ (6) at
P ∈M can be written as

D∗(P) .
= D∗1(P)+D∗2(P), where (12)

7 Interestingly, if a fluctuation {Ph : h ∈ H} satisfies (10) for a direction s such that s 6= 0, EP(s(O)) = 0 and
VarP(s(O)) < ∞, then h 7→ Ψ(Ph) is still differentiable at h = 0 with a derivative equal to (11) beyond fluctua-
tions of the form (9).

8 This may be at first surprising given the parallel drawn in Section 3.3.3 to Euclidean geometry. However, it is
important to remember that the model dictates fluctuations of P that are valid submodels with respect to the full
model. In turn, this determines the possible directions from which we may approach P. Thus, depending on the
direction, (11) may hold with different choices of D∗.
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D∗1(P)(O)
.
= Q̄(1,W )− Q̄(0,W )−Ψ(P),

D∗2(P)(O)
.
=

2A−1
`Ḡ(A,W )

(Y − Q̄(A,W )).

A method from package tlrider evaluates the efficient influence curve at a law described by
an object of class LAW. It is called evaluate_eic. For instance, the next chunk of code evaluates
the efficient influence curve D∗(P0) of Ψ (6) at P0 ∈M that is characterized by experiment:

eic_experiment <- evaluate_eic(experiment)

The efficient influence curve D∗(P0) is a function from O to R. As such, it can be evaluated at
the five independent observations drawn from P0 in Section 1.2.2. This is what the next chunk of
code does:

(eic_experiment(five_obs))
#> [1] 0.246 -0.157 -0.534 -0.243 0.234

Finally, the efficient influence curve can be visualized as two images that represent (w,y) 7→
D∗(P0)(w,a,y) for a = 0,1, respectively:

crossing(w = seq(0, 1, length.out = 2e2),
a = c(0, 1),
y = seq(0, 1, length.out = 2e2)) %>%

mutate(eic = eic_experiment(cbind(Y=y,A=a,W=w))) %>%
ggplot(aes(x = w, y = y, fill = eic)) +
geom_raster(interpolate = TRUE) +
geom_contour(aes(z = eic), color = "white") +
facet_wrap(~ a, nrow = 1,

labeller = as_labeller(c(‘0‘ = "a = 0", ‘1‘ = "a = 1"))) +
labs(fill = expression(paste(D^"*", (P[0])(w,a,y))))

3.4. A fresh look at another_experiment

We can give a fresh look at Section 3.1.2 now.

3.4.1. Deriving the efficient influence curve

It is not difficult (though cumbersome) to verify that, up to a constant, {Πh : h ∈ [−1,1]} is a
fluctuation of Π0 in the direction (in the sense of (9)) of

σ0(O)
.
=−10

√
WA×β0(A,W )

×

(
log(1−Y )+

3

∑
k=0

(k+β0(A,W ))−1

)
+ constant, where (13)

β0(A,W )
.
=

1− Q̄Π0(A,W )

Q̄Π0(A,W )
. (14)
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FIGURE 3. Visualizing the efficient influence curve D∗(P0) of Ψ (6) at P0, the law described by experiment.

Consequently, the slope of line in Figure 2 is equal to

EΠ0(D
∗(Π0)(O)σ0(O)). (15)

Since D∗(Π0) is centered under Π0, knowing σ0 up to a constant is not problematic.

3.4.2. Numerical validation

In the following code, we check the above fact numerically. When we ran example(tlrider),
we created a function sigma0. The function implements σ0 defined in (14):

sigma0
#> function(obs, law = another_experiment) {
#> ## preliminary
#> Qbar <- get_feature(law, "Qbar", h = 0)
#> QAW <- Qbar(obs[, c("A", "W")])
#> params <- formals(get_feature(law, "qY", h = 0))
#> shape1 <- eval(params$shape1)
#> ## computations
#> betaAW <- shape1 * (1 - QAW) / QAW
#> out <- log(1 - obs[, "Y"])
#> for (int in 1:shape1) {
#> out <- out + 1/(int - 1 + betaAW)
#> }
#> out <- - out * shape1 * (1 - QAW) / QAW *
#> 10 * sqrt(obs[, "W"]) * obs[, "A"]
#> ## no need to center given how we will use it
#> return(out)
#> }
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The next chunk of code approximates (15) pointwise and with a confidence interval of asymp-
totic level 95%:

eic_another_experiment <- evaluate_eic(another_experiment, h = 0)
obs_another_experiment <- sample_from(another_experiment, B, h = 0)
vars <- eic_another_experiment(obs_another_experiment) *

sigma0(obs_another_experiment)

sd_hat <- sd(vars)
(slope_hat <- mean(vars))
#> [1] 1.36
(slope_CI <- slope_hat + c(-1, 1) *

qnorm(1 - alpha / 2) * sd_hat / sqrt(B))
#> [1] 1.35 1.36

Equal to 1.349 (rounded to three decimal places — hereafter, all rounding will be to three
decimal places as well), the first numerical approximation slope_approx is not too off!

3.5. ☡ Asymptotic linearity and statistical efficiency

3.5.1. Asymptotic linearity

Suppose that O1, . . . ,On are drawn independently from P ∈M . If an estimator ψn of Ψ(P) can
be written as

ψn = Ψ(P)+
1
n

n

∑
i=1

IC(Oi)+oP(1/
√

n) (16)

for some function IC : O → R such that EP(IC(O)) = 0 and VarP(IC(O))< ∞, then we say that
ψn is asymptotically linear with influence curve IC. Asymptotically linear estimators are weakly
convergent. Specifically, if ψn is asymptotically linear with influence curve IC, then

√
n(ψn−Ψ(P)) =

1√
n

n

∑
i=1

IC(Oi)+oP(1) (17)

and, by the central limit theorem (recall that O1, . . . ,On are independent),
√

n(ψn−Ψ(P)) con-
verges in law to a centered Gaussian distribution with variance VarP(IC(O)).

3.5.2. Influence curves and gradients

As it happens, influence curves of regular 9 estimators are intimately related to gradients. In fact,
if ψn is a regular, asymptotically linear estimator of Ψ(P) with influence curve IC, then it must
be true that Ψ is a smooth parameter mapping at P and that IC is a gradient of Ψ at P.

9 We can view ψn as the by product of an algorithm Ψ̂ trained on independent observations O1, . . . ,On drawn from P.
We say that the estimator is regular at P if, for any direction s 6= 0 such that EP(s(O)) = 0 and VarP(s(O))< ∞ and
fluctuation {Ph : h ∈ H} satisfying (10), the estimator ψn,1/

√
n of Ψ(P1/

√
n) obtained by training Ψ̂ on independent

observations O1, . . . , On drawn from P1/
√

n is such that
√

n(ψn,1/
√

n−Ψ(P1/
√

n)) converges in law to a limit that
does not depend on s.
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3.5.3. Asymptotic efficiency

Now recall that, in Section 3.3.4, we defined the canonical gradient as the minimizer of D 7→
VarP(D(O)) over the set of all gradients. Therefore, if ψn is a regular, asymptotically linear
estimator of Ψ(P) (built from n independent observations drawn from P), then the asymptotic
variance of

√
n(ψn−Ψ(P)) cannot be smaller than the variance of the canonical gradient of Ψ

at P, i.e.,
VarP(D∗(P)(O)). (18)

In other words, (18) is the lower bound on the asymptotic variance of any regular, asymptoti-
cally linear estimator of Ψ(P). This bound is referred to as the Cramér-Rao bound. Any regular
estimator that achieves this variance bound is said to be asymptotically efficient at P. Because
the canonical gradient is the influence curve of an asymptotically efficient estimator, it is often
referred to as the efficient influence curve.

3.6. Cramér-Rao bounds

1. What does the following chunk do?

obs <- sample_from(experiment, B)
(cramer_rao_hat <- var(eic_experiment(obs)))
#> [1] 0.287

2. Same question about this one.

obs_another_experiment <- sample_from(another_experiment, B, h = 0)
(cramer_rao_Pi_zero_hat <-

var(eic_another_experiment(obs_another_experiment)))
#> [1] 0.0957

3. With a large independent sample drawn from Ψ(P0) (or Ψ(Π0)), is it possible to construct
a regular estimator ψn of Ψ(P0) (or Ψ(Π0)) such that the asymptotic variance of

√
n times

ψn minus its target be smaller than the Cramér-Rao bound?

4. Is it easier to estimate Ψ(P0) or Ψ(Π0) (from independent observations drawn from either
law)? In what sense? (Hint: you may want to compute a ratio.)

4. Double-robustness

4.1. Linear approximations of parameters

4.1.1. From gradients to estimators

We learned in Section 3 that the stochastic behavior of a regular, asymptotically linear estimator
of Ψ(P) can be characterized by its influence curve. Moreover, we said that this influence curve
must in fact be a gradient of Ψ at P.

In this section, we show that the converse is also true: given a gradient D∗ of Ψ at P, un-
der so-called regularity conditions, it is possible to construct an estimator with influence curve
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equal to D∗(P). This fact will suggest concrete strategies for generating efficient estimators of
smooth parameters. We take here the first step towards generating such estimators: linearizing
the parameter.

4.1.2. A Euclidean perspective

As in Section 3.3.3, drawing a parallel to Euclidean geometry is helpful. We recall that if f is a
differentiable mapping from Rp to R, then a Taylor series approximates f at a point x0 ∈ Rp:

f (x0)≈ f (x)+ 〈(x0− x),∇ f (x)〉,

where x is a point in Rp, ∇ f (x) is the gradient of f evaluated at x and 〈u,v〉 is the scalar product
of u,v ∈Rp. As the squared distance ‖x−x0‖2 = 〈x−x0,x−x0〉 between x and x0 decreases, the
linear approximation to f (x0) becomes more accurate.

4.1.3. The remainder term

Returning to the present problem with this in mind, we find that indeed a similar approximation
strategy may be applied.

For clarity, let us introduce a new shorthand notation. For any measurable function f of the
observed data O, we may write from now on P f .

= EP( f (O)). One may argue that the notation
is valuable beyond the gain of space. For instance, (17)

√
n(ψn−Ψ(P)) =

1√
n

n

∑
i=1

IC(Oi)+oP(1)

can be rewritten as √
n(ψn−Ψ(P)) =

√
n(Pn−P)IC+oP(1),

thus suggesting more clearly the importance of the so-called empirical process
√

n(Pn−P).
In particular, if Ψ is smooth uniformly over directions, then for any given P ∈M , we can

write
Ψ(P0) = Ψ(P)+(P0−P)D∗(P)−RemP0(P), (19)

where RemP0(P) (defined implicitly by (19) – see (20)) is a remainder term satisfying that

RemP0(P)
d(P,P0)

→ 0 as d(P,P0)→ 0,

with d a measure of discrepancy for distributions in M . Note that (19) can be equivalently
written as

Ψ(P0) = Ψ(P)+EP0(D
∗(P)(O))−EP(D∗(P)(O))−RemP0(P).

The remainder term formalizes the notion that if P is close to P0 (i.e., if d(P,P0) is small), then
the linear approximation of Ψ(P0) is more accurate. In light of the Euclidean perspective of
Section 4.1.2, the remainder term RemP0(P) plays the role of the squared distance ‖x− x0‖2.
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4.1.4. Expressing the remainder term as a function of the relevant features

The equations for the definition of the parameter (6), form of the canonical gradient (12), and
linearization of parameter (19) combine to determine the remainder:

RemP0(P)
.
= Ψ(P)−Ψ(P0)− (P0−P)D∗(P) (20)

hence

RemP0(P) = EP0

[(
Ḡ0(W )− Ḡ(W )

)
×
(

Q̄0(1,W )− Q̄(1,W )

`Ḡ(1,W )
+

Q̄0(0,W )− Q̄(0,W )

`Ḡ(0,W )

)]
. (21)

Acting as oracles, we can compute explicitly the remainder term RemP0(P). The
evaluate_remainder method makes it very easy (simply run ?evaluate_remainder
to see the man page of the method):

(evaluate_remainder(experiment, experiment))
#> [1] 0
(rem <- evaluate_remainder(experiment, another_experiment,

list(list(), list(h = 0))))
#> [1] 0.199

We recover the equality RemP0(P0) = 0, which is fairly obvious given (19). In addition, we
learn that RemP0(Π0) equals 0.199. In the next subsection, we invite you to make better acquain-
tance with the remainder term by playing around with it numerically.

4.2. The remainder term

1. Compute numerically RemΠ0(Πh) for h ∈ [−1,1] and plot your results. What do you no-
tice?

2. ☡ Approximate RemP0(Π0) numerically without relying on method evaluate_remain-
der and compare the value you get with that of rem. (Hint: use (20) and a large sample of
observations drawn independently from P0.)

4.3. ☡ Double-robustness

4.3.1. The key property

Let us denote by ‖ f‖2
P the square of the L2(P)-norm of any function f from O to R i.e., using a

recently introduced notation, ‖ f‖2
P
.
= P f 2. For instance, ‖Q̄1− Q̄0‖P or ‖Ḡ1− Ḡ0‖P is a distance

separating the features Q̄1 and Q̄0 or Ḡ1 and Ḡ0.
The efficient influence curve D∗(P) at P∈M enjoys a rather remarkable property: it is double-

robust. Specifically, for every P ∈M , the remainder term RemP0(P) satisfies

RemP0(P)
2 ≤ ‖Q̄− Q̄0‖2

P0
×‖(Ḡ− Ḡ0)/`Ḡ0‖2

P0
, (22)
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where Q̄ and Ḡ are the counterparts under P to Q̄0 and Ḡ0. The proof consists in a straightforward
application of the Cauchy-Schwarz inequality to the right-hand side expression in (20).

4.3.2. Its direct consequence

It may not be clear yet why (22) is an important property, and why D∗ is said double-robust
because of it. To answer the latter question, let us consider a law P ∈M such that either Q̄ = Q̄0
or Ḡ = Ḡ0.

It is then the case that either ‖Q̄− Q̄0‖P = 0 or ‖Ḡ− Ḡ0‖P = 0. Therefore, in light of (22), it
also holds that RemP0(P) = 0. 10 It thus appears that (19) simplifies to

Ψ(P0) = Ψ(P)+(P0−P)D∗(P)

= Ψ(P)+P0D∗(P),

where the second equality holds because PD∗(P) = 0 for all P ∈M by definition of D∗(P).
It is now clear that for such a law P ∈M , Ψ(P) = Ψ(P0) is equivalent to

P0D∗(P) = 0. (23)

Most importantly, in words, if P solves the so-called P0-specific efficient influence curve equation
(23) and if, in addition, P has the same Q̄-feature or Ḡ-feature as P0, then Ψ(P) = Ψ(P0).

The conclusion is valid no matter how P may differ from P0 otherwise, hence the notion of
being double-robust. This property is useful to build consistent estimators of Ψ(P), as we shall
see in Section 5.

4.4. Double-robustness

1. Go back to Problem 1 in 4.2. In light of Section 4.3, what is happening?

2. Create a copy of experiment and replace its Gbar feature with some other function of W
(see ?copy, ?alter and Problem 2 in Section 3.2). Call P′ the element of model M thus
characterized. Can you guess the values of RemP0(P

′), Ψ(P′) and P0D∗(P′)? Support your
argument.

5. Inference

5.1. Where we stand

In the previous sections, we analyzed our target parameter and presented relevant theory for
understanding the statistical properties of certain types of estimators of the parameter. The theory
is also relevant for building and comparing a variety of estimators.

We assume from now on that we have available a sample O1, . . . ,OB of independent observa-
tions drawn from P0. This is literally the case!, and the observations are stored in obs that we
created in Section 3.6.
10 This also trivially follows from (21).
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iter <- 1e3

Equal to 1 million, the sample size B is very large. We will in fact use 1000 disjoint subsamples
composed of n independent observations among O1, . . . ,OB, where n equals B/iter, i.e., 1000.
We will thus be in a position to investigate the statistical properties of every estimation procedure
by replicating it independently 1000 times.

5.2. Where we are going

The following sections explore different statistical paths to inferring ψ0 or, rather (though equiv-
alently), Ψ(P0).

— Section 6 presents a simple inference strategy. It can be carried out in situations where Ḡ0
is already known to the statistician.

— Section 7 discusses the estimation of some infinite-dimensional features of P0. The result-
ing estimators are later used to estimate ψ0.

— Section 8 extends the inference strategy discussed in Section 6 to the case that Ḡ0 is not
known to the statistician but estimated by her. It also presents another inference strat-
egy that relies upon the estimation of Q̄0. A theoretical analysis reveals that both strate-
gies, called the inverse probability of treatment weighted and G-computation estimation
methodologies, suffer from an inherent flaw.

— Section 9 builds upon the aforementioned analysis and develops a methodological
workaround to circumvent the problem revealed by the analysis. It appears indeed that the
flawed estimators can be corrected. However, the so-called one-step correction comes at
a price that may be high in small samples.

— Section 10 also builds on the aforementioned analysis but draws a radically different con-
clusion from it. Instead of trying to circumvent the problem by correcting the flawed es-
timators of ψ0, it does so by correcting the estimators of the infinite-dimensional features
of P0 combined to estimate ψ0. The section thus presents an instantiation of the general
targeted minimum loss estimation procedure tailored to the estimation of ψ0. It is the main
destination of this ride in targeted learning territory, far from its outposts yet well into this
exciting territory.

6. A simple inference strategy

6.1. A cautionary detour

Let us introduce first the following estimator:

ψ
a
n
.
=

EPn(AY )
EPn(A)

− EPn((1−A)Y )
EPn(1−A)

=
∑

n
i=1 1{Ai = Yi = 1}
∑

n
i=1 1{Ai = 1}

− ∑
n
i=1 1{Ai = 0,Yi = 1}

∑
n
i=1 1{Ai = 0}

. (24)

Journal de la Société Française de Statistique, Vol. 161 No. 1 201-286
http://www.sfds.asso.fr/journal

© Société Française de Statistique et Société Mathématique de France (2020) ISSN: 2102-6238



A Ride in Targeted Learning Territory 231

Note that ψa
n is simply the difference in sample means between observations with A = 1 and

observations with A = 0. It estimates

Φ(P0)
.
=

EP0(AY )
EP0(A)

− EP0((1−A)Y )
EP0(1−A)

= EP0(Y |A = 1)−EP0(Y |A = 0).

We seize this opportunity to demonstrate numerically that ψa
n does not estimate Ψ(P0) be-

cause, in general, Ψ(P0) and Φ(P0) differ. This is apparent in the following alternative expression
of Φ(P0):

Φ(P0) = EP0 (EP0(Y | A,W )|A = 1))−EP0 (EP0(Y | A,W )|A = 0)

=
∫

Q̄0(1,w)dP0,W |A=1(w)−
∫

Q̄0(0,w)dP0,W |A=0(w).

Contrast the above equalities and (1). In the latter, the outer integral is against the marginal
law of W under P0. In the former, the outer integrals are respectively against the conditional
laws of W given A = 1 and A = 0 under P0. Thus Ψ(P0) and Φ(P0) will enjoy equality when
the conditional laws of W given A = 1 and W given A = 0 both equal the marginal law of W .
This can sometimes be ensured by design, as in an experiment where A is randomly allocated to
observations, irrespective of W . However, barring this level of experimental control, in general
the naive estimator may lead us astray in our goal of drawing causal inference.

6.2. Delta-method

Consider the next chunk of code:

compute_irrelevant_estimator <- function(obs) {
obs <- as_tibble(obs)
Y <- pull(obs, Y)
A <- pull(obs, A)
psi_n <- mean(A * Y) / mean(A) - mean((1 - A) * Y) / mean(1 - A)
Var_n <- cov(cbind(A * Y, A, (1 - A) * Y, (1 - A)))
phi_n <- c(1 / mean(A), -mean(A * Y) / mean(A)^2,

-1 / mean(1 - A),
mean((1 - A) * Y) / mean(1 - A)^2)

var_n <- as.numeric(t(phi_n) %*% Var_n %*% phi_n)
sig_n <- sqrt(var_n / nrow(obs))
tibble(psi_n = psi_n, sig_n = sig_n)

}

Function compute_irrelevant_estimator computes the estimator ψa
n (24) based on the

data set in obs.
Set Xn

.
= n−1

∑
n
i=1 (AiYi,Ai,(1−Ai)Yi,1−Ai)

> and X .
= (AY,A,(1−A)Y,1−A)>. It happens

that Xn is asymptotically Gaussian: as n goes to infinity,

√
n(Xn−EP0(X))
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converges in law to the centered Gaussian law with covariance matrix

V0
.
= EP0

(
(X−EP0(X))× (X−EP0(X))>

)
.

Let f : R×R∗×R×R∗ be given by f (r,s, t,u) = r/s− t/u. The function is differentiable.

1. Check that ψa
n = f (Xn). Point out the line where ψa

n is computed in the body of
compute_irrelevant_estimator. Also point out to the line where the above
asymptotic variance of Xn is estimated with its empirical counterpart, say Vn.

2. ☡ Argue how the delta-method yields that
√

n(ψa
n −Φ(P0)) converges in law to the cen-

tered Gaussian law with a variance that can be estimated with

va
n
.
= ∇ f (Xn)×Vn×∇ f (Xn)

>. (25)

3. Check that the gradient ∇ f of f is given by ∇ f (r,s, t,u) .
= (1/s,−r/s2,−1/u, t/u2). Point

out to the line where the asymptotic variance of ψa
n is estimated.

For instance,

(compute_irrelevant_estimator(head(obs, 1e3)))
#> # A tibble: 1 x 2
#> psi_n sig_n
#> <dbl> <dbl>
#> 1 0.110 0.0173

computes the numerical values of ψa
n and va

n based on the 1000 first observations in obs.

6.3. IPTW estimator assuming the mechanism of action known

6.3.1. A simple estimator

Let us assume for a moment that we know Ḡ0. This would have been the case indeed if we had
experimental control over the actions taken by observational units, as in a randomized experi-
ment. Note that, on the contrary, assuming Q̄0 known would be difficult to justify.

Gbar <- get_feature(experiment, "Gbar")

The alternative expression (7) suggests to estimate Ψ(P0) with

ψ
b
n
.
= EPn

(
2A−1

`Ḡ0(A,W )
Y
)

(26)

=
1
n

n

∑
i=1

(
2Ai−1

`Ḡ0(Ai,Wi)
Yi

)
. (27)

Note how Pn is substituted for P0 in (27) relative to (7). However, we cannot call ψb
n a substi-

tution estimator because it does not write as Ψ evaluated at an element of M . This said, it is
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dubbed an IPTW (inverse probability of treatment weighted) estimator because of the denomi-
nators `Ḡ0(Ai,Wi) in its definition. 11

In Section 8.2, we develop another IPTW estimator that does not assume that Ḡ0 is known
beforehand.

6.3.2. Elementary statistical properties

It is easy to check that ψb
n estimates Ψ(P0) consistently, but this is too little to request from an

estimator of ψ0. Better, ψb
n also satisfies a central limit theorem:

√
n(ψb

n −ψ0) converges in law
to a centered Gaussian law with asymptotic variance

vb .
= VarP0

(
2A−1

`Ḡ0(A,W )
Y
)
,

where vb can be consistently estimated by its empirical counterpart

vb
n
.
= VarPn

(
2A−1

`Ḡ0(A,W )
Y
)

(28)

=
1
n

n

∑
i=1

(
2Ai−1

`Ḡ0(Ai,Wi)
Yi−ψ

b
n

)2

. (29)

We investigate empirically the statistical behavior of ψb
n in Section 6.3.3.

6.3.3. Empirical investigation

The package tlrider includes compute_iptw, a function that implements the IPTW inference
strategy (simply run ?compute_iptw to see its man page). For instance,

(compute_iptw(head(obs, 1e3), Gbar))
#> # A tibble: 1 x 2
#> psi_n sig_n
#> <dbl> <dbl>
#> 1 0.0713 0.0556

computes the numerical values of ψb
n and vb

n based upon the 1000 first observations contained
in obs.

The next chunk of code investigates the empirical behaviors of estimators ψa
n and ψb

n . As
explained in Section 5, we first make iter data sets out of the obs data set (second line), then
build the estimators on each of them (fourth and fifth lines). After the first series of commands
the object psi_hat_ab, a tibble, contains 2000 rows and four columns. For each smaller data
set (identified by its id), two rows contain the values of either ψa

n and
√

va
n/
√

n (if type equals
a) or ψb

n and
√

vb
n/
√

n (if type equals b).
After the second series of commands, the object psi_hat_ab contains, in addition, the values

of the recentered (with respect to ψ0) and renormalized
√

n/
√

va
n(ψ

a
n −ψ0) and

√
n/
√

vb
n(ψ

b
n −

11 We could have used the alternative expression IPAW, where A (like action) is substituted for T (like treatment).
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ψ0), where va
n (25) and vb

n (28) estimate the asymptotic variances of ψa
n and ψb

n , respectively.
Finally, bias_ab reports amounts of bias (at the renormalized scale).

We will refer to the recentering (always with respect to ψ0) then renormalizing procedure as a
renormalization scheme, because what may vary between two such procedures is the renormal-
ization factor. We will judge whether or not the renormalization scheme is adequate for instance
by comparing kernel density estimators of the law of estimators gone through a renormalization
procedure with the standard normal density, as in Figure 4 below.

psi_hat_ab <- obs %>% as_tibble %>%
mutate(id = (seq_len(n()) - 1) %% iter) %>%
nest(obs = c(W, A, Y)) %>%
mutate(est_a = map(obs, ~ compute_irrelevant_estimator(.)),

est_b = map(obs, ~ compute_iptw(as.matrix(.), Gbar))) %>%
pivot_longer(c(‘est_a‘, ‘est_b‘),

names_to = "type", values_to = "estimates") %>%
extract(type, "type", "_([ab])$") %>%
unnest(estimates) %>% select(-obs)

(psi_hat_ab)
#> # A tibble: 2,000 x 4
#> id type psi_n sig_n
#> <dbl> <chr> <dbl> <dbl>
#> 1 0 a 0.0942 0.0171
#> 2 0 b 0.0169 0.0573
#> 3 1 a 0.105 0.0164
#> 4 1 b 0.0520 0.0551
#> 5 2 a 0.111 0.0187
#> 6 2 b 0.135 0.0546
#> # ... with 1,994 more rows

psi_hat_ab <- psi_hat_ab %>%
group_by(id) %>%
mutate(clt = (psi_n - psi_zero) / sig_n)

(psi_hat_ab)
#> # A tibble: 2,000 x 5
#> # Groups: id [1,000]
#> id type psi_n sig_n clt
#> <dbl> <chr> <dbl> <dbl> <dbl>
#> 1 0 a 0.0942 0.0171 0.643
#> 2 0 b 0.0169 0.0573 -1.16
#> 3 1 a 0.105 0.0164 1.30
#> 4 1 b 0.0520 0.0551 -0.565
#> 5 2 a 0.111 0.0187 1.49
#> 6 2 b 0.135 0.0546 0.952
#> # ... with 1,994 more rows

(bias_ab <- psi_hat_ab %>%
group_by(type) %>% summarise(bias = mean(clt)))
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#> # A tibble: 2 x 2
#> type bias
#> <chr> <dbl>
#> 1 a 1.40
#> 2 b 0.0353

fig_bias_ab <- ggplot() +
geom_line(aes(x = x, y = y),

data = tibble(x = seq(-3, 3, length.out = 1e3),
y = dnorm(x)),

linetype = 1, alpha = 0.5) +
geom_density(aes(clt, fill = type, colour = type),

psi_hat_ab, alpha = 0.1) +
geom_vline(aes(xintercept = bias, colour = type),

bias_ab, size = 1.5, alpha = 0.5)

fig_bias_ab +
labs(y = "",

x = bquote(paste(sqrt(n/v[n]^{list(a, b)})*
(psi[n]^{list(a, b)} - psi[0]))))

0.0
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0.2

0.3

0.4

−2 0 2 4

n vn
a, b(ψn

a, b − ψ0)

type

a

b

FIGURE 4. Kernel density estimators of the law of two estimators of ψ0 (recentered with respect to ψ0, and renor-
malized), one of them misconceived (a), the other assuming that Ḡ0 is known (b). Built based on iter independent
realizations of each estimator.

By the above chunk of code, the averages of
√

n/va
n(ψ

a
n −ψ0) and

√
n/vb

n(ψ
b
n −ψ0) com-

puted across the realizations of the two estimators are respectively equal to 1.404 and 0.035 (see
bias_ab). Interpreted as amounts of bias, those two quantities are represented by vertical lines
in Figure 4. The red and blue bell-shaped curves represent the empirical laws of ψa

n and ψb
n (re-

centered with respect to ψ0, and renormalized) as estimated by kernel density estimation. The
latter is close to the black curve, which represents the standard normal density.
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7. Nuisance parameters

7.1. Anatomy of an expression

From now, all the inference strategies that we will present unfold in two or three stages. For all of
them, the first stage consists in estimating a selection of features of the law P0 of the experiment.
Specifically, the features are chosen among Q0,W (the marginal law of W under P0), Ḡ0 (the
conditional probability that A = 1 given W under P0) and Q̄0 (the conditional mean of Y given A
and W under P0).

In this context, because they are not the parameter of primary interest (i.e., they are not the
real-valued feature Ψ(P0)), they are often referred to as nuisance parameters of P0. The unflater-
ring expression conveys the notion that their estimation is merely an intermediate step along our
path towards an inference of the target parameter.

As for the reason why Q0,W , Ḡ0 and Q̄0 are singled out, it is because of their role in the
definition of Ψ and the efficient influence curve D∗(P0).

7.2. An algorithmic stance

In general, we can view an estimator of any feature f0 of P0 as the output of an algorithm Â that
maps any element of

M empirical .
=

{
1
m

m

∑
i=1

Dirac(oi) : m≥ 1,o1, . . . ,om ∈ [0,1]×{0,1}× [0,1]

}

to the set F where f0 is known to live. Here, M empirical can be interpreted as the set of all possible
empirical measures summarizing the outcomes of any number of replications of the experiment
P0. In particular, Pn belongs to this set.

The tlrider package includes such template algorithms for the estimation of Q0,W , Ḡ0 and
Q̄0. We illustrate how they work and their use in the next sections.

7.3. QW

For instance, estimate_QW is an algorithm ÂQW for the estimation of the marginal law of W
under P0 (to see its man page, simply run ?estimate_QW). It is a map from M empirical to the
set of laws on [0,1]. The following chunk of code estimates Q0,W based on the n = 1000 first
observations in obs:

QW_hat <- estimate_QW(head(obs, 1e3))

It is easy to sample independent observations from QW_hat. To do so, we create an ob-
ject of class LAW then set its marginal law of W to that described by QW_hat and specify its
sample_from feature:

empirical_experiment <- LAW()
alter(empirical_experiment, QW = QW_hat)
alter(empirical_experiment, sample_from = function(n) {
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QW <- get_feature(empirical_experiment, "QW")
W <- sample(pull(QW, "value"), n, prob = pull(QW, "weight"))
cbind(W = W, A = NA, Y = NA)

})
W <- sample_from(empirical_experiment, 1e3) %>% as_tibble

W %>%
ggplot() +

geom_histogram(aes(x = W, y = stat(density)), bins = 40) +
stat_function(fun = get_feature(experiment, "QW"), col = "red")
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FIGURE 5. Histogram representing 1000 observations drawn independently from QW_hat. The superimposed red
curve is the true density of Q0,W .

Note that all the W s sampled from QW_hat fall in the set {W1, . . . ,Wn} of observed W s in obs
(an obvious fact given the definition of the sample_from feature of empirical_experiment:

(length(intersect(pull(W, W), head(obs[, "W"], 1e3))))
#> [1] 1000

This is because estimate_QW estimates Q0,W with its empirical counterpart, i.e.,

1
n

n

∑
i=1

Dirac(Wi).

7.4. Gbar

Another template algorithm is built-in into tlrider: estimate_Gbar (to see its man page, sim-
ply run ?estimate_Gbar). Unlike estimate_QW, estimate_Gbar needs further specification
of the algorithm. The package also includes examples of such specifications.
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There are two sorts of specifications, of which we say that they are either working model-
based or machine learning-based. We discuss the former sort in the next subsection. The latter
sort is discussed in Section 7.6.

7.4.1. Working model-based algorithms

Let us take a look at working_model_G_one for instance:

working_model_G_one
#> $model
#> function (...)
#> {
#> trim_glm_fit(glm(family = binomial(), ...))
#> }
#> <environment: 0xecf7498>
#>
#> $formula
#> A ~ I(W^0.5) + I(abs(W - 5/12)^0.5) + I(W^1) + I(abs(W - 5/12)^1) +
#> I(W^1.5) + I(abs(W - 5/12)^1.5)
#> <environment: 0xecf7498>
#>
#> $type_of_preds
#> [1] "response"
#>
#> attr(,"ML")
#> [1] FALSE

and focus on its model and formula attributes. The former relies on the glm and binomial
functions from base R, and on trim_glm_fit (which removes information that we do not need
from the standard output of glm, simply run ?trim_glm_fit to see the function’s man page).
The latter is a formula that characterizes what we call a working model for Ḡ0.

In words, by using working_model_G_one we implicitly choose the so-called logistic (or
negative binomial) loss function La given by

−La( f )(A,W )
.
= A log f (W )+(1−A) log(1− f (W )) (30)

for any function f : [0,1]→ [0,1] paired with the working model

F1
.
=
{

fθ : θ ∈ R7}
where, for any θ ∈ R7,

logit fθ (W )
.
= θ0 +

3

∑
j=1

(
θ jW j/2 +θ3+ j|W −5/12| j/2

)
.

We acted as oracles when we specified the working model: it is well-specified, i.e., it happens
that Ḡ0 is the unique minimizer of the risk entailed by La over F1:

Ḡ0 = argmin
fθ∈F1

EP0 (La( fθ )(A,W )) .
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Therefore, the estimator Ḡn obtained by minimizing the empirical risk

EPn (La( fθ )(A,W )) =
1
n

n

∑
i=1

La( fθ )(Ai,Wi)

over F1 estimates Ḡ0 consistently.
Of course, it is seldom certain in real life that the target feature, here Ḡ0, belongs to the

working model. 12 Suppose for instance that we choose a small finite-dimensional working model
F2 without acting as an oracle. Then consistency certainly fails to hold. However, if Ḡ0 can
nevertheless be projected unambiguously onto F2 (an assumption that cannot be checked), then
the estimator might converge to the projection.

7.4.2. Visualization

To illustrate the use of the algorithm ÂḠ,1 obtained by combining estimate_Gbar and
working_model_G_one, let us estimate Ḡ0 based on the first n = 1000 observations in obs:

Gbar_hat <- estimate_Gbar(head(obs, 1e3), algorithm = working_model_G_one)

Using compute_Gbar_hat_W 13 (simply run ?compute_Gbar_hat_W to see its man page)
makes it is easy to compare visually the estimator Ḡn

.
= ÂḠ,1(Pn) with its target Ḡ0:

tibble(w = seq(0, 1, length.out = 1e3)) %>%
mutate("truth" = Gbar(w),

"estimated" = compute_Gbar_hatW(w, Gbar_hat)) %>%
pivot_longer(-w, names_to = "f", values_to = "value") %>%
ggplot() +
geom_line(aes(x = w, y = value, color = f), size = 1) +
labs(y = "f(w)",

title = bquote("Visualizing" ~ bar(G)[0] ~ "and" ~ hat(G)[n])) +
ylim(NA, 1)

7.5. Qbar, working model-based algorithms

A third template algorithm is built-in into tlrider: estimate_Qbar (to see its man page, sim-
ply run ?estimate_Qbar). Like estimate_Gbar, estimate_Qbar needs further specification
of the algorithm. The package also includes examples of such specifications, which can also be
either working model-based (see Section 7.4) or machine learning-based (see Sections 7.6 and
7.7).

There are built-in specifications similar to working_model_G_one, e.g.,

12 In fact, if one knows nothing about the feature, then it is certain that it does not belong to whichever small finite-
dimensional working model we may come up with.

13 See also the companion function compute_lGbar_hat_AW (run ?compute_lGbar_hat_AW to see its man page.
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FIGURE 6. Comparing Ḡn
.
= ÂḠ,1(Pn) and Ḡ0. The estimator is consistent because the algorithm relies on a working

model that is correctly specified.

working_model_Q_one
#> $model
#> function (...)
#> {
#> trim_glm_fit(glm(family = binomial(), ...))
#> }
#> <environment: 0xecf7498>
#>
#> $formula
#> Y ~ A * (I(W^0.5) + I(W^1) + I(W^1.5))
#> <environment: 0xecf7498>
#>
#> $type_of_preds
#> [1] "response"
#>
#> attr(,"ML")
#> [1] FALSE
#> attr(,"stratify")
#> [1] FALSE

1. Drawing inspiration from Section 7.4, comment upon and use the algorithm ÂQ̄,1 obtained
by combining estimate_Gbar and working_model_Q_one.

7.6. Qbar

7.6.1. Qbar, machine learning-based algorithms

We explained how algorithm ÂḠ,1 is based on a working model (and you did for ÂQ̄,1). It is not
the case that all algorithms are based on working models in the same (admittedly rather narrow)
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sense. We propose to say that those algorithms that are not based on working models like ÂḠ,1,
for instance, are instead machine learning-based.

Typically, machine learning-based algorithms are more data-adaptive; they rely on larger
working models, and/or fine-tune parameters that must be calibrated, e.g. by cross-validation.
Furthermore, they call for being stacked, i.e., combined by means of another outer algorithm
(involving cross-validation) into a more powerful machine learning-based meta-algorithm. The
super learning methodology is a popular stacking algorithm.

We will elaborate further on this important topic in another forthcoming part and merely touch
upon it in Section 7.8. Here, we simply illustrate the concept with two specifications built-in into
tlrider. Based on the k-nearest neighbors non-parametric estimating methodology, the first one
is discussed in the next subsection. Based on boosted trees, another non-parametric estimating
methodology, the second one is used in the exercise that follows the next subsection.

7.6.2. Qbar, kNN algorithm

Algorithm ÂQ̄,kNN is obtained by combining estimate_Qbar and kknn_algo. The training

of ÂQ̄,kNN (i.e., the making of the output ÂQ̄,kNN(Pn) is implemented based on function
caret::train of the caret (classification and regression training) package (to see its man
page, simply run ?caret::train). Some additional specifications are provided in kknn_grid
and kknn_control.

In a nutshell, ÂQ̄,kNN estimates Q̄0(1, ·) and Q̄0(0, ·) separately. Each of them is es-
timated by applying the k-nearest neighbors methodology as it is implemented in func-
tion kknn::train.kknn from the kknn package (to see its man page, simply run
?kknn::train.kknn). 14 The following chunk of code trains algorithm ÂQ̄,kNN on Pn:

Qbar_hat_kknn <- estimate_Qbar(head(obs, 1e3),
algorithm = kknn_algo,
trControl = kknn_control,
tuneGrid = kknn_grid)

Using compute_Qbar_hat_AW (simply run ?compute_Qbar_hat_AW to see its man page)
makes it is easy to compare visually the estimator Q̄n,kNN

.
= ÂQ̄,kNN(Pn) with its target Q̄0, see

Figure 7.

fig <- tibble(w = seq(0, 1, length.out = 1e3),
truth_1 = Qbar(cbind(A = 1, W = w)),
truth_0 = Qbar(cbind(A = 0, W = w)),
kNN_1 = compute_Qbar_hatAW(1, w, Qbar_hat_kknn),
kNN_0 = compute_Qbar_hatAW(0, w, Qbar_hat_kknn))

14 Specifically, argument kmax (maximum number of neighbors considered) is set to 5, argument distance (param-
eter of the Minkowski distance) is set to 2, and argument kernel is set to gaussian. The best value of k is chosen
between 1 and kmax by leave-one-out. No outer cross-validation is needed.
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7.6.3. Qbar, boosted trees algorithm

Algorithm ÂQ̄,trees is obtained by combining estimate_Qbar and bstTree_algo. The

training of ÂQ̄,trees (i.e., the making of the output ÂQ̄,trees(Pn) is implemented based on
function caret::train of the caret package. Some additional specifications are provided in
bstTree_grid and bstTree_control.

In a nutshell, ÂQ̄,trees estimates Q̄0(1, ·) and Q̄0(0, ·) separately. Each of them is estimated by
boosted trees as implemented in function bst::bst from the bst (gradient boosting) package
(to see its man page, simply run ?bst::bst). 15 The following chunk of code trains algorithm
ÂQ̄,trees on Pn, and reveals what are the optimal fine-tune parameters for the estimation of Q̄0(1, ·)
and Q̄0(0, ·):

Qbar_hat_trees <- estimate_Qbar(head(obs, 1e3),
algorithm = bstTree_algo,
trControl = bstTree_control,
tuneGrid = bstTree_grid)

Qbar_hat_trees %>% filter(a == "one") %>% pull(fit) %>%
capture.output %>% tail(3) %>% str_wrap(width = 60) %>% cat

#> RMSE was used to select the optimal model using the smallest
#> value. The final values used for the model were mstop = 30,
#> maxdepth = 1 and nu = 0.1.

Qbar_hat_trees %>% filter(a == "zero") %>% pull(fit) %>%
capture.output %>% tail(3) %>% str_wrap(width = 60) %>% cat

#> RMSE was used to select the optimal model using the smallest
#> value. The final values used for the model were mstop = 20,
#> maxdepth = 1 and nu = 0.2.

We can compare visually the estimators Q̄n,kNN, Q̄n,trees
.
= ÂQ̄,trees(Pn) with its target Q̄0, see

Figure 7. In summary, Q̄n,kNN is rather good, though very variable at the vincinity of the break
points. As for Q̄n,trees, it does not seem to capture the shape of its target.

fig %>%
mutate(trees_1 = compute_Qbar_hatAW(1, w, Qbar_hat_trees),

trees_0 = compute_Qbar_hatAW(0, w, Qbar_hat_trees)) %>%
pivot_longer(-w, names_to = "f", values_to = "value") %>%
extract(f, c("f", "a"), "([^_]+)_([01]+)") %>%
mutate(a = paste0("a=", a)) %>%
ggplot +
geom_line(aes(x = w, y = value, color = f), size = 1) +
labs(y = "f(w)",

title = bquote("Visualizing" ~ bar(Q)[0] ~ "and its estimators")) +

15 Specifically, argument mstop (number of boosting iterations for prediction) is one among 10, 20 and 30; argument
nu (stepsize of the shrinkage parameter) is one among 0.1 and 0.2; argument maxdepth (maximum depth of the
base learner, a tree) is one among 1, 2 and 5. An outer 10-fold cross-validation is carried out to select the best
combination of fine-tune parameters.
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ylim(NA, 1) +
facet_wrap(~ a)
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FIGURE 7. Comparing to their target two (machine learning-based) estimators of Q̄0, one based on the k-nearest
neighbors and the other on boosted trees.

7.7. ☡ Qbar, machine learning-based algorithms

1. Using estimate_Q, make your own machine learning-based algorithm for the estimation
of Q̄0.

2. Train your algorithm on the same data set as ÂQ̄,kNN and ÂQ̄,trees. If, like ÂQ̄,trees, your
algorithm includes a fine-tuning procedure, comment upon the optimal, data-driven spec-
ification.

3. Plot your estimators of Q̄0(1, ·) and Q̄0(0, ·) on Figure 7.

7.8. Meta-learning/super learning

Without a great deal of previous experience or scientific expertise, it would have likely been dif-
ficult for us to a priori postulate which of the two above machine learning algorithms (or indeed
the algorithm based on a working model) would perform better for estimation of Q̄0. Rather than
committing to one single algorithm, we may instead wish to resort to meta-learning or super
learning. In this approach, one specifies a library of candidate algorithms for estimating a given
nuisance parameter. Cross-validation is used to determine an ensemble (e.g. convex combination)
of the algorithms that yields the best fit to the underlying function. In this way, one can learn in
real time which algorithms tend to fit the data best and shift attention towards those algorithms.

Journal de la Société Française de Statistique, Vol. 161 No. 1 201-286
http://www.sfds.asso.fr/journal

© Société Française de Statistique et Société Mathématique de France (2020) ISSN: 2102-6238



244 Benkeser & Chambaz

8. Two “naive” inference strategies

8.1. Why “naive”?

In this section, we present and discuss two strategies for the inference of Ψ(P0). In light of
Section 7.1, both unfold in two stages. During the first stage, some features among Q0,W , Ḡ0 and
Q̄0 (the Ψ-specific nuisance parameters, see Section 7) are estimated. During the second stage,
these estimators are used to build estimators of Ψ(P0).

Although the strategies sound well conceived, a theoretical analysis reveals that they lack a
third stage trying to correct an inherent flaw. They are thus said naive. The analysis and a first
modus operandi are presented in Section 9.1.

8.2. IPTW estimator

8.2.1. Construction and computation

In Section 6.3, we developed an IPTW estimator, ψb
n , assuming that we knew Ḡ0 beforehand.

What if we did not? Obviously, we could estimate it and substitute the estimator of `Ḡ0 for `Ḡ0
in (27).

Let ÂḠ be an algorithm designed for the estimation of Ḡ0 (see Section 7.4). We denote by
Ḡn

.
= ÂḠ(Pn) the output of the algorithm trained on Pn, and by `Ḡn the resulting (empirical)

function given by

`Ḡn(A,W )
.
= AḠn(W )+(1−A)(1− Ḡn(W )).

In light of (27), we introduce

ψ
c
n
.
=

1
n

n

∑
i=1

(
2Ai−1

`Ḡn(Ai,Wi)
Yi

)
.

From a computational point of view, the tlrider package makes it easy to build ψc
n . Recall

that

compute_iptw(head(obs, 1e3), Gbar)

implements the computation of ψb
n based on the n = 1000 first observations stored in obs, us-

ing the true feature Ḡ0 stored in Gbar, see Section 6.3.3 and the construction of psi_hat_ab.
Similarly,

Gbar_hat <- estimate_Gbar(head(obs, 1e3), working_model_G_one)
compute_iptw(head(obs, 1e3), wrapper(Gbar_hat)) %>% pull(psi_n)
#> [1] 0.0915

implements (i) the estimation of Ḡ0 with Ḡn/Gbar_hat using algorithm ÂḠ,1 (first line) then (ii)
the computation of ψc

n (second line), both based on the same observations as above.
Note how we use function wrapper (simply run ?wrapper to see its man page).
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8.2.2. Elementary statistical properties

Because Ḡn minimizes the empirical risk over a finite-dimensional, identifiable, and well-
specified working model,

√
n(ψc

n−ψ0) converges in law to a centered Gaussian law. Moreover,
the asymptotic variance of

√
n(ψc

n−ψ0) is conservatively 16 estimated with

vc
n
.
= VarPn

(
2A−1

`Ḡn(A,W )
Y
)

=
1
n

n

∑
i=1

(
2Ai−1

`Ḡn(Ai,Wi)
Yi−ψ

c
n

)2

.

We investigate empirically the statistical behavior of ψc
n in Section 8.2.3. For an analysis of

the reason why vc
n is a conservative estimator of the asymptotic variance of

√
n(ψc

n −ψ0), see
there in Appendix C.1.1.

Before proceeding, let us touch upon what would have happened if we had used a less
amenable algorithm ÂḠ. For instance, ÂḠ could still be well-specified 17 but so versa-
tile/complex (as opposed to being based on well-behaved, finite-dimensional parametric model)
that the estimator Ḡn, though still consistent, would converge slowly to its target. Then, root-n
consistency would fail to hold. Or ÂḠ could be mis-specified and there would be no guarantee
at all that the resulting estimator ψc

n be even consistent.

8.2.3. Empirical investigation

Let us compute ψc
n on the same iter = 1000 independent samples of independent observations

drawn from P0 as in Section 6.3. As explained in Sections 5 and 6.3.3, we first make iter data
sets out of the obs data set (third line), then train algorithm ÂḠ,1 on each of them (fifth to seventh
lines). After the first series of commands the object learned_features_fixed_sample_size,
a tibble, contains 1000 rows and three columns.

We created learned_features_fixed_sample_size to store the estimators of Ḡ0 for fu-
ture use. We will at a later stage enrich the object, for instance by adding to it estimators of Q̄0
obtained by training different algorithms on each smaller data set.

In the second series of commands, the object psi_hat_abc is obtained by adding to
psi_hat_ab (see Section 6.3.3) an 1000 by four tibble containing notably the values of ψc

n
and
√

vc
n/
√

n computed by calling compute_iptw. The object also contains the values of the
recentered (with respect to ψ0) and renormalized

√
n/
√

vc
n(ψ

c
n−ψ0). Finally, bias_abc reports

amounts of bias (at the renormalized scale).

learned_features_fixed_sample_size <-
obs %>% as_tibble %>%
mutate(id = (seq_len(n()) - 1) %% iter) %>%
nest(obs = c(W, A, Y)) %>%
mutate(Gbar_hat =

16 In words, vc
n converges to an upper-bound of the true asymptotic variance.

17 Well-specified e.g. in the sense that the target Ḡ0 of ÂḠ belongs to the closure of the algorithm’s image
ÂḠ(M

empirical) or, in other words, can be approximated arbitrarily well by an output of the algorithm.
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map(obs,
~ estimate_Gbar(., algorithm = working_model_G_one)))

psi_hat_abc <-
learned_features_fixed_sample_size %>%
mutate(est_c =

map2(obs, Gbar_hat,
~ compute_iptw(as.matrix(.x), wrapper(.y, FALSE)))) %>%

unnest(est_c) %>% select(-Gbar_hat, -obs) %>%
mutate(clt = (psi_n - psi_zero) / sig_n,

type = "c") %>%
full_join(psi_hat_ab)

(bias_abc <- psi_hat_abc %>%
group_by(type) %>% summarise(bias = mean(clt)))

#> # A tibble: 3 x 2
#> type bias
#> <chr> <dbl>
#> 1 a 1.40
#> 2 b 0.0353
#> 3 c -0.00443

By the above chunk of code, the average of
√

n/vc
n(ψ

c
n−ψ0) computed across the realizations

is equal to -0.004 (see bias_abc). In words, the bias of ψc
n is of the same magnitude as that of

ψb
n despite the fact that the construction of ψc

n hinges on the estimation of Ḡ0 (based on the
well-specified algorithm ÂḠ,1).

We represent the empirical laws of the recentered (with respect to ψ0) and renormalized ψa
n ,

ψb
n and ψc

n in Figures 8 (kernel density estimators) and 9 (quantile-quantile plots).

fig_bias_ab +
geom_density(aes(clt, fill = type, colour = type), psi_hat_abc, alpha = 0.1) +
geom_vline(aes(xintercept = bias, colour = type),

bias_abc, size = 1.5, alpha = 0.5) +
xlim(-3, 4) +
labs(y = "",

x = bquote(paste(sqrt(n/v[n]^{list(a, b, c)})*
(psi[n]^{list(a, b, c)} - psi[0]))))

ggplot(psi_hat_abc, aes(sample = clt, fill = type, colour = type)) +
geom_abline(intercept = 0, slope = 1, alpha = 0.5) +
geom_qq(alpha = 1)

Figures 8 and 9 confirm that ψc
n behaves as well as ψb

n in terms of bias — but remember that
we acted as oracles when we chose the well-specified algorithm ÂḠ,1. They also corroborate that
vc

n, the estimator of the asymptotic variance of
√

n(ψc
n −ψ0), is conservative: for instance, the

corresponding bell-shaped blue curve is too much concentrated around its axis of symmetry.
The actual asymptotic variance of

√
n(ψc

n−ψ0) can be estimated with the empirical variance
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FIGURE 8. Kernel density estimators of the law of three estimators of ψ0 (recentered with respect to ψ0, and renor-
malized), one of them misconceived (a), one assuming that Ḡ0 is known (b) and one that hinges on the estimation of
Ḡ0 (c). The present figure includes Figure 4 (but the colors differ). Built based on iter independent realizations of
each estimator.

−2

0

2

4

−2 0 2
theoretical

sa
m

pl
e

type

a

b

c

FIGURE 9. Quantile-quantile plot of the standard normal law against the empirical laws of three estimators of ψ0,
one of them misconceived (a), one assuming that Ḡ0 is known (b) and one that hinges on the estimation of Ḡ0 (c).
Built based on iter independent realizations of each estimator.
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of the iter replications of the construction of ψc
n .

(emp_sig_n <- psi_hat_abc %>% filter(type == "c") %>%
summarize(sd(psi_n)) %>% pull)

#> [1] 0.0175
(summ_sig_n <- psi_hat_abc %>% filter(type == "c") %>% select(sig_n) %>%

summary)
#> sig_n
#> Min. :0.0523
#> 1st Qu.:0.0549
#> Median :0.0560
#> Mean :0.0561
#> 3rd Qu.:0.0570
#> Max. :0.0631

The empirical standard deviation is approximately 3.213 times smaller than the average es-
timated standard deviation. The estimator is conservative indeed! Furthermore, note the better
fit with the density of the standard normal density of the kernel density estimator of the law of√

n(ψc
n−ψ0) renormalized with emp_sig_n.

clt_c <- psi_hat_abc %>% filter(type == "c") %>%
mutate(clt = clt * sig_n / emp_sig_n)

fig_bias_ab +
geom_density(aes(clt, fill = type, colour = type), clt_c, alpha = 0.1) +
geom_vline(aes(xintercept = bias, colour = type),

bias_abc, size = 1.5, alpha = 0.5) +
xlim(-3, 4) +
labs(y = "",

x = bquote(paste(sqrt(n/v[n]^{list(a, b, c)})*
(psi[n]^{list(a, b, c)} - psi[0]))))

Workaround. In a real world data-analysis, one could correct the estimation of the asymp-
totic variance of

√
n(ψc

n −ψ0). We could for instance derive the influence function as it is de-
scribed there in Appendix C.1.1 and use the corresponding influence function-based estimator of
the variance. One could also rely on the cross-validation, possibly combined with the previous
workaround. Or one could also rely on the bootstrap. 18 This, however, would only make sense
if one knew for sure that the algorithm for the estimation of Ḡ0 is well-specified.

8.3. Investigating further the IPTW inference strategy

1. Building upon the chunks of code devoted to the repeated computation of ψb
n and its com-

panion quantities, construct confidence intervals for ψ0 of (asymptotic) level 95%, and
check if the empirical coverage is satisfactory. Note that if the coverage was exactly 95%,
then the number of confidence intervals that would contain ψ0 would follow a binomial

18 That is, replicate the construction of ψc
n many times based on data sets obtained by resampling from the original

data set, then estimate the asymptotic variance with the empirical variance of ψc
n computed across the replications.
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FIGURE 10. Kernel density estimators of the law of three estimators of ψ0 (recentered with respect to ψ0, and renor-
malized), one of them misconceived (a), one assuming that Ḡ0 is known (b) and one that hinges on the estimation of
Ḡ0 and an estimator of the asymptotic variance computed across the replications (c). The present figure includes
Figure 4 (but the colors differ) and it should be compared to Figure 9. Built based on iter independent realizations
of each estimator.

law with parameters iter and 0.95, and recall that function binom.test performs an
exact test of a simple null hypothesis about the probability of success in a Bernoulli ex-
periment against its three one-sided and two-sided alternatives.

2. Discuss what happens when the dimension of the (still well-specified) working model
grows. Start with the built-in working model working_model_G_two. The following
chunk of code re-defines working_model_G_two

## make sure ’1/2’ and ’1’ belong to ’powers’
powers <- rep(seq(1/4, 3, by = 1/4), each = 2)
working_model_G_two <- list(

model = function(...) {trim_glm_fit(glm(family = binomial(), ...))},
formula = stats::as.formula(

paste("A ~",
paste(c("I(W^", "I(abs(W - 5/12)^"),

powers,
sep = "", collapse = ") + "),

")")
),
type_of_preds = "response"

)
attr(working_model_G_two, "ML") <- FALSE

3. Play around with argument powers (making sure that 1/2 and 1 belong to it), and plot
graphics similar to those presented in Figures 8 and 9.
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4. Discuss what happens when the working model is mis-specified. You could use the built-in
working model working_model_G_three.

5. Repeat the analysis developed in response to problem 1 above but for ψc
n . What can you

say about the coverage of the confidence intervals?

6. ☡ (Follow-up to problem 5). Implement the bootstrap procedure evoked at the end of
Section 8.2.3. Repeat the analysis developed in response to problem 1. Compare your
results with those to problem 5.

7. ☡ Is it legitimate to infer the asymptotic variance of ψc
n with vc

n when one relies on a very
data-adaptive/versatile algorithm to estimate Ḡ0?

8.4. G-computation estimator

8.4.1. Construction and computation

Let ÂQW be an algorithm designed for the estimation of Q0,W (see Section 7.3). We denote by
Qn,W

.
= ÂQW (Pn) the output of the algorithm trained on Pn.

Let ÂQ̄ be an algorithm designed for the estimation of Q̄0 (see Section 7.6). We denote by
Q̄n

.
= ÂQ̄(Pn) the output of the algorithm trained on Pn.

Equation (1) suggests the following, simple estimator of Ψ(P0):

ψn
.
=
∫ (

Q̄n(1,w)− Q̄n(0,w)
)

dQn,W (w). (31)

In words, this estimator is implemented by first regressing Y on (A,W ), then by marginalizing
with respect to the estimated law of W . The resulting estimator is referred to as a G-computation
(or standardization) estimator.

From a computational point of view, the tlrider package makes it easy to build the G-
computation estimator. Recall that we have already estimated the marginal law Q0,W of W under
P0 by training the algorithm ÂQW as it is implemented in estimate_QW on the n = 1000 first
observations in obs (see Section 7.3):

QW_hat <- estimate_QW(head(obs, 1e3))

Recall that ÂQ̄,1 is the algorithm for the estimation of Q̄0 as it is implemented in
estimate_Qbar with its argument algorithm set to the built-in working_model_Q_one
(see Section 7.5). Recall also that ÂQ̄,kNN is the algorithm for the estimation of Q̄0 as it is
implemented in estimate_Qbar with its argument algorithm set to the built-in kknn_algo
(see Section 7.6.2). We have already trained the latter on the n = 1000 first observations in obs.
Let us train the former on the same data set:

Qbar_hat_kknn <- estimate_Qbar(head(obs, 1e3),
algorithm = kknn_algo,
trControl = kknn_control,
tuneGrid = kknn_grid)
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Qbar_hat_d <- estimate_Qbar(head(obs, 1e3), working_model_Q_one)

With these estimators handy, computing the G-computation estimator is as simple as running
the following chunk of code:

(compute_gcomp(QW_hat, wrapper(Qbar_hat_kknn, FALSE), 1e3))
#> # A tibble: 1 x 2
#> psi_n sig_n
#> <dbl> <dbl>
#> 1 0.0887 0.00245
(compute_gcomp(QW_hat, wrapper(Qbar_hat_d, FALSE), 1e3))
#> # A tibble: 1 x 2
#> psi_n sig_n
#> <dbl> <dbl>
#> 1 0.0961 0.00161

Note how we use function wrapper again, and that it is necessary to provide the number of
observations upon which the estimation of the QW and Q̄ features of P0.

8.4.2. Elementary statistical properties

This subsection is very similar to its counterpart for the IPTW estimator, see Section 8.2.2.
Let us denote by Q̄n,1 the output of algorithm ÂQ̄,1 trained on Pn, and recall that Q̄n,kNN is

the output of algorithm ÂQ̄,kNN trained on Pn. Let ψd
n and ψe

n be the G-computation estimators
obtained by substituting Q̄n,1 and Q̄n,kNN for Q̄n in (31), respectively.

If Q̄n,• minimized the empirical risk over a finite-dimensional, identifiable, and well-specified
working model, then

√
n(ψ•n −ψ0) would converge in law to a centered Gaussian law (here ψ•n

represents the G-computation estimator obtained by substituting Q̄n,• for Q̄n in (31)). Moreover,
the asymptotic variance of

√
n(ψ•n −ψ0) would be estimated anti-conservatively 19 with

vd
n
.
= VarPn

(
Q̄n,1(1, ·)− Q̄n,1(0, ·)

)
(32)

=
1
n

n

∑
i=1

(
Q̄n,1(1,Wi)− Q̄n,1(0,Wi)−ψ

d
n

)2
. (33)

Unfortunately, algorithm ÂQ̄,1 is mis-specified and ÂQ̄,kNN is not based on a finite-
dimensional working model. Nevertheless, function compute_gcomp estimates (in general, very
poorly) the asymptotic variance with (33).

We investigate empirically the statistical behavior of ψd
n in Section 8.4.3. For an analysis of

the reason why vd
n is an anti-conservative estimator of the asymptotic variance of

√
n(ψd

n −ψ0),
see there in Appendix C.1.2. We wish to emphasize that anti-conservativeness is even more
embarrassing that conservativeness (both being contingent on the fact that the algorithms are
well-specified, fact that cannot be true in the present case in real world situations).

What would happen if we used a less amenable algorithm ÂQ̄. For instance, ÂQ̄ could still
be well-specified but so versatile/complex (as opposed to being based on well-behaved, finite-
dimensional parametric model) that the estimator Q̄n, though still consistent, would converge
19 In words, vd

n converges to a lower-bound of the true asymptotic variance.
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slowly to its target. Then, root-n consistency would fail to hold. We can explore empirically this
situation with estimator ψe

n that hinges on algorithm ÂQ̄,kNN. Or ÂQ̄ could be mis-specified and
there would be no guarantee at all that the resulting estimator ψn be even consistent.

8.4.3. Empirical investigation, fixed sample size

Let us compute ψd
n and ψe

n on the same iter = 1000 independent samples of inde-
pendent observations drawn from P0 as in Sections 6.3 and 8.2.3. We first enrich object
learned_features_fixed_sample_size that was created in Section 8.2.3, adding to it
estimators of Q̄0 obtained by training algorithms ÂQ̄,1 and ÂQ̄,kNN on each smaller data set.

The second series of commands creates object psi_hat_de, an 1000 by six tibble contain-
ing notably the values of ψd

n and
√

vd
n/
√

n computed by calling compute_gcomp, and those of
the recentered (with respect to ψ0) and renormalized

√
n/
√

vd
n(ψ

d
n −ψ0). Because we know be-

forehand that vd
n under-estimates the actual asymptotic variance of

√
n(ψd

n −ψ0), the tibble also
includes the values of

√
n/
√

vd∗(ψd
n −ψ0) where the estimator vd∗ of the asymptotic variance is

computed across the replications of ψd
n . The tibble includes the same quantities pertaining to ψe

n ,
although there is no theoretical guarantee that the central limit theorem does hold and, even if it
did, that the counterpart ve

n to vd
n estimates in any way the asymptotic variance of

√
n(ψe

n−ψ0).
Finally, bias_de reports amounts of bias (at the renormalized scales — plural). There is

one value of bias for each combination of (i) type of the estimator (d or e) and (ii) how the
renormalization is carried out, either based on vd

n and ve
n (auto_renormalization is TRUE)

or on the estimator of the asymptotic variance computed across the replications of ψd
n and ψe

n
(auto_renormalization is FALSE).

learned_features_fixed_sample_size <-
learned_features_fixed_sample_size %>%
mutate(Qbar_hat_d =

map(obs,
~ estimate_Qbar(., algorithm = working_model_Q_one)),

Qbar_hat_e =
map(obs,

~ estimate_Qbar(., algorithm = kknn_algo,
trControl = kknn_control,
tuneGrid = kknn_grid))) %>%

mutate(QW = map(obs, estimate_QW),
est_d =

pmap(list(QW, Qbar_hat_d, n()),
~ compute_gcomp(..1, wrapper(..2, FALSE), ..3)),

est_e =
pmap(list(QW, Qbar_hat_e, n()),

~ compute_gcomp(..1, wrapper(..2, FALSE), ..3)))

psi_hat_de <- learned_features_fixed_sample_size %>%
select(est_d, est_e) %>%
pivot_longer(c(‘est_d‘, ‘est_e‘),

names_to = "type", values_to = "estimates") %>%
extract(type, "type", "_([de])$") %>%
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unnest(estimates) %>%
group_by(type) %>%
mutate(sig_alt = sd(psi_n)) %>%
mutate(clt_ = (psi_n - psi_zero) / sig_n,

clt_alt = (psi_n - psi_zero) / sig_alt) %>%
pivot_longer(c(‘clt_‘, ‘clt_alt‘),

names_to = "key", values_to = "clt") %>%
extract(key, "key", "_(.*)$") %>%
mutate(key = ifelse(key == "", TRUE, FALSE)) %>%
rename("auto_renormalization" = key)

(bias_de <- psi_hat_de %>%
group_by(type, auto_renormalization) %>%
summarize(bias = mean(clt)) %>% ungroup)

#> # A tibble: 4 x 3
#> type auto_renormalization bias
#> <chr> <lgl> <dbl>
#> 1 d FALSE 0.240
#> 2 d TRUE 2.25
#> 3 e FALSE 0.122
#> 4 e TRUE 0.679

fig <- ggplot() +
geom_line(aes(x = x, y = y),

data = tibble(x = seq(-4, 4, length.out = 1e3),
y = dnorm(x)),

linetype = 1, alpha = 0.5) +
geom_density(aes(clt, fill = type, colour = type),

psi_hat_de, alpha = 0.1) +
geom_vline(aes(xintercept = bias, colour = type),

bias_de, size = 1.5, alpha = 0.5) +
facet_wrap(~ auto_renormalization,

labeller =
as_labeller(c(‘TRUE‘ = "auto-renormalization: TRUE",

‘FALSE‘ = "auto-renormalization: FALSE")),
scales = "free")

fig +
labs(y = "",

x = bquote(paste(sqrt(n/v[n]^{list(d, e)})*
(psi[n]^{list(d, e)} - psi[0]))))

We represent the empirical laws of the recentered (with respect to ψ0) and renormalized ψd
n

and ψe
n in Figure 11 (kernel density estimators). Two renormalization schemes are considered,

either based on an estimator of the asymptotic variance (left) or on the empirical variance com-
puted across the iter independent replications of the estimators (right). We emphasize that the
x-axis ranges differ starkly between the left and right plots.

Two important comments are in order. First, on the one hand, the G-computation estimator
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FIGURE 11. Kernel density estimators of the law of two G-computation estimators of ψ0 (recentered with respect to
ψ0, and renormalized). The estimators respectively hinge on algorithms ÂQ̄,1 (d) and ÂQ̄,kNN (e) to estimate Q̄0. Two
renormalization schemes are considered, either based on an estimator of the asymptotic variance (right) or on the
empirical variance computed across the iter independent replications of the estimators (left). We emphasize that the
x-axis ranges differ starkly between the left and right plots.

ψd
n is biased. Specifically, by the above chunk of code, the averages of

√
n/vd

n(ψ
d
n −ψ0) and√

n/vd∗
n (ψd

n −ψ0) computed across the realizations are equal to 2.247 and 0.24 (see bias_de).
On the other hand, the G-computation estimator ψe

n is biased too, though slightly less than ψd
n .

Specifically, by the above chunk of code, the averages of
√

n/ve
n(ψ

e
n−ψ0) and

√
n/ve∗(ψe

n−ψ0)
computed across the realizations are equal to 0.679 and 0.122 (see bias_de). We can provide
an oracular explanation. Estimator ψd

n suffers from the poor approximation of Q̄0 by ÂQ̄,1(Pn),

a result of the algorithm’s mis-specification. As for ψe
n , it behaves better because ÂQ̄,kNN(Pn)

approximates Q̄0 better than ÂQ̄,1(Pn), an apparent consequence of the greater versatility of the
algorithm.

Second, we get a visual confirmation that vd
n under-estimates the actual asymptotic variance of√

n(ψd
n −ψ0): the right-hand side red bell-shaped curve is too dispersed. In contrast, the right-

hand side blue bell-shaped curve is much closer to the black curve that represents the density
of the standard normal law. Looking at the left-hand side plot reveals that the empirical law
of
√

n/vd∗(ψd
n −ψ0), once translated to compensate for the bias, is rather close to the black

curve. This means that the random variable is approximately distributed like a Gaussian random
variable. On the contrary, the empirical law of

√
n/ve∗(ψe

n −ψ0) does not strike us as being as
closely Gaussian-like as that of

√
n/vd∗(ψd

n −ψ0). By being more data-adaptive than ÂQ̄,1, al-

gorithm ÂQ̄,kNN yields a better estimator of Q̄0. However, the rate of convergence of ÂQ̄,kNN(Pn)
to its limit may be slower than root-n, invalidating a central limit theorem.

How do the estimated variances of ψd
n and ψe

n compare with their empirical counterparts
(computed across the iter replications of the construction of the two estimators)?
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## psi_n^d
(psi_hat_de %>% ungroup %>%

filter(type == "d" & auto_renormalization) %>% pull(sig_n) %>% summary)
#> Min. 1st Qu. Median Mean 3rd Qu. Max.
#> 0.00061 0.00171 0.00208 0.00208 0.00244 0.00373
## psi_n^e
(psi_hat_de %>% ungroup %>%

filter(type == "e" & auto_renormalization) %>% pull(sig_n) %>% summary)
#> Min. 1st Qu. Median Mean 3rd Qu. Max.
#> 0.00151 0.00261 0.00288 0.00289 0.00316 0.00430

The empirical standard deviation of ψd
n is approximately 8.56 times larger than the average

estimated standard deviation. The estimator is anti-conservative indeed!
As for the empirical standard deviation of ψe

n , it is approximately 6.093 times larger than the
average estimated standard deviation.

8.4.4. ☡ Empirical investigation, varying sample size

sample_size <- c(5e3, 15e3)
block_size <- sum(sample_size)

learned_features_varying_sample_size <- obs %>% as_tibble %>%
head(n = (nrow(.) %/% block_size) * block_size) %>%
mutate(block = label(1:nrow(.), sample_size)) %>%
nest(obs = c(W, A, Y))

First, we cut the data set into independent sub-data sets of sample size n in {5000,1.5×104}.
Second, we infer ψ0 as shown two chunks earlier. We thus obtain 50 independent realizations of
each estimator derived on data sets of 2, increasing sample sizes.

learned_features_varying_sample_size <-
learned_features_varying_sample_size %>%
mutate(Qbar_hat_d =

map(obs,
~ estimate_Qbar(., algorithm = working_model_Q_one)),

Qbar_hat_e =
map(obs,

~ estimate_Qbar(., algorithm = kknn_algo,
trControl = kknn_control,
tuneGrid = kknn_grid))) %>%

mutate(QW = map(obs, estimate_QW),
est_d =

pmap(list(QW, Qbar_hat_d, n()),
~ compute_gcomp(..1, wrapper(..2, FALSE), ..3)),

est_e =
pmap(list(QW, Qbar_hat_e, n()),

~ compute_gcomp(..1, wrapper(..2, FALSE), ..3)))
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root_n_bias <- learned_features_varying_sample_size %>%
mutate(block = unlist(map(strsplit(block, "_"), ~.x[2])),

sample_size = sample_size[as.integer(block)]) %>%
select(block, sample_size, est_d, est_e) %>%
pivot_longer(c(‘est_d‘, ‘est_e‘),

names_to = "type", values_to = "estimates") %>%
extract(type, "type", "_([de])$") %>%
unnest(estimates) %>%
group_by(block, type) %>%
mutate(sig_alt = sd(psi_n)) %>%
mutate(clt_ = (psi_n - psi_zero) / sig_n,

clt_alt = (psi_n - psi_zero) / sig_alt) %>%
pivot_longer(c(‘clt_‘, ‘clt_alt‘),

names_to = "key", values_to = "clt") %>%
extract(key, "key", "_(.*)$") %>%
mutate(key = ifelse(key == "", TRUE, FALSE)) %>%
rename("auto_renormalization" = key)

The tibble called root_n_bias reports root-n times bias for all combinations of estimator
and sample size. The next chunk of code presents visually our findings, see Figure 12. Note how
we include the realizations of the estimators derived earlier and contained in psi_hat_de (thus
breaking the independence between components of root_n_bias, a small price to pay in this
context).

root_n_bias <- learned_features_fixed_sample_size %>%
mutate(block = "0",

sample_size = B/iter) %>% # because *fixed* sample size
select(block, sample_size, est_d, est_e) %>%

pivot_longer(c(‘est_d‘, ‘est_e‘),
names_to = "type", values_to = "estimates") %>%

extract(type, "type", "_([de])$") %>%
unnest(estimates) %>%
group_by(block, type) %>%
mutate(sig_alt = sd(psi_n)) %>%
mutate(clt_ = (psi_n - psi_zero) / sig_n,

clt_alt = (psi_n - psi_zero) / sig_alt) %>%
pivot_longer(c(‘clt_‘, ‘clt_alt‘),

names_to = "key", values_to = "clt") %>%
extract(key, "key", "_(.*)$") %>%
mutate(key = ifelse(key == "", TRUE, FALSE)) %>%
rename("auto_renormalization" = key) %>%
full_join(root_n_bias)

root_n_bias %>% filter(auto_renormalization) %>%
mutate(rnb = sqrt(sample_size) * (psi_n - psi_zero)) %>%
group_by(sample_size, type) %>%
ggplot() +
stat_summary(aes(x = sample_size, y = rnb,
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group = interaction(sample_size, type),
color = type),

fun.data = mean_se, fun.args = list(mult = 1),
position = position_dodge(width = 250), cex = 1) +

stat_summary(aes(x = sample_size, y = rnb,
group = interaction(sample_size, type),
color = type),

fun.data = mean_se, fun.args = list(mult = 1),
position = position_dodge(width = 250), cex = 1,
geom = "errorbar", width = 750) +

stat_summary(aes(x = sample_size, y = rnb,
color = type),

fun = mean,
position = position_dodge(width = 250),
geom = "polygon", fill = NA) +

geom_point(aes(x = sample_size, y = rnb,
group = interaction(sample_size, type),
color = type),

position = position_dodge(width = 250),
alpha = 0.1) +

scale_x_continuous(breaks = unique(c(B / iter, sample_size))) +
labs(x = "sample size n",

y = bquote(paste(sqrt(n) * (psi[n]^{list(d, e)} - psi[0]))))
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FIGURE 12. Evolution of root-n times bias versus sample size for two G-computation estimators of ψ0. The estimators
respectively hinge on algorithms ÂQ̄,1 (d) and ÂQ̄,kNN (e) to estimate Q̄0. Big dots represent the average biases and
vertical lines represent twice the standard error.

Root-n bias for ψd
n (red lines and points) is positive and tends to increase from sample size

1000 to 5000 and from 5000 to 1.5×104. Moreover, root-n bias tends to be larger for ψd
n than for

ψe
n . In addition, root-n bias for ψe

n tends to increase from sample size 1000 to 1.5×104, where it
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tends to be positive too. 20

In essence, we observe that the bias does not vanish faster than root-n. For ψd
n , this is because

ÂQ̄,1 is mis-specified and we expect that the bias increases at rate root-n. For ψe
n , this is because

the estimator produced by the versatile ÂQ̄,kNN converges slowly to its limit. Can anything be
done to amend ψd

n and ψe
n?

8.5. Investigating further the G-computation estimation strategy

1. Implement the G-computation estimator based on well-specified working model. To do
so, (i) create a copy working_model_Q_two of working_model_Q_one, (ii) replace its
family entry in such a way that Q̄0 falls in the corresponding working model, and (iii)
adapt the chunk of code where we computed Qbar_hat_d in Section 8.4.1.

2. Evaluate the empirical properties of the estimator of problem 1.

3. Create a function to estimate the marginal law Q0,W of W by maximum likelihood esti-
mation based on a mis-specified model that assumes (wrongly) that W is drawn from a
Gaussian law with unknown mean and variance.

4. ☡ Implement the G-computation estimator using either working_model_Q_one or
working_model_Q_two and the estimator of Q0,W of problem 3.

9. One-step correction

9.1. ☡ General analysis of plug-in estimators

Recall that ÂQW is an algorithm designed for the estimation of Q0,W (see Section 7.3) and that
we denote by Qn,W

.
= ÂQW (Pn) the output of the algorithm trained on Pn. Likewise, ÂḠ and ÂQ̄

are two generic algorithms designed for the estimation of Ḡ0 and of Q̄0 (see Sections 7.4 and
7.6), Ḡn

.
= ÂḠ(Pn) and Q̄n

.
= ÂQ̄(Pn) are their outputs once trained on Pn.

Let us now introduce P◦n a law in M such that the QW , Ḡ and Q̄ features of P◦n equal Qn,W , Ḡn

and Q̄n, respectively. We say that any such law is compatible with Qn,W , Ḡn and Q̄n.
Now, let us substitute P◦n for P in (19):

Ψ(P◦n )−Ψ(P0) =−P0D∗(P◦n )+RemP0(P
◦
n ). (34)

We show there in Appendix C.2 that, under conditions on the complexity/versatility of algorithms
ÂḠ and ÂQ̄ (often referred to as regularity conditions) and assuming that their outputs Ḡn and
Q̄n both consistently estimate their targets Ḡ0 and Q̄0, it holds that

Ψ(P◦n )−Ψ(P0) =−PnD∗(P◦n )+PnD∗(P0)+oP0(1/
√

n) (35)

=−PnD∗(P◦n )+
1
n

n

∑
i=1

D∗(P0)(Oi)+oP0(1/
√

n).

20 We use the expression “tend to” because controlling for multiple testing makes it impossible to make a firm state-
ment.

Journal de la Société Française de Statistique, Vol. 161 No. 1 201-286
http://www.sfds.asso.fr/journal

© Société Française de Statistique et Société Mathématique de France (2020) ISSN: 2102-6238



A Ride in Targeted Learning Territory 259

In light of (16), Ψ(P◦n ) would be asymptotically linear with influence curve IC = D∗(P0) in the
absence of the random term −PnD∗(P◦n ). Unfortunately, it turns out that this term can degrade
dramatically the behavior of the plug-in estimator Ψ(P◦n ).

9.2. One-step correction

Luckily, a very simple workaround allows to circumvent the problem. Proposed by Le Cam
(1969) (see also (Pfanzagl, 1982) and (van der Vaart, 1998)), the workaround merely consists in
adding the random term to the initial estimator, that is, in estimating Ψ(P0) not with Ψ(P◦n ) but
instead with

ψ
os
n

.
= Ψ(P◦n )+PnD∗(P◦n ) = Ψ(P◦n )+

1
n

n

∑
i=1

D∗(P◦n )(Oi). (36)

Obviously, in light of (35), ψos
n is asymptotically linear with influence curve IC = D∗(P0).

Thus, by the central limit theorem,
√

n(ψos
n −Ψ(P0)) converges in law to a centered Gaussian

distribution with variance

VarP0(D
∗(P0)(O)) = EP0(D

∗(P0)(O)). (37)

The detailed general analysis of plug-in estimators developed there in Appendix C.2 also
revealed that the above asymptotic variance is consistently estimated with

PnD∗(P◦n )
2 =

1
n

n

∑
i=1

D∗(P◦n )
2(Oi). (38)

Therefore, by the central limit theorem and Slutsky’s lemma (see the argument there in Appendix
B.3.1), [

ψ
os
n ±Φ

−1(1−α)
PnD∗(P◦n )

2
√

n

]
is a confidence interval for Ψ(P0) with asymptotic level (1−2α).

9.3. Empirical investigation

In light of (36) if the estimator equals Ψ(P◦n ), then performing a one-step correction essentially
boils down to computing two quantities,−PnD∗(P◦n ) (the bias term) and PnD∗(P◦n )

2 (an estimator
of the asymptotic variance of ψos

n ). The tlrider package makes the operation very easy thanks
to the function apply_one_step_correction.

Let us illustrate its use by updating the G-computation estimator built on the n = 1000 first
observations in obs by relying on ÂQ̄,kNN, that is, on the algorithm for the estimation of Q̄0 as it
is implemented in estimate_Qbar with its argument algorithm set to the built-in kknn_algo
(see Section 7.6.2). The algorithm has been trained earlier on this data set and produced the object
Qbar_hat_kknn. The following chunk of code re-computes the corresponding G-computation
estimator, using again the estimator QW_hat of the marginal law of W under P0 (see Section 7.3),
then applied the one-step correction:
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(psin_kknn <- compute_gcomp(QW_hat, wrapper(Qbar_hat_kknn, FALSE), 1e3))
#> # A tibble: 1 x 2
#> psi_n sig_n
#> <dbl> <dbl>
#> 1 0.0887 0.00245
(psin_kknn_os <- apply_one_step_correction(head(obs, 1e3),

wrapper(Gbar_hat, FALSE),
wrapper(Qbar_hat_kknn, FALSE),
psin_kknn$psi_n))

#> # A tibble: 1 x 3
#> psi_n sig_n crit_n
#> <dbl> <dbl> <dbl>
#> 1 0.0888 0.0162 0.000124

In the call to apply_one_step_correction we provide (i) the data set at hand (first line),
(ii) the estimator Gbar_hat of Ḡ0 that we built earlier by using algorithm ÂḠ,1 (second line;
see Section 7.4.2), (iii) the estimator Qbar_hat_kknn of Q̄0 and the G-computation estimator
psin_kknn that resulted from it (third and fourth lines).

To assess what is the impact of the one-step correction, let us apply the one-step correction to
the estimators that we built in Section 8.4.3. The object learned_features_fixed_sample_size
already contains the estimated features of P0 that are needed to perform the one-step cor-
rection to the estimators ψd

n and ψe
n , namely, thus we merely have to call the function

apply_one_step_correction.

psi_hat_de_one_step <- learned_features_fixed_sample_size %>%
mutate(os_est_d =

pmap(list(obs, Gbar_hat, Qbar_hat_d, est_d),
~ apply_one_step_correction(as.matrix(..1),

wrapper(..2, FALSE),
wrapper(..3, FALSE),
..4$psi_n)),

os_est_e =
pmap(list(obs, Gbar_hat, Qbar_hat_e, est_e),

~ apply_one_step_correction(as.matrix(..1),
wrapper(..2, FALSE),
wrapper(..3, FALSE),
..4$psi_n))) %>%

select(os_est_d, os_est_e) %>%
pivot_longer(c(‘os_est_d‘, ‘os_est_e‘),

names_to = "type", values_to = "estimates") %>%
extract(type, "type", "_([de])$") %>%
mutate(type = paste0(type, "_one_step")) %>%
unnest(estimates) %>%
group_by(type) %>%
mutate(sig_alt = sd(psi_n)) %>%
mutate(clt_ = (psi_n - psi_zero) / sig_n,

clt_alt = (psi_n - psi_zero) / sig_alt) %>%
pivot_longer(c(‘clt_‘, ‘clt_alt‘),
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names_to = "key", values_to = "clt") %>%
extract(key, "key", "_(.*)$") %>%
mutate(key = ifelse(key == "", TRUE, FALSE)) %>%
rename("auto_renormalization" = key)

(bias_de_one_step <- psi_hat_de_one_step %>%
group_by(type, auto_renormalization) %>%
summarize(bias = mean(clt)) %>% ungroup)

#> # A tibble: 4 x 3
#> type auto_renormalization bias
#> <chr> <lgl> <dbl>
#> 1 d_one_step FALSE -0.00668
#> 2 d_one_step TRUE -0.0240
#> 3 e_one_step FALSE 0.0333
#> 4 e_one_step TRUE 0.0171

fig <- ggplot() +
geom_line(aes(x = x, y = y),

data = tibble(x = seq(-4, 4, length.out = 1e3),
y = dnorm(x)),

linetype = 1, alpha = 0.5) +
geom_density(aes(clt, fill = type, colour = type),

psi_hat_de_one_step, alpha = 0.1) +
geom_vline(aes(xintercept = bias, colour = type),

bias_de_one_step, size = 1.5, alpha = 0.5) +
facet_wrap(~ auto_renormalization,

labeller =
as_labeller(c(‘TRUE‘ = "auto-renormalization: TRUE",

‘FALSE‘ = "auto-renormalization: FALSE")),
scales = "free")

fig +
labs(y = "",

x = bquote(paste(sqrt(n/v[n]^{list(d, e, os)})*
(psi[n]^{list(d, e, os)} - psi[0]))))

It seems that the one-step correction performs qui well (in particular, compare bias_de with
bias_de_one_step):

bind_rows(bias_de, bias_de_one_step) %>%
filter(!auto_renormalization) %>%
arrange(type)

#> # A tibble: 4 x 3
#> type auto_renormalization bias
#> <chr> <lgl> <dbl>
#> 1 d FALSE 0.240
#> 2 d_one_step FALSE -0.00668
#> 3 e FALSE 0.122
#> 4 e_one_step FALSE 0.0333
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auto−renormalization: FALSE auto−renormalization: TRUE
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FIGURE 13. Kernel density estimators of the law of two one-step-G-computation estimators of ψ0 (recentered with
respect to ψ0, and renormalized). The estimators respectively hinge on algorithms ÂQ̄,1 (d) and ÂQ̄,kNN (e) to estimate
Q̄0, and on one-step correction. Two renormalization schemes are considered, either based on an estimator of the
asymptotic variance (left) or on the empirical variance computed across the iter independent replications of the
estimators (right). We emphasize that the x-axis ranges differ between the left and right plots.

What about the estimation of the asymptotic variance, and of the mean squared-error of the
estimators?

psi_hat_de %>%
full_join(psi_hat_de_one_step) %>%
filter(auto_renormalization) %>%
group_by(type) %>%
summarize(sd = mean(sig_n),

se = sd(psi_n),
mse = mean((psi_n - psi_zero)^2) * n()) %>%

arrange(type)
#> # A tibble: 4 x 4
#> type sd se mse
#> <chr> <dbl> <dbl> <dbl>
#> 1 d 0.00208 0.0178 0.336
#> 2 d_one_step 0.0174 0.0174 0.302
#> 3 e 0.00289 0.0176 0.314
#> 4 e_one_step 0.0167 0.0176 0.309

The sd (estimator of the asymptotic standard deviation) and se (empirical standard deviation)
entries are similar. This indicates that the inference of the asymptotic variance of the one-step
estimators based on the influence curve is rather accurate for both the d- and e-variants that we
implemented. As for the mean square error, it is diminished by the one-step update for both types
d and e, the e_one_step estimator exhibiting the smallest mean square error.
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9.4. Investigating further the one-step correction methodology

1. Use estimate_Gbar to create an oracle algorithm ÃḠ,s for the estimation of Ḡ0 that, for
any s > 0, estimates Ḡ0(w) with

Ḡn(w)
.
= ÃḠ,s(Pn)(w)

.
= expit

(
logit

(
Ḡ0(w)

)
+ sZ

)
where Z is a standard normal random variable. 21 What would happen if one chose s = 0
in the above definition? What happens when s converges to 0? Explain why the algorithm
is said to be an oracle algorithm.

2. Use estimate_Qbar to create an oracle algorithm ÃQ̄,s for the estimation of Q̄0 that, for
any s > 0, estimates Q̄0(a,w) with

Q̄n(a,w)
.
= ÃḠ,s(Pn)(a,w)

.
= expit

(
logit

(
Q̄0(a,w)

)
+ sZ

)
where Z is a standard normal random variable. The comments made about ÃḠ,s in the

above problem also apply to ÃQ̄,s.

3. Reproduce the simulation study developed in Sections 8.4.3 and 9.3 with the oracle algo-
rithms ÃḠ,s and ÃQ̄,s′ substituted for used in these sections. Change the values of s,s′ > 0
and compare how well the estimating procedure performs depending on the product ss′.
What do you observe? We invite you to refer to Section C.2.1.

10. Targeted minimum loss-based estimation

10.1. Motivations

10.1.1. Falling outside the parameter space

Section 9 introduced the one-step corrected estimator ψos
n of ψ0. It is obtained by adding a cor-

rection term to an initial plug-in estimator Ψ(P◦n ), resulting in an estimator that is asymptotically
linear with influence curve IC = D∗(P0) under mild conditions (see Section 9.2 and the detailed
proof there in Appendix C.2).

Unfortunately, the one-step estimator lacks a desirable feature of a plug-in estimator: plug-in
estimators always lie in the parameter space whereas a one-step estimator does not necessarily
do so. For example, it must also be true that ψ0 = Ψ(P0) ∈ [−1,1] yet it may be the case that
ψos

n 6∈ [−1,1].
It is typically easy to shape an algorithm ÂQ̄ for the estimation of Q̄0 to output estimators

Q̄n that, like Q̄0, take their values in [0,1]. The plug-in estimator ψn (31) based on such a Q̄n

necessarily satisfies ψn ∈ [−1,1]. However, the one-step estimator derived from ψn may fall
outside of the interval if the correction term PnD∗(P◦n ) is large.

21 Note that the algorithm does not really to be trained.
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10.1.2. The influence curve equation

Upon closer examination of the influence curve D∗(P◦n ), we see that this may occur more fre-
quently when `Ḡn(Ai,Wi) is close to zero for at least some 1≤ i≤ n. In words, this may happen
if there are observations in our data set that we observed under actions Ai that were estimated to
be unlikely given their respective contexts Wi. In such cases, D∗(P◦n )(Oi), and consequently the
one-step correction term, may be large and cause the one-step estimate to fall outside [−1,1].

Another way to understand this behavior is to recognize the one-step estimator as an initial
plug-in estimator that is corrected in the parameter space of ψ0. One of the pillars of targeted
learning is to perform, instead, a correction in the parameter space of Q̄0.

In particular, consider a law P∗n estimating P0 that is compatible with the estimators Q̄∗n, Ḡn,
and Qn,W , but moreover is such that

PnD∗(P∗n ) = 0 (39)

or, at the very least,
PnD∗(P∗n ) = oP0(1/

√
n). (40)

Achieving (39) is called solving the efficient influence curve equation. Likewise, achieving (40)
is called approximately solving the influence curve equation.

If such estimators can be generated indeed, then the plug-in estimator

ψ
∗
n
.
= Ψ(P∗n ) =

∫ (
Q̄∗n(1,w)− Q̄∗n(0,w)

)
dQn,W (w)

is asymptotically linear with influence curve IC = D∗(P0), under mild conditions. Moreover, by
virtue of its plug-in construction, it has the additional property that in finite-samples ψ∗n will
always obey bounds on the parameter space.

10.1.3. A basic fact on the influence curve equation

Our strategy for constructing such a plug-in estimate begins by generating an initial estimator
Q̄n of Q̄0 based on an algorithm ÂQ̄ and an estimator Ḡn of Ḡ0 based on an algorithm ÂḠ. These
initial estimators should strive to be as close as possible to their respective targets. We use the
empirical distribution Qn,W as an estimator of Q0,W .

Now, recall the definition of D∗1 (12) and note that for any estimator Q̄∗n of Q̄0 and a law P∗n
that is compatible with Q̄∗n and Qn,W ,

PnD1(P∗n ) = 0.

The proof can be found there in Appendix C.4.1.
In words, this shows that so long as we use the empirical distribution Qn,W to estimate Q0,W ,

by its very construction achieving (39) or (40) is equivalent to solving

PnD∗2(P
∗
n ) = 0 (41)

or
PnD∗2(P

∗
n ) = oP0(1/

√
n). (42)

It thus remains to devise a strategy for ensuring that PnD∗2(P
∗
n ) = 0 or oP0(1/

√
n).
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10.2. Targeted fluctuation

Our approach to satisfying (41) 22 hinges on revising our initial estimator Q̄n of Q̄0. We propose
a method for building an estimator of Q̄0 that is “near to” Q̄n, but is such that for any law P∗n
that is compatible with this revised estimator, PnD∗(P∗n ) = 0. 23 Because Q̄n is our best (initial)
estimator of Q̄0, the new estimator that we shall build should be at least as good an estimator of
Q̄0 as Q̄n. So first, we must propose a way to move between regression functions, and then we
must propose a way to move to a new regression function that fits the data at least as well as Q̄n.

Instead of writing “propos[ing] a way to move between regression functions” we may also
have written “proposing a way to fluctuate a regression function”, thus suggesting very oppor-
tunely that the notion of fluctuation as discussed in Section 3.3 may prove instrumental to achieve
the former objective.

10.2.1. ☡ Fluctuating indirectly

Let us resume the discussion where we left it at the end of Section 3.3.1. It is easy to show
that the fluctuation {Ph : h ∈ H} of P in direction of s in M induces a fluctuation {Q̄h : h ∈
H} of Q̄ = Qh|h=0 in the space Q

.
= {Q̄ : P ∈M } of regression functions induced by model

M . Specifically we show there in Appendix C.4.2 that, for every h ∈ H, the conditional mean
Q̄h(A,W ) of Y given (A,W ) under Ph is given by

Q̄h(A,W )
.
=

Q̄(A,W )+hEP(Y s(O)|A,W )

1+hEP(s(O)|A,W )
.

We note that if s(O) depends on O only through (A,W ) then, abusing notation and writing
s(A,W ) for s(O),

Q̄h(A,W ) =
Q̄(A,W )+hEP(Y s(A,W )|A,W )

1+hEP(s(A,W )|A,W )

=
Q̄(A,W )+hs(A,W )Q̄(A,W )

1+hs(A,W )

= Q̄(A,W ). (43)

In words, Q̄ is not fluctuated at all, that is, the laws Ph that are elements of the fluctuation share
the same conditional mean of Y given (A,W ). 24

However we find it easier in the present context, notably from a computational perspective, to
fluctuate Q̄n directly in Q, as opposed to indirectly through a fluctuation defined in M of a law
compatible with Q̄n. The next section introduces such a direct fluctuation.

10.2.2. Fluctuating directly

Set arbitrarily Q̄∈Q. The (direct) fluctuation of Q̄ that we propose to consider depends on a user-
supplied Ḡ. For any Ḡ such that 0 < `Ḡ(A,W ) < 1, P0-almost surely, the Ḡ-specific fluctuation
22 or (42).
23 or PnD∗(P∗n ) = oP0(1/

√
n).

24 In fact, more generally, the conditional law of Y given (A,W ) is not fluctuated. See the corresponding problem in
Section 10.2.3.
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model for Q̄ is

Q(Q̄, Ḡ)
.
=

{
(w,a) 7→ Q̄h(a,w)

.
= expit

(
logit

(
Q̄(a,w)

)
+h

2a−1
`Ḡ(a,w)

)
: t ∈ R

}
⊂Q. (44)

Fluctuation Q(Q̄, Ḡ) is a one-dimensional parametric model (indexed by the real-valued pa-
rameter h) that goes through Q̄ (at h = 0). For each h ∈ R, Q̄h ∈Q is the conditional mean of Y
given (A,W ) under infinitely many laws P ∈M .

The following chunk of code represents three elements of the fluctuations Q(Q̄0, Ḡ0) and
Q(Q̄n,trees, Ḡ0), where Q̄n,trees is an estimator of Q̄0 derived by the boosted trees algorithm (see
Section 7.6.3).

Qbar_hminus <- fluctuate(Qbar, Gbar, h = -1)
Qbar_hplus <- fluctuate(Qbar, Gbar, h = +1)

Qbar_trees <- wrapper(Qbar_hat_trees, FALSE)
Qbar_trees_hminus <- fluctuate(Qbar_trees, Gbar, h = -1)
Qbar_trees_hplus <- fluctuate(Qbar_trees, Gbar, h = +1)

tibble(w = seq(0, 1, length.out = 1e3)) %>%
mutate(truth_0_1 = Qbar(cbind(A = 1, W = w)),

truth_0_0 = Qbar(cbind(A = 0, W = w)),
trees_0_1 = Qbar_trees(cbind(A = 1, W = w)),
trees_0_0 = Qbar_trees(cbind(A = 0, W = w)),
truth_hminus_1 = Qbar_hminus(cbind(A = 1, W = w)),
truth_hminus_0 = Qbar_hminus(cbind(A = 0, W = w)),
trees_hminus_1 = Qbar_trees_hminus(cbind(A = 1, W = w)),
trees_hminus_0 = Qbar_trees_hminus(cbind(A = 0, W = w)),
truth_hplus_1 = Qbar_hplus(cbind(A = 1, W = w)),
truth_hplus_0 = Qbar_hplus(cbind(A = 0, W = w)),
trees_hplus_1 = Qbar_trees_hplus(cbind(A = 1, W = w)),
trees_hplus_0 = Qbar_trees_hplus(cbind(A = 0, W = w))) %>%

pivot_longer(-w, names_to = "f", values_to = "value") %>%
extract(f, c("f", "h", "a"), "([^_]+)_([^_]+)_([01]+)") %>%
mutate(f = ifelse(f == "truth", "Q_0", "Q_n"),

h = factor(ifelse(h == "0", 0, ifelse(h == "hplus", 1, -1)))) %>%
mutate(a = paste0("a=", a),

fh = paste0("(", f, ",", h, ")")) %>%
ggplot +
geom_line(aes(x = w, y = value, color = h, linetype = f, group = fh),

size = 1) +
labs(y = bquote(paste(f[h](a,w))),

title = bquote("Visualizing three elements of two fluctuations of"
~ bar(Q)[0] ~ "and" ~ bar(Q)[n])) +

ylim(NA, 1) +
facet_wrap(~ a)
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Visualizing three elements of two fluctuations of Q0 and Qn

FIGURE 14. Representing three elements Q̄h of the fluctuations Q(Q̄0, Ḡ0) and Q(Q̄n,trees, Ḡ0), respectively, where
Q̄n,trees is an estimator of Q̄0 derived by the boosted trees algorithm (see Section 7.6.3). The three elements correspond
to h =−1,0,1. When h = 0, Q̄h equals either Q̄0 or Q̄n,trees, depending on which fluctuation is roamed.

10.2.3. More on fluctuations

1. Justify the series of equalities in (43).

2. Justify that, in fact, if s(O) depends on O only through (A,W ) then the conditional law of
Y given (A,W ) under Ph equals that under P.

10.2.4. Targeted roaming of a fluctuation

Recall that our goal is to build an estimator of Q̄0 that is at least as good as Q̄n. We will look
for this enhanced estimator in the fluctuation Q(Q̄n, Ḡn) where Ḡn is an estimator of Ḡ0 that is
bounded away from 0 and 1. Thus, the estimator writes as Q̄n,hn for some data-driven hn ∈R. We
will clarify why we do so at a later time

To assess the performance of all the candidates included in the fluctuation, we formally rely
on the empirical risk function h 7→ EPn

(
Ly(Q̄n,h)(O)

)
where

EPn

(
Ly(Q̄n,h)(O)

)
=

1
n

n

∑
i=1

Ly(Q̄n,h)(Oi)

and the logistic (or negative binomial) loss function Ly is given by

−Ly( f )(O)
.
= Y log f (A,W )+(1−Y ) log(1− f (A,W ))

for any function f : {0,1}× [0,1]→ [0,1]. This loss function is the counterpart of the loss func-
tion La defined in (30). The justification that we gave in Section 7.4.1 of the relevance of La

also applies here, mutatis mutandis. In summary, the oracle risk EP0 (Ly( f )(O)) of f is a real-
valued measure of discrepancy between Q̄0 and f ; Q̄0 minimizes f 7→ EP0 (Ly( f )(O)) over the
set of all (measurable) functions f : [0,1]×{0,1}× [0,1]→ [0,1]; and a minimizer h0 ∈ R of
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h 7→EP0

(
Ly(Q̄n,h)(O)

)
identifies the element of fluctuation Q(Q̄n, Ḡn) that is closest to Q̄0 (some

details are given there in Appendix B.6).
It should not come as a surprise after this discussion that the aforeentioned data-driven hn is

chosen to be the minimizer of the empirical risk function, i.e.,

hn
.
= argmin

h∈R
EPn

(
Ly(Q̄n,h)(O)

)
.

The criterion is convex so the optimization program is well-posed.
The next chunk of code illustrates the search of an approximation of hn over a grid of candidate

values.

candidates <- seq(-0.01, 0.01, length.out = 1e4)
W <- obs[1:1e3, "W"]
A <- obs[1:1e3, "A"]
Y <- obs[1:1e3, "Y"]
lGAW <- compute_lGbar_hatAW(A, W, Gbar_hat)
QAW <- compute_Qbar_hatAW(A, W, Qbar_hat_trees)
risk <- sapply(candidates,

function(h) {
QAW_h <- expit(logit(QAW) + h * (2 * A - 1) / lGAW)
-mean(Y * log(QAW_h) + (1 - Y) * log(1 - QAW_h))

})
idx_min <- which.min(risk)
idx_zero <- which.min(abs(candidates))[1]
labels <- c(expression(R[n](bar(Q)[list(n,hn)]^list(o))),

expression(R[n](bar(Q)[list(n,0)]^list(o))))
risk %>% enframe %>%

mutate(h = candidates) %>%
filter(abs(h - h[idx_min]) <= abs(h[idx_min])) %>%
ggplot() +
geom_point(aes(x = h, y = value), color = "#CC6666") +
geom_vline(xintercept = c(0, candidates[idx_min])) +
geom_hline(yintercept = c(risk[idx_min], risk[idx_zero])) +
scale_y_continuous(

bquote("empirical logistic risk, " ~ R[n](bar(Q)[list(n,h)]^list(o))),
trans = "exp", labels = NULL,
sec.axis = sec_axis(~ .,

breaks = c(risk[idx_min], risk[idx_zero]),
labels = labels))

Figure 15 reveals how moving away slightly from h = 0 to the left (i.e., to hn equal to -0.004,
rounded to three decimal places) entails a decrease of the empirical risk. The gain is modest at
the scale of the empirical risk, but considerable in terms of inference, as we explain below.

10.2.5. Justifying the form of the fluctutation

Let us define Q̄∗n
.
= Q̄n,hn . We justify in two steps our assertion that moving from Q̄n

∣∣
h=0 = Q̄n to

Q̄∗n along fluctuation Q(Q̄n, Ḡn) has a considerable impact for the inference of ψ0.
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FIGURE 15. Representing the evolution of the empirical risk function as h ranges over a grid of values. One sees that
the risk at h = 0 (i.e., the risk of Q̄n) is larger that the minimal risk, achieved at h ≈ -0.004 (which must be close to
that of the optimal Q̄n,hn ).

First, we note that there is no need to iterate the updating procedure. Specifically, even if we
tried to fluctuate Q̄∗n along the fluctuation Q(Q̄∗n, Ḡn) = {Q̄∗n,h′ : h′ ∈ R} defined like Q(Q̄n, Ḡn)

(44) with Q̄n,hn substituted for Q̄n, then we would not move at all. This is obvious because there is
a one-to-one smooth correspondence between the parameter h′ indexing Q(Q̄∗n, Ḡn) and the pa-
rameter h indexing Q(Q̄n, Ḡn) (namely, h′ = h+hn). Therefore, the derivative of (the real-valued
function over R) h 7→ EPn

(
Ly(Q̄n,h)(O)

)
evaluated at its minimizer hn equals 0. Equivalently (see

there in Appendix C.4.3 for a justification of the last but one equality below),

d
dh

EPn

(
Ly(Q̄∗n,h)(O)

)∣∣
h=0

=−1
n

d
dh

n

∑
i=1

(
Yi log Q̄∗n,h(Ai,Wi)+(1−Yi) log

(
1− Q̄∗n,h(Ai,Wi)

))∣∣∣∣∣
h=0

=−1
n

n

∑
i=1

(
Yi

Q̄∗n(Ai,Wi)
− 1−Yi

1− Q̄∗n(Ai,Wi)

)
× d

dh
Q̄∗n,h(Ai,Wi)

∣∣∣∣
h=0

=−1
n

n

∑
i=1

Yi− Q̄∗n(Ai,Wi)

Q̄∗n(Ai,Wi)×
(
1− Q̄∗n(Ai,Wi)

) d
dh

Q̄∗n,h(Ai,Wi)

∣∣∣∣
h=0

=−1
n

n

∑
i=1

2Ai−1
`Ḡn(Ai,Wi)

(
Yi− Q̄∗n(Ai,Wi)

)
= 0. (45)

Second, let P∗n be a law in M such that the QW , Ḡ and Q̄ features of P∗n equal Qn,W , Ḡn and
Q∗n, respectively. In other words, P∗n is compatible with Qn,W , Ḡn and Q̄∗n. 25 Note that the last
equality in (45) equivalently writes as

PnD∗2(P
∗
n ) = 0.

25 In Section 9.1, we defined P◦n similarly with Q̄n substituted for Q̄∗n.
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Thus the (direct) fluctuation solves (41). Now, we have already argued in Section 10.1.3 that it
also holds that

PnD∗1(P
∗
n ) = 0.

Consequently, P∗n solves the efficient influence curve equation, that is, satisfies (39). As argued
in Section 10.1.2, it thus follows that the plug-in estimator

ψ
∗
n
.
= Ψ(P∗n ) =

∫ (
Q̄∗n(1,w)− Q̄∗n(0,w)

)
dQn,W (w)

is asymptotically linear with influence curve IC = D∗(P0), under mild conditions. Moreover, by
virtue of its plug-in construction, it has the additional property that in finite-samples ψ∗n will
always obey bounds on the parameter space.

10.2.6. Alternative fluctuation

The following exercises will have you consider an alternative means of performing a fluctuation.
For a = 0,1, consider the following fluctuation model for Q̄a .

= Q̄(a, ·):

Qa(Q̄a)
.
=
{

w 7→ Q̄a
h(w)

.
= expit

(
logit

(
Q̄(a,w)

)
+h
)

: h ∈ R
}
⊂Q. (46)

Let
Qalt(Q̄)

.
=
{
(a,w) 7→ Q̄h0,h1(a,w)

.
= a× Q̄1

h1
(w)+(1−a)Q̄0

h0
(w) : h0,h1 ∈ R

}
be the fluctuation model for Q̄ that is implied by the two submodels for Q̄1 and Q̄0.

Also for a given Ḡ satisfying that 0 < `Ḡ(A,W ) < 1, P0-almost surely, and both a = 0,1,
consider the loss function La

y,Ḡ given by

La
y,Ḡ( f )(A,W )

.
=

1{A = a}
`Ḡ(A,W )

Ly( f )(O)

for any function f : {0,1}× [0,1]→ [0,1], where Ly is defined in (10.2.4) above. It yields the
empirical risk function

(h0,h1) 7→ ∑
a=0,1

EPn

(
La

y,Ḡ(Q̄
a
n,ha

)(O)
)
.

1. Comment on the differences between these fluctuation model and loss function compared
to those discussed above.

2. Visualize three elements of Qalt(Q̄0) and Qalt(Q̄n): choose three values for (h0,h1) and
reproduce Figure 14.

3. Argue that in order to minimize the empirical risk over all (h0,h1)∈R2, we may minimize
over h0 ∈ R and h1 ∈ R separately.

4. Visualize how the empirical risk with Ḡ = Ḡn varies for different elements Q̄n,h0,h1 of
Q(Q̄n). For simplicity (and with the justification of problem 3), you may wish to make a
separate figure (like Figure 15) for a = 0,1 that illustrates how the empirical risk varies as
a function of ha while setting h1−a = 0.
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5. ☡ Justify the validity of La
y,Ḡ as a loss function for Q̄a

0: show that amongst all functions that

map w to (0,1), the true risk EP0

(
La

y,Ḡ( f )(O)
)

is minimized when f = Q̄a
0.

6. ☡ Argue that your answer to problem 2 also implies that the summed loss function
∑a=0,1 La

y,Ḡ is valid for Q̄.

7. ☡ Justify the combination of these loss function and fluctuation by repeating the calcula-
tion in equation (45) above, mutatis mutandis.

10.3. Summary and perspectives

The procedure laid out in Section 10 is called targeted minimum loss-based estimation (TMLE).
The nomenclature derives from its logistics. We first generated an (un-targeted) initial estimator
of Ψ(P0) by substituting for P0 a law P◦n compatible with initial estimators of some Ψ-specific
relevant nuisance parameters. Then through loss-minimization, we built a targeted estimator
by substituting for P◦n a law P∗n compatible with the nuisance parameters that we updated in a
targeted fashion.

The TMLE procedure was coined in 2006 by Mark van der Laan and Dan Rubin (van der Laan
and Rubin, 2006). It has since then been developed and applied in a great variety of contexts. We
refer to the monographies (van der Laan and Rose, 2011) and (van der Laan and Rose, 2018) for
a rich overview.

In summary, targeted learning bridges the gap between formal inference of finite-dimensional
parameters Ψ(P0) of the law P0 of the data, via bootstrapping or influence curves, and data-
adaptive, loss-based, machine learning estimation of Ψ-specific infinite-dimensional features
thereof (the so-called nuisance parameters). A typical example concerns the super learning-
based, targeted estimation of effect parameters defined as identifiable versions of causal quan-
tities. The TMLE algorithm integrates completely the estimation of the relevant nuisance pa-
rameters by super learning (van der Laan et al., 2007). Under mild assumptions, the targeting
step removes the bias of the initial estimators of the targeted effects. The resulting TMLEs enjoy
many desirable statistical properties: among others, by being substitution estimators, they lie in
the parameter space; they are often double-robust; they lend themselves to the construction of
confidence regions.

The scientific community is always engaged in devising and promoting enhanced principles
for sounder research through the better design of experimental and nonexperimental studies and
the development of more reliable and honest statistical analyses. By focusing on prespecified
analytic plans and algorithms that make realistic assumptions in more flexible nonparametric or
semiparametric statistical models, targeted learning has been at the forefront of this concerted
effort. Under this light, targeted learning notably consists in translating knowledge about the
data and underlying data-generating mechanism into a realistic model; in expressing the research
question under the form of a statistical estimation problem; in analyzing the statistical estimation
problem within the frame of the model; in developing ad hoc algorithms grounded in theory
and tailored to the question at stake to map knowledge and data into an answer coupled to an
assessment of its trustworthiness.

Quoting (van der Laan and Rose, 2018):
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Over the last decade, targeted learning has been established as a reliable framework for constructing ef-
fect estimators and prediction functions. The continued development of targeted learning has led to new
solutions for existing problems in many data structures in addition to discoveries in varied applied ar-
eas. This has included work in randomized controlled trials, parameters defined by a marginal structural
model, case-control studies, collaborative TMLE, missing and censored data, longitudinal data, effect
modification, comparative effectiveness research, aging, cancer, occupational exposures, plan payment
risk adjustment, and HIV, as well as others. In many cases, these studies compared targeted learning
techniques to standard approaches, demonstrating improved performance in simulations and realworld
applications.

It is now time to resume our introduction to TMLE and to carry out an empirical investigation
of its statistical properties in the context of the estimation of ψ0.

10.4. Empirical investigation

10.4.1. A first numerical application

Let us illustrate the principle of targeted minimum loss estimation by updating the G-
computation estimator built on the n = 1000 first observations in obs by relying on ÂQ̄,kNN,
that is, on the algorithm for the estimation of Q̄0 as it is implemented in estimate_Qbar with
its argument algorithm set to the built-in kknn_algo (see Section 7.6.2). In Section 9.3, we
performed a one-step correction of the same initial estimator.

The algorithm has been trained earlier on this data set and produced the object
Qbar_hat_kknn. The following chunk of code prints the initial estimator psin_kknn, its
one-step update psin_kknn_os, then applies the targeting step and presents the resulting
estimator:

(psin_kknn)
#> # A tibble: 1 x 2
#> psi_n sig_n
#> <dbl> <dbl>
#> 1 0.0887 0.00245
(psin_kknn_os)
#> # A tibble: 1 x 3
#> psi_n sig_n crit_n
#> <dbl> <dbl> <dbl>
#> 1 0.0888 0.0162 0.000124
(psin_kknn_tmle <- apply_targeting_step(head(obs, 1e3),

wrapper(Gbar_hat, FALSE),
wrapper(Qbar_hat_kknn, FALSE)))

#> # A tibble: 1 x 3
#> psi_n sig_n crit_n
#> <dbl> <dbl> <dbl>
#> 1 0.0888 0.0162 -1.01e-9

In the call to apply_targeting_step we provide (i) the data set at hand (first line), (ii)
the estimator Gbar_hat of Ḡ0 that we built earlier by using algorithm ÂḠ,1 (second line; see
Section 7.4.2), (iii) the estimator Qbar_hat_kknn of Q̄0 (third line). Apparently, in this particular
example, the one-step correction and targeted correction updater similarly the initial estimator.
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10.4.2. A computational exploration

1. Consult the man page of function apply_targeting_step (run ?apply_targeting_-
step) and explain what is the role of its input epsilon.

2. Run the chunk of code below. What does it do? Hint: check out the chunks of code of
Sections 7.6.2, 8.2.1 and 10.4.1.

epsilon <- seq(-1e-2, 1e-2, length.out = 1e2)
Gbar_hat_w <- wrapper(Gbar_hat, FALSE)
Qbar_kknn <- wrapper(Qbar_hat_kknn, FALSE)

psi_trees_epsilon <- sapply(epsilon, function(h) {
apply_targeting_step(head(obs, 1e3), Gbar_hat_w,

Qbar_trees, epsilon = h) %>%
select(psi_n, crit_n) %>% as.matrix

})
idx_trees <- which.min(abs(psi_trees_epsilon[2, ]))

psi_kknn_epsilon <- sapply(epsilon, function(h) {
apply_targeting_step(head(obs, 1e3), Gbar_hat_w,

Qbar_kknn, epsilon = h) %>%
select(psi_n, crit_n) %>% as.matrix

})
idx_kknn <- which.min(abs(psi_kknn_epsilon[2, ]))

rbind(t(psi_trees_epsilon), t(psi_kknn_epsilon)) %>% as_tibble %>%
rename("psi_n" = V1, "crit_n" = V2) %>%
mutate(type = rep(c("trees", "kknn"), each = length(epsilon))) %>%
ggplot() +
geom_point(aes(x = crit_n, y = psi_n, color = type)) +
geom_vline(xintercept = 0) +
geom_hline(yintercept = c(psi_trees_epsilon[1,idx_trees],

psi_kknn_epsilon[1,idx_kknn])) +
labs(x = bquote(paste(P[n]~D^"*", (P[list(n,h)]^o))),

y = bquote(Psi(P[list(n,h)]^o)))

3. Discuss the fact that the colored curves in Figure 16 look like segments.

10.4.3. Empirical investigation

To assess more broadly what is the impact of the targeting step, let us apply it to the estimators
that we built in Section 8.4.3. In Section 9.3, we applied the one-step correction to the same
estimators.

The object learned_features_fixed_sample_size already contains the estimated fea-
tures of P0 that are needed to perform the targeting step on the estimators ψd

n and ψe
n , thus we

merely have to call the function apply_targeting_step.
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FIGURE 16. Figure produced when running the chunk of code from problem 2 in Section 10.4.2.

psi_tmle <- learned_features_fixed_sample_size %>%
mutate(tmle_d =

pmap(list(obs, Gbar_hat, Qbar_hat_d),
~ apply_targeting_step(as.matrix(..1),

wrapper(..2, FALSE),
wrapper(..3, FALSE))),

tmle_e =
pmap(list(obs, Gbar_hat, Qbar_hat_e),

~ apply_targeting_step(as.matrix(..1),
wrapper(..2, FALSE),
wrapper(..3, FALSE)))) %>%

select(tmle_d, tmle_e) %>%
pivot_longer(c(‘tmle_d‘, ‘tmle_e‘),

names_to = "type", values_to = "estimates") %>%
extract(type, "type", "_([de])$") %>%
mutate(type = paste0(type, "_targeted")) %>%
unnest(estimates) %>%
group_by(type) %>%
mutate(sig_alt = sd(psi_n)) %>%
mutate(clt_ = (psi_n - psi_zero) / sig_n,

clt_alt = (psi_n - psi_zero) / sig_alt) %>%
pivot_longer(c(‘clt_‘, ‘clt_alt‘),

names_to = "key", values_to = "clt") %>%
extract(key, "key", "_(.*)$") %>%
mutate(key = ifelse(key == "", TRUE, FALSE)) %>%
rename("auto_renormalization" = key)

(bias_tmle <- psi_tmle %>%
group_by(type, auto_renormalization) %>%
summarize(bias = mean(clt)) %>% ungroup)
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#> # A tibble: 4 x 3
#> type auto_renormalization bias
#> <chr> <lgl> <dbl>
#> 1 d_targeted FALSE -0.00706
#> 2 d_targeted TRUE -0.0246
#> 3 e_targeted FALSE 0.0353
#> 4 e_targeted TRUE 0.0182

fig <- ggplot() +
geom_line(aes(x = x, y = y),

data = tibble(x = seq(-4, 4, length.out = 1e3),
y = dnorm(x)),

linetype = 1, alpha = 0.5) +
geom_density(aes(clt, fill = type, colour = type),

psi_tmle, alpha = 0.1) +
geom_vline(aes(xintercept = bias, colour = type),

bias_tmle, size = 1.5, alpha = 0.5) +
facet_wrap(~ auto_renormalization,

labeller =
as_labeller(c(‘TRUE‘ = "auto-renormalization: TRUE",

‘FALSE‘ = "auto-renormalization: FALSE")),
scales = "free")

fig +
labs(y = "",

x = bquote(paste(sqrt(n/v[n]^{"*"})*
(psi[n]^{"*"} - psi[0]))))

We see that the step of targeting is as promised: the bias of the resulting estimators is min-
imized relative to the naive estimators. Comparing these results to those obtain using one-step
estimators (Section 9.3), we find quite similar performance between one-step and TMLE estima-
tors.

11. Closing words

The velocity of advances in machine learning make it an exciting time to work as a statisti-
cian. Clearly, statistical inference is more challenging when one considers the sort of infinite-
dimensional statistical models that underlie these developments. Even defining some fundamen-
tal statistical notions, like efficiency, in these settings is a challenge. Constructing estimators that
obtain these properties is more challenging still. We hope that this short guide has provided an
approachable introduction to this exciting area of research.

Targeted learning is a vibrant and active field of research, with new developments happen-
ing along theoretical, applied, and computational axes. The tlverse software environment is
actively being developed to provide researchers with new tools for utilizing these methods.
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FIGURE 17. Kernel density estimators of the law of two targeted estimators of ψ0 (recentered with respect to ψ0, and
renormalized). The estimators respectively hinge on algorithms ÂQ̄,1 (d) and ÂQ̄,kNN (e) to estimate Q̄0, and on a
targeting step. Two renormalization schemes are considered, either based on an estimator of the asymptotic variance
(left) or on the empirical variance computed across the iter independent replications of the estimators (right). We
emphasize that the x-axis ranges differ between the left and right plots.
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Appendix A: Notation

— .
=, equal by definition to

— 1{S}, the indicator of statement S, which equals 1 if S is true and 0 otherwise.
— O .

= (W,A,Y ), the generic summary of how one realization of the experiments of interest
unfold, our generic observation; W ∈ [0,1] is the context of action, A ∈ {0,1} is the action
undertaken, and Y ∈ [0,1] is the reward of action A in context W . We denote by O

.
=

[0,1]×{0,1}× [0,1] the set where a generic O takes its values.
— P, P0, Π0, Πh, Π′0, Π′h, laws (on O) for O.
— P f .

= EP( f (O)) for any law P for O and function f from O to Rp.
— ‖ f‖2

P
.
= P f 2 = EP( f (O)2) =

∫
f (o)2dP(o), the square of the L2(P)-norm of f , a function

from O to R.
— ‖ f‖∞

.
= supo∈O | f (o)|, the essential supremum of f , a function from O to R.

— Pn, the empirical measure. If the observations are O1, . . . , On, then Pn is a law such that
the generic random variable O drawn from Pn takes its values in {O1, . . . ,On} in such a
way that O = Oi with probability n−1 for each 1≤ i≤ n.

—
√

n(Pn−P), where Pn is the empirical measure associated to O1, . . . ,On drawn indepen-
dently from P, the empirical process.

— Xn = oP0(1) if Xn, a random variable built from O1, . . . , On independently drawn from P0,
converges in probability to zero, that is, if P0(|Xn|> t) converges to zero for all t > 0 as n
goes to infinity. If ncXn = oP0(1), then one also writes Xn = oP0(n

−c).
— Xn = OP0(1) if Xn, a random variable built from O1, . . . , On independently drawn

from P0, is bounded in probability, that is if, for all t > 0 there exists M > 0 such that
supn≥1 P0(|Xn| ≥M)≤ t. If ncXn = OP0(1), then one also writes Xn = OP0(n

−c).
— M , the model, that is, the collection of all laws from which O can be drawn and that meet

some constraints.
— M empirical, the collection of all discrete laws on [0,1]×{0,1}× [0,1], of which Pn is a

distinguished element.
— QW , Q0,W , marginal laws for W (under P and P0, respectively).
— Ḡ(W )

.
= PrP(A= 1|W ), Ḡ0(W )

.
= PrP0(A= 1|W ), conditional probabilities of action A= 1

given W (under P and P0, respectively). For each a ∈ {0,1}, `Ḡ(a,W )
.
= PrP(A = a|W )

and `Ḡ0(a,W )
.
= PrP0(A = a|W ).

— Q̄(A,W ) = EP(Y |A,W ), Q̄0(A,W ) = EP0(Y |A,W ), the conditional means of Y given A and
W (under P and P0, respectively).

— Q
.
= {Q̄ : P ∈M }, the space of regression functions induced by model M .

— Q(Q̄, Ḡ)⊂Q, Ḡ-specific fluctuation model of Q̄, see (44).
— qY , q0,Y , conditional densities of Y given A and W (under P and P0, respectively).
— Ψ : M → [0,1], given by Ψ(P) .

=
∫ (

Q̄(1,w)− Q̄(0,w)
)

dQW (w), the statistical mapping
of interest.

— ψ
.
= Ψ(P), ψ0

.
= Ψ(P0).

— Â , ÂḠ,1, ÂQ̄,1, algorithms to be trained on Pn, i.e., mappings from M empirical to the set
where lives the feature targeted by the algorithm.

— ÃḠ,s, ÃQ̄,s, s-specific oracle algorithms (s > 0) that can use the true targeted features Ḡ0

and Q̄0 to produce predictions that are almost exact, up to a N(0,s2) random error term.
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— La, the contex-specific logistic (or negative binomial) loss function, given by
−La( f )(A,W )

.
= A log f (W )+(1−A) log(1− f (W )) for any function f : [0,1]→ [0,1].

— Ly, the reward-specific logistic (or negative binomial) loss function, given by
−Ly( f )(O)

.
= Y log f (A,W ) + (1− Y ) log(1− f (A,W )) for any function f : {0,1} ×

[0,1]→ [0,1].
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Appendix B: Basic results and their proofs

B.1. NPSEM

The experiment can also be summarized by a nonparametric system of structural equations: for
some deterministic functions fw, fa, fy and independent sources of randomness Uw, Ua, Uy,

1. sample the context where the counterfactual rewards will be generated, the action will be
undertaken and the actual reward will be obtained, W = fw(Uw);

2. sample the two counterfactual rewards of the two actions that can be undertaken, Y0 =
fy(0,W,Uy) and Y1 = fy(1,W,Uy);

3. sample which action is carried out in the given context, A = fa(W,Ua);

4. define the corresponding reward, Y = AY1 +(1−A)Y0;

5. summarize the course of the experiment with the observation O = (W,A,Y ), thus conceal-
ing Y0 and Y1.

B.2. Identification

Let P0 be an experiment that generates O .
= (W,Y0,Y1,A,Y ). We think of W as the context where

an action is undertaken, of Y0 and Y1 as the counterfactual (potential) rewards that actions a = 0
and a = 1 would entail, of A as the action carried out, and of Y as the reward received in response
to action A. Consider the following assumptions:

1. Randomization: under P0, the counterfactual rewards Y0, Y1 and action A are conditionally
independent given W , i.e., Ya ⊥ A |W for a = 0,1.

2. Consistency: under P0, if action A is undertaken then reward YA is received, i.e., Y = YA

(or Y = Ya given that A = a).

3. Positivity: under P0, both actions a = 0 and a = 1 have (P0-almost surely) a positive
probability to be undertaken given W , i.e., PrP0(`Ḡ0(a,W )> 0) = 1 for a = 0,1.

Proposition B.2.1 (Identification). Under the above assumptions, it holds that

ψ0 = EP0 (Y1−Y0) = EP0(Y1)−EP0(Y0).

Proof. Set arbitrarily a ∈ {0,1}. By the randomization assumption on the one hand (second
equality) and by the consistency and positivity assumptions on the other hand (third equality), it
holds that

EP0(Ya) =
∫

EP0(Ya |W = w)dQ0,W (w) =
∫

EP0(Ya | A = a,W = w)dQ0,W (w)

=
∫

EP0(Y | A = a,W = w)dQ0,W (w) =
∫

Q̄0(a,W )dQ0,W (w).

The stated result easily follows.

Remark. The positivity assumption is needed for EP0(Y | A = a,W )
.
= Q̄0(a,W ) to be well-

defined.
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B.3. Building a confidence interval

Let Φ be the standard normal distribution function. Let X1, . . ., Xn be independently drawn from
a given law.

B.3.1. CLT & Slutsky’s lemma

Assume that σ2 .
= Var(X1) is finite. Let m .

= E(X1) be the mean of X1 and X̄n
.
= n−1

∑
n
i=1 Xi be

the empirical mean. By the central limit theorem (CLT), it holds that
√

n(X̄n−m) converges in
law as n grows to the centered Gaussian law with variance σ2.

Moreover, if σ2
n is a (positive) consistent estimator of σ2 then, by Slutsky’s lemma,√

n/σn(X̄n − m) converges in law to the standard normal law. The empirical variance
n−1

∑
n
i=1(Xi− X̄n)

2 is such an estimator.

Proposition B.3.1. Under the above assumptions,[
X̄n±Φ

−1(1−α)
σn√

n

]
is a confidence interval for m with asymptotic level (1−2α).

B.3.2. CLT and order statistics

Suppose that the law of X1 admits a continuous distribution function F . Set p ∈]0,1[ and, assum-
ing that n is large, find k ≥ 1 and l ≥ 1 such that

k
n
≈ p−Φ

−1(1−α)

√
p(1− p)

n

and
l
n
≈ p+Φ

−1(1−α)

√
p(1− p)

n
.

Proposition B.3.2. Under the above assumptions, [X(k),X(l)] is a confidence interval for F−1(p)
with asymptotic level 1−2α .

B.4. Another representation of the parameter of interest

For notational simplicitiy, note that (2a− 1) equals 1 if a = 1 and −1 if a = 0. Now, for each
a = 0,1,

EP0

(
1{A = a}Y
`Ḡ0(a,W )

)
= EP0

(
EP0

(
1{A = a}Y
`Ḡ0(a,W )

∣∣∣∣A,W))
= EP0

(
1{A = a}
`Ḡ0(a,W )

Q̄0(A,W )

)
= EP0

(
1{A = a}
`Ḡ0(a,W )

Q̄0(a,W )

)
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= EP0

(
EP0

(
1{A = a}
`Ḡ0(a,W )

Q̄0(a,W )

∣∣∣∣W))
= EP0

(
`Ḡ0(a,W )

`Ḡ0(a,W )
Q̄0(a,W )

∣∣∣∣W)
= EP0

(
Q̄0(a,W )

)
,

where the first, fourth and sixth equalities follow from the tower rule 26, and the second and fifth
hold by definition of the conditional expectation. This completes the proof.

B.5. The delta-method

Let f be a map from Θ ⊂ Rp to Rq that is differentiable at θ ∈ Θ. Let Xn be a random vector
taking its values in Θ.

Proposition B.5.1. If
√

n(Xn−θ) converges in law to the Gaussian law with mean µ and covari-
ance matrix Σ, then

√
n( f (Xn)− f (θ)) converge in law to the Gaussian law with mean ∇ f (θ)×µ

and covariance matrix ∇ f (θ)×Σ×∇ f (θ)>. In addition, if Σn estimates Σ consistently then, by
Slutsky’s lemma, the asymptotic variance of

√
n( f (Xn)− f (θ)) is consistently estimated with

∇ f (Xn)×Σn×∇ f (Xn)
>.

B.6. The oracle logistic risk

First, let us recall the definition of the Kullback-Leibler divergence between Bernoulli laws of
parameters p,q ∈]0,1[:

KL(p,q) .
= p log

(
p
q

)
+(1− p) log

(
1− p
1−q

)
.

It satisfies KL(p,q)≥ 0 where the equality holds if and only if p = q.
Let f : [0,1]×{0,1}× [0,1]→ [0,1] be a (measurable) function. Applying the tower rule

shows that the oracle logistic risk satisfies

EP0 (Ly( f )(O)) = EP0

(
−Q̄0(A,W ) log f (A,W )−

(
1− Q̄0(A,W )

)
log(1− f (A,W ))

)
= EP0

(
KL
(
Q̄0(A,W ), f (A,W )

))
+ constant, (47)

where the above constant equals

−EP0

(
Q̄0(A,W ) log Q̄0(A,W )−

(
1− Q̄0(A,W )

)
log
(
1− Q̄0,W (A,W )

))
.

In light of (47), Q̄0 minimizes f 7→ EP0 (Ly( f )(O)) over the set of (measurable) functions
mapping [0,1]×{0,1}× [0,1] to [0,1]. Moreover, as an average of measures of discrepancy,
EP0 (Ly( f )(O)) is also a measure of discrepancy.

26 For any random variable (U,V ) such that E(U |V ) and E(U) are well defined, it holds that E(E(U |V )) = E(U).
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Appendix C: More results and their proofs

C.1. Estimation of the asymptotic variance of an estimator

C.1.1. IPTW estimator based on a well-specified model

Sketch of proof. The IPTW estimator ψb
n relies on algorithm ÂḠ,1, which is “well-specified” in

the sense that its output Ḡn
.
= ÂḠ,1(Pn) minimizes the empirical risk over a finite-dimensional,

identifiable, well-specified working model for Ḡ0. If one introduces D given by

D(O)
.
=

(2A−1)
`Ḡ0(A,W )

Y,

then the influence curve of ψb
n equals D−Ψ(P0) minus the projection of D onto the tangent space

of the above parametric model for Ḡ0. The variance of the influence curve is thus smaller than
that of D, hence the conservativeness.

C.1.2. G-computation estimator based on a well-specified model

Sketch of proof (see (van der Laan and Rose, 2011) page 527). Consider a G-computation
estimator ψn that relies on an algorithm ÂQ̄ that is “well-specified” in the sense that its output
Q̄n

.
= ÂQ̄(Pn) minimizes the empirical risk over a finite-dimensional, identifiable, well-specified

working model for Q̄0. If one introduces D given by

D(O)
.
= Q̄0(1,W )− Q̄0(0,W )

then the influence curve of ψn equals D−Ψ(P0) plus a function of O that is orthogonal to
D−Ψ(P0). Thus the variance of the influence curve is larger than that of D, hence the anti-
conservativeness.

C.2. ☡ General analysis of plug-in estimators

Recall that ÂQW is an algorithm designed for the estimation of Q0,W (see Section 7.3) and that
we denote by Qn,W

.
= ÂQW (Pn) the output of the algorithm trained on Pn. Likewise, ÂḠ and ÂQ̄

are two generic algorithms designed for the estimation of Ḡ0 and of Q̄0 (see Sections 7.4 and
7.6), Ḡn

.
= ÂḠ(Pn) and Q̄n

.
= ÂQ̄(Pn) are their outputs once trained on Pn.

Let us now introduce P◦n a law in M such that the QW , Ḡ and Q̄ features of P◦n equal Qn,W , Ḡn

and Q̄n, respectively. We say that any such law is compatible with Qn,W , Ḡn and Q̄n.

C.2.1. Main analysis

Substituting P◦n for P in (19) yields (34):
√

n(Ψ(P◦n )−Ψ(P0)) =−
√

nP0D∗(P◦n )+
√

nRemP0(P
◦
n ), (48)

an equality that we rewrite as
√

n(Ψ(P◦n )−Ψ(P0)) =−
√

nPnD∗(P◦n )+
√

n(Pn−P0)D∗(P0) (49)
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+
√

n(Pn−P0)[D∗(P◦n )−D∗(P0)]+
√

nRemP0(P
◦
n ). (50)

Let us know study in turn the four terms in the above right-hand side sum. Recall that Xn =
oP0(1) means that P0(|Xn|> t) converges to zero for all t > 0 as n goes to infinity.

1. In view of (22), the fourth term is oP0(1) provided that
√

n‖Q̄ − Q̄0‖P0 × ‖(Ḡ −
Ḡ0)/`Ḡ0‖P0 = oP0(1). This is the case if, for instance, `Ḡ0 is bounded away from zero,
and both n1/4‖Q̄− Q̄0‖P0 and n1/4‖Ḡ− Ḡ0‖P0 are oP0(1). What really matters, remarkably,
is the product of the two norms. If each norm goes to zero at rate n1/4, then their product
does at rate

√
n. Of course, if one goes to zero at rate n1/4+c for some 0 < c < 1/4, then it

suffices that the other go to zero at rate n1/4−c. See also Section C.3.

2. A fundamental result from empirical processes theory gives us conditions guaranteeing
that the third term is oP0(1). By Lemma 19.24 in (van der Vaart, 1998), this is the case
indeed if ‖D∗(P◦n )−D∗(P0)‖P0 = oP0(1) (that is, if D∗(P◦n ) estimates consistently D∗(P0))
and if D∗(P◦n ) falls (with probability tending to one) into a Donsker class (meaning that
the random D∗(P◦n ) must belong eventually to a set that is not too large). Requesting
that ‖D∗(P◦n )−D∗(P0)‖P0 = oP0(1) is not much if one is already willing to assume that
n1/4‖Q̄− Q̄0‖P0 and n1/4‖Ḡ− Ḡ0‖P0 are oP0(1). Moreover, the second condition can be
interpreted as a condition on the complexity/versatility of algorithms ÂḠ and ÂQ̄.

3. By the central limit theorem, the second term converges in law to the centered Gaussian
law with variance P0D∗(P0)

2.

4. As for the first term, all we can say is that it is a potentially large (because of the
√

n
renormalization factor) bias term.

C.2.2. Estimation of the asymptotic variance

Let us show now that, under the assumptions we made in Section C.2.1 and additional assump-
tions of similar nature, PnD∗(P◦n )

2 estimates consistently the asymptotic variance P0D∗(P0)
2. The

proof hinges again on a decomposition of the difference between the two quantities as a sum of
three terms:

PnD∗(P◦n )
2−P0D∗(P0)

2 =(Pn−P0)
(
D∗(P◦n )

2−D∗(P0)
2) (51)

+(Pn−P0)D∗(P0)
2 +P0(D∗

(
P◦n )

2−D∗(P0)
2) . (52)

We study the three terms in turn. Recall that Xn = oP0(1/
√

n) means that P0(
√

n|Xn| > t)
converges to zero for all t > 0 as n goes to infinity.

1. In light of the study of the third term in Section C.2.1, if ‖D∗(P◦n )2−D∗(P0)
2‖P0 = oP0(1)

and if D∗(P◦n )
2 falls (with probability tending to one) into a Donsker class, then the first

term is oP0(1/
√

n). Furthermore, if D∗(P◦n ) falls (with probability tending to one) into
a Donsker class, an assumption we made earlier, then so does D∗(P◦n )

2. In addition, if
‖D∗(P◦n )−D∗(P0)‖P0 = oP0(1), another assumption we made earlier, and if there exists a
constant c > 0 such that

sup
n≥1
‖D∗(P◦n )+D∗(P0)‖∞ ≤ c (53)
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P0-almost surely, then ‖D∗(P◦n )2−D∗(P0)
2‖P0 = oP0(1) too because

‖D∗(P◦n )2−D∗(P0)
2‖P0 ≤ c‖D∗(P◦n )−D∗(P0)‖P0 . (54)

The existence of such a constant c is granted whenever `Ḡ0 and `Ḡn are bounded away
from zero. Note that the condition on `Ḡn can be inforced by us through the specification
of algorithm ÂḠ.

2. By the central limit theorem,
√

n times the second term converges in law to the cen-
tered Gaussian law with variance VarP0(D

∗(P0)(O)2), which is finite whenever `Ḡ0 is
bounded away from zero. By Theorem 2.4 in (van der Vaart, 1998), the second term is
thus OP0(1/

√
n) hence oP0(1).

3. Finally, under assumption (53), the absolute value of the third term is smaller than

cP0|D∗(P◦n )−D∗(P0)| ≤ c‖D∗(P◦n )−D∗(P0)‖P0 = oP0(1), (55)

where the inequality follows from the Cauchy-Schwarz inequality.

In conclusion, PnD∗(P◦n )
2−P0D∗(P0)

2 = oP0(1), hence the result.

C.3. Asymptotic negligibility of the remainder term

Recall that ‖ f‖2
P

.
= EP

(
f (O)2

)
is the L2(P)-norm of f , a measurable function from O to R.

Assume that for a = 0,1, `Ḡn(a,W )≥ δ > 0 Q0,W -almost everywhere.
The Cauchy-Schwarz inequality then implies that, for a = 0,1,

RemP0(P
◦
n )≤

2
δ

max
a=0,1

(
‖Q̄n(a, ·)− Q̄0(a, ·)‖P0

)
×‖Ḡn− Ḡ0‖P0 .

Therefore, if for a = 0,1,

‖Q̄n(a, ·)− Q̄0(a, ·)‖P0 = oP0(n
−1/4)

and
‖Ḡn− Ḡ0‖P0 = oP0(n

−1/4),

then
RemP0(P

◦
n ) = oP0(n

−1/2).

C.4. Analysis of targeted estimators

C.4.1. A basic fact on the influence curve equation

Recall the definition of D∗1 (12). For any estimator Q̄∗n of Q̄0 and a law P∗n that is compatible with
Q̄∗n and Qn,W , it holds that

PnD∗1(P
∗
n ) =

1
n

n

∑
i=1

D∗1(P
∗
n )(Oi)

=
1
n

n

∑
i=1

(
Q̄n(1,Wi)− Q̄n(0,Wi)−

∫ (
Q̄n(1,w)− Q̄n(0,w)

)
dQn,W (w)

)
=

1
n

n

∑
i=1

(
Q̄n(1,Wi)− Q̄n(0,Wi)

)
− 1

n

n

∑
i=1

(
Q̄n(1,Wi)− Q̄n(0,Wi)

)
= 0.
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C.4.2. Fluctuation of the regression function along the fluctuation of a law

Let us resume the discussion where we left it at the end of Section 3.3.1. Let Q̄ be the condi-
tional mean of Y given (A,W ) under P. Set arbitrarily h ∈ H \ {0} and a measurable function
(w,a) 7→ f (a,w) taking non-negative values. Applying repeatedly the tower rule yields the fol-
lowing equalities:

EPh ( f (A,W )Y ) = EP ( f (A,W )Y (1+hs(O)))

= EP ( f (A,W )EP (Y (1+hs(O))|A,W ))

= EP
(

f (A,W )
(
Q̄(A,W )+hEP(Y s(O)|A,W )

))
= EP

(
f (A,W )

Q̄(A,W )+hEP(Y s(O)|A,W )

1+hEP(s(O)|A,W )

× (1+hEP(s(O)|A,W ))

)
.

Now, (9) implies that the density of (A,W ) under Ph equals (1+hEP(s(O)|A,W )) when it is
evaluated at (A,W ). Therefore, the last inequality rewrites as

EPh ( f (A,W )Y ) = EPh

(
f (A,W )

Q̄(A,W )+hEP(Y s(O)|A,W )

1+hEP(s(O)|A,W )

)
.

Since this equality is valid for an arbitary (w,a) 7→ f (a,w) with non-negative values, we can
deduce from it that the conditional mean of Y given (A,W ) under Ph equals

Q̄(A,W )+hEP(Y s(O)|A,W )

1+hEP(s(O)|A,W )
.

C.4.3. Computing the score of a fluctuation of the regression function

Let us resume the discussion where we left it at the beginning of Section 10.2.2. Set α,β ∈ R.
The derivative of h 7→ expit(α +βh) evaluated at h = 0 satisfies

d
dh

expit(α +βh)|h=0 = β expit(α)(1− expit(α)).

Therefore, for any (w,a) ∈ [0,1]×{0,1},

d
dh

Q̄h(a,w)
∣∣
h=0 =

2a−1
`Ḡ(a,w)

expit
(
logit

(
Q̄(a,w)

))[
1− expit

(
logit

(
Q̄(a,w)

))]
=

2a−1
`Ḡ(a,w)

Q̄(a,w)
(
1− Q̄(a,w)

)
.

This justifies the last but one equality in (45).
Furthermore the same derivations that led to (45) also imply, mutatis mutandis, that

d
dh

Ly(Q̄h)(O)
∣∣
h=0 =

2A−1
`Ḡ(A,W )

(
Y − Q̄(A,W )

)
.
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In this light, and in view of (10), we can think of Q(Q̄, Ḡ) as a fluctuation of Q̄ in the direction
of

(w,a,y) 7→ 2a−1
`Ḡ(a,w)

(y− Q̄(a,w)).

Thus if P ∈M is such that EP(Y |A,W ) = Q̄(A,W ) and P(A = 1|W ) = Ḡ(W ), then we can also
think of Q(Q̄, Ḡ) as a fluctuation of Q̄ in the direction of the second component D∗2(P) of the
efficient influence curve D∗(P) of Ψ at P (12).
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