Discussion
Discussion on “Minimal penalties and the slope heuristic: a survey” by Sylvain Arlot
[Discussion sur « Pénalités minimales et heuristique de pente » par Sylvain Arlot]
Journal de la société française de statistique, Tome 160 (2019) no. 3, pp. 126-135.
@article{JSFS_2019__160_3_126_0,
     author = {Gey, Servane},
     title = {Discussion on {{\textquotedblleft}Minimal} penalties and the slope heuristic: a survey{\textquotedblright} by {Sylvain} {Arlot}},
     journal = {Journal de la soci\'et\'e fran\c{c}aise de statistique},
     pages = {126--135},
     publisher = {Soci\'et\'e fran\c{c}aise de statistique},
     volume = {160},
     number = {3},
     year = {2019},
     zbl = {1431.62115},
     mrnumber = {4021416},
     language = {en},
     url = {http://www.numdam.org/item/JSFS_2019__160_3_126_0/}
}
TY  - JOUR
AU  - Gey, Servane
TI  - Discussion on “Minimal penalties and the slope heuristic: a survey” by Sylvain Arlot
JO  - Journal de la société française de statistique
PY  - 2019
DA  - 2019///
SP  - 126
EP  - 135
VL  - 160
IS  - 3
PB  - Société française de statistique
UR  - http://www.numdam.org/item/JSFS_2019__160_3_126_0/
UR  - https://zbmath.org/?q=an%3A1431.62115
UR  - https://www.ams.org/mathscinet-getitem?mr=4021416
LA  - en
ID  - JSFS_2019__160_3_126_0
ER  - 
Gey, Servane. Discussion on “Minimal penalties and the slope heuristic: a survey” by Sylvain Arlot. Journal de la société française de statistique, Tome 160 (2019) no. 3, pp. 126-135. http://www.numdam.org/item/JSFS_2019__160_3_126_0/

[1] Breiman, Leo; Friedman, Jerome; Stone, Charles J; Olshen, Richard A Classification and regression trees, CRC press, 1984 | MR 726392 | Zbl 0541.62042

[2] Bar-Hen, Avner; Gey, Servane; Poggi, Jean-Michel Spatial CART Classification Trees (2018) (Technical report)

[3] Bartlett, Peter L; Jordan, Michael I; McAuliffe, Jon D Convexity, classification, and risk bounds, Journal of the American Statistical Association, Volume 101 (2006) no. 473, pp. 138-156 | MR 2268032 | Zbl 1118.62330

[4] Gey, S. Risk Bounds for CART Classifiers under a Margin Condition, Pattern Recognition, Volume 45 (2012), pp. 3523-3534 | Zbl 1242.62055

[5] Gey, Servane; Mary-Huard, Tristan Risk bounds for embedded variable selection in classification trees, IEEE Transactions on Information Theory, Volume 60 (2014) no. 3, pp. 1688-1699 | MR 3168430 | Zbl 1360.62329

[6] Hastie, T.; Tibshirani, R.; Friedman, J. The elements of statistical learning, Springer Series in Statistics, Springer-Verlag, New York, 2001, xvi+533 pages (Data mining, inference, and prediction) | MR 1851606 | Zbl 0973.62007

[7] Koltchinskii, V. Local Rademacher complexities and oracle inequalities in risk minimization, Ann. Statist., Volume 34 (2006) no. 6, pp. 2593-2656 | MR 2329442 | Zbl 1118.62065

[8] Massart, P.; Nédélec, É. Risk bounds for statistical learning, Ann. Statist., Volume 34 (2006) no. 5, pp. 2326-2366 | MR 2291502 | Zbl 1108.62007

[9] Mammen, E.; Tsybakov, A. B. Smooth discrimination analysis, Ann. Statist., Volume 27 (1999) no. 6, pp. 1808-1829 | MR 1765618 | Zbl 0961.62058

[10] Scott, C. Tree pruning with subadditive penalties, IEEE Transactions on Signal Processing, Volume 53 (2005) no. 14, pp. 4518-4525 | MR 2239572 | Zbl 1370.94231