
Journal de la Société Française de Statistique
Vol. 159 No. 3 (2018)

The log-xgamma distribution with inference and
application
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Abstract: In this paper, we introduce a new one-parameter distribution, called log-xgamma distribution, defined on
the unit interval. Some of the statistical properties of the proposed distribution including moments, the incomplete
moments and mean residual life function are obtained. Some useful characterization results of proposed distribution
are presented. The maximum likelihood method, method of moments and least square estimation method are used
to estimate the unknown parameter of the proposed model and finite sample performance of estimation methods are
evaluated by means of Monte-Carlo simulation study. An application to the real data set is given to demonstrate the
usefulness of the proposed distribution against the beta, the Kumaraswamy and the Topp-Leone distributions.

Résumé : Nous introduisons une nouvelle distribution à un paramètre sur l’intervalle [0, 1]. Ces principales carac-
téristiques (moments, moments censurés, fonction de survie) sont données, ainsi que d’autres caractérisations utiles.
Les méthodes du maximum de vraisemblance, des moments et des moindres carrés sont présentés pour l’estima-
tion de son paramètre. Les performances de ces estimateurs sont évaluées par des simulations de Monte-Carlo pour
des échantillons de taille réduite. Une application à des données réelles est réalisée pour montrer l’intérêt de cette
distribution par rapport aux distributions beta, de Kumaraswamy et de Topp-Leone.
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1. Introduction

In the last decade, researchers have shown a great interest in introducing new extended distri-
butions by adding extra shape parameters to the baseline distributions. The main motivation of
these studies is to increase the modeling ability of the distributions and to open the new opportu-
nities to model different characteristics of the data sets. Generally, researchers have paid attention
to unbounded support. However, there are many real-life situations in which the observations can
take values only in a bounded range, such as percentages, and proportions. It is possible to face
this situation in economic variables such as industry market shares and the proportion of income
spent on non-durable consumptions (see, Papke and Wooldridge, 1996 for details).

The most well-known distribution defined on the unit interval is the Beta distribution which
is widely used in various areas of sciences such as economics, biology and medical sciences
since it has great flexibility regarding the shapes of the hazard rate function. The main drawback
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The log-xgamma distribution 41

of the Beta distribution is that its cumulative distribution function (cdf) cannot be expressed
in closed form and contains the beta function. After the pioneer work of Nadarajah and Kotz
(2003), Topp-Leone distribution, proposed by Topp and Leone (1955), has increased its popu-
larity. The Topp-Leone distribution has some advantages over the Beta distribution. The most
important advantage is that its distribution function is simple and does not contain any special
function such as beta and gamma functions. The other widely used distribution on the unit inter-
val is the Kumaraswamy distribution, introduced by Kumaraswamy (1980). The Kumaraswamy
distribution has increased its popularity after the work of Cordeiro and Castro (2011). More re-
cently, the unit-Birnbaum-Saunders distribution was introduced by Mazucheli et al. (2018). The
unit-Birnbaum-Saunders distribution can be viewed as an alternative unit distribution to the two
parameter Beta and Kumaraswamy distributions.

The goal of this paper is to introduce an alternative distribution for modeling data sets on
the interval [0,1]. To achieve this goal, xgamma distribution is used to generate a new distribu-
tion defined on the unit interval. The proposed distribution has important advantages over the
well-known distributions defined on unit interval such as Beta, Kumaraswamy and Topp-Leone
distributions. The superiority of the proposed distribution comes from its simple form and its
flexibility via hazard rate function. The statistical properties of the log-xgamma distribution can
be obtained in explicit forms for its probability density and cumulative distribution functions,
moments, skewness and kurtosis measures. Since the log-xgamma distribution has only one pa-
rameter, the estimation of the model parameter is easier than those of Beta and Kumaraswamy
distributions.

The rest of the paper is organized as follows: In Section 2 we obtain the mathematical prop-
erties of the proposed distribution comprehensively. Section 3 provides certain characterizations
of the proposed distribution. In Section 4, the parameter estimation of the model is discussed via
maximum likelihood method, method of moments and least square estimation method. In Sec-
tion 5, the Monte-Carlo simulation study is conducted to evaluate the finite sample performance
of the parameter estimation methods. In Section 6, two real data sets are analysed to demonstrate
the flexibility of the log-xgamma distribution against the well-known distributions defined on the
unit interval. Conclusion is given in Section 7.

2. The log-xgamma distribution

Let the random variable X follow a Lindley distribution with probability density function (pdf)

f (x;θ) =
θ 2

1+θ
(1+ x)exp(−θx) ,x > 0, (1)

where θ > 0 is the scale parameter. As seen from (1), the Lindley distribution is a mixture of the
exponential(θ) and gamma(2,θ) distributions. The corresponding cdf is

F (x) = 1− θ +1+θx
θ +1

exp(−θx) ,x≥ 0. (2)

Most of the statistical properties of the Lindley distribution such as moments, stochastic order-
ing, entropies were obtained by Ghitany et al. (2008). Recently, Sen et al. (2016) introduced
the xgamma distribution following the idea of Lindley distribution. The extensions of xgamma
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distribution was studied by Sen and Chandra (2017) and Sen et al. (2017). The pdf of xgamma
distribution is given by

f (x;θ) =
θ 2

1+θ

(
1+

θ

2
x2
)

exp(−θx) ,x > 0,θ > 0. (3)

As seen from (3), the xgamma distribution is a mixture of exponential(θ) and gamma(3,θ)
distributions. The corresponding cdf is

F (x) = 1−
1+θ +θx+ θ 2x2

2
θ +1

exp(−θx) ,x≥ 0. (4)

Proposition 1. Let random variable Y = exp(−X), then the pdf of Y is

f (y;θ) =
θ 2

1+θ

(
1+

θ

2
ln(y)2

)
yθ−1,0 < y < 1, (5)

where θ > 0 is the shape parameter. Hereafter, the random variable Y is denoted by Y ∼
log-xgamma(θ). The corresponding cdf is

F (y) = yθ (θ +1)−1

(
1+θ −θ ln(y)+

θ 2 ln(y)2

2

)
,0≤ y≤ 1. (6)

Figure 1 displays the possible pdf shapes of the log-xgamma distribution. The log-xgamma
distribution can be a good choice to model extremely left or right skewed data sets.
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FIGURE 1. The pdf plots of log-xgamma distribution for selected parameter values.

The survival function (sf) of Y is

S (y) = 1− yθ (θ +1)−1

(
1+θ −θ ln(y)+

θ 2 ln(y)2

2

)
,0≤ y≤ 1, (7)

and the hazard rate function (hrf) of Y is

h(y) =
θ 2
(

1+ θ

2 ln(y)2
)

yθ−1

(1+θ)
{

1− yθ (θ +1)−1
(

1+θ −θ ln(y)+ θ 2 ln(y)2

2

)} ,0 < y < 1. (8)
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Figure 2 displays the possible hrf shapes of the log-xgamma distribution. The log-xgamma
distribution has the following hrf shapes: increasing and bathtub.
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FIGURE 2. The hrf plots of log-xgamma distribution for selected parameter values.

Proposition 2. Let F(y) denote the cdf of log-xgamma distribution. The following algorithm can
be used to generate random observations from Y ∼ log-xgamma(θ).

1. Generate u∼ uniform(0,1) ,

2. Solve the following non-linear equation for a given parameter value,

yθ (θ +1)−1

(
1+θ −θ ln(y)+

θ 2 ln(y)2

2

)
−u = 0. (9)

The uniroot function of R software can be used to solve non-linear equation given in step 2. Note
that the above algorithm is a very well-known simulation method, called as inverse transform
method.

Proposition 3. Let the random variable Y follow a log-xgamma disribution. The raw moments
of Y are given by

E (Y r) =
θ 2
[
θ 2 +(2r+1)θ + r2

]
(θ +1)(θ + r)3 . (10)
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The first four raw moments of log-xgamma distribution are given by

E (Y ) = µ =
θ 2(θ 2+3θ+1)

(θ+1)4 ,

E
(
Y 2
)
=

θ 2(θ 2+5θ+4)
(θ+1)(θ+2)3 ,

E
(
Y 3
)
=

θ 2(θ 2+7θ+9)
(θ+1)(θ+3)3 ,

E
(
Y 4
)
=

θ 2(θ 2+9θ+16)
(θ+1)(θ+4)3 .

(11)

The variance of the log-xgamma distribution is

σ
2 =

θ 2
(
θ 2 +5θ +4

)
(θ +1)(θ +2)3 −

θ 4
(
θ 2 +3θ +1

)2

(θ +1)8 . (12)

Let γ1 and γ2 denote the skewness and kurtosis values of the the log-xgamma distribution, re-
spectively. The measures γ1 and γ2 can be obtained from

γ1 = E

[(
X−µ

σ

)3
]
=

E
(
X3
)
−3µσ2−µ3

σ3

γ2 = E

[(
X−µ

σ

)4
]
=

E
(
X4
)
−4µE

(
X3
)
+6µ2σ2 +3µ4

σ4

Figure 3 displays the skewness and kurtosis values of log-xgamma distribution. As seen from
Figure 3, the log-xgamma distribution can be symmetric, left or right skewed.
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FIGURE 3. The skewness and kurtosis plots of log-xgamma distribution.
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Proposition 4. Let the random variable Y follow a log-xgamma disribution. The incomplete
moments of Y are given by

Tr (t) = E
[
Y rI{Y<t}

]
=

θ 2

1+θ

t∫
0

(
1+

θ

2
ln(y)2

)
yθ+r−1dy. (13)

The above integration can not be carried out analytically. In particular, for r = 1, T1 (t) is

T1 (t) =
tθ+1

2(θ +1)
+

tθ+1
[
ln(t)2(θ +1)2−2ln(t)(θ +1)+2

]
4(θ +1)3 . (14)

Proposition 5. Let the random variable Y follow a log-xgamma disribution. The mean residual
life function of Y is given by

m(t) = E (Y − t|Y > t) =
1

1−F (t)

1∫
t

[1−F (y)]dy. (15)

The analytical solution of the above integral is

m(t) =
1

1− tθ (θ +1)−1
(

1+θ −θ ln(t)+ θ 2 ln(t)2

2

)


1− t + tθ+1−1
(θ+1)2 +

θ (tθ+1−1)
(θ+1)2

−
θ

(
1

(θ+1)2
+

tθ+1 (log(t)− 1
θ+1 )

θ+1

)
θ+1

−
θ 2

(
2

(θ+1)3
−

tθ+1 (log(t)2 (θ+1)2−2log(t)(θ+1)+2)
(θ+1)3

)
2(θ+1)


. (16)

3. Characterizations

This section deals with the characterizations of the log-xGamma distribution in two direc-
tions: (i) based on the ratio of two truncated moments and (ii) in terms of reverse (reversed)
hazard function. Note that for the characterization (i) the cdf need not have a closed form and
depends on the solution of a first order differential equation, which provides a bridge between
probability and differential equation. We like to also mention that characterization (i) is stable in
the sense of weak convergence (Glänzel , 1990). We present our characterizations (i) − (ii) in
two subsections.

3.1. Characterizations based on two truncated moments

In this subsection we present the characterizations of log-xgamma distribution based on the
ratio of two truncated moments. Our first characterization employs a theorem due to Glänzel
(1987), see Theorem 1 of Appendix A . The result, however, holds also when the interval H is
not closed, since the condition of the Theorem is on the interior of H.
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Proposition 6. Let Y : Ω→ (0,1) be a continuous random variable and let q1 (y)=
{

1+ θ(lny)2

2

}−1

and q2 (y) = q1 (y)yθ for y∈ (0,1) . The random variable Y has pdf (5) if and only if the function
ξ defined in Theorem 1 is of the form

ξ (y) =
1
2

(
1+ yθ

)
, y ∈ (0,1) .

Proof. Suppose the random variable Y has pdf (5), then

(1−F (y))E [q1 (Y ) | Y ≥ y] =
θ

θ +1

(
1− yθ

)
, y ∈ (0,1)

and

(1−F (y))E [q2 (Y ) | Y ≥ y] =
θ

2(θ +1)

(
1− y2θ

)
, y ∈ (0,1) .

Further,

ξ (y)q1 (y)−q2 (y) =
q1 (y)

2

(
1− yθ

)
> 0, f or y ∈ (0,1) .

Conversely, if ξ is of the above form, then

s′ (y) =
ξ ′ (y)q1 (y)

ξ (y)q1 (y)−q2 (y)
=

θyθ−1

1− yθ
, y ∈ (0,1) ,

and consequently

s(y) =− ln
(

1− yθ

)
, y ∈ (0,1) .

Now, according to Theorem 1, Y has density (5) .

Corollary 1. Let Y : Ω→ (0,1) be a continuous random variable and let q1 (y) be as in Propo-
sition 6. The random variable Y has pdf (5) if and only if there exist functions q2 and ξ defined
in Theorem 1 satisfying the following differential equation

ξ ′ (y)q1 (y)
ξ (y)q1 (y)−q2 (y)

=
θyθ−1

1− yθ
, y ∈ (0,1) .

Corollary 2. The general solution of the differential equation in Corollary 1 is

ξ (y) =
(

1− yθ

)−1
[
−
∫

θxθ−1 (q1 (x))
−1 q2 (x)dx+D

]
,

where D is a constant. We like to point out that one set of functions satisfying the above differen-
tial equation is given in Proposition 3.1 with D = 1

2 . Clearly, there are other triplets (q1,q2,ξ )
which satisfy conditions of Theorem 1.

Journal de la Société Française de Statistique, Vol. 159 No. 3 40-55
http://www.sfds.asso.fr/journal

© Société Française de Statistique et Société Mathématique de France (2018) ISSN: 2102-6238



The log-xgamma distribution 47

3.2. Characterization in terms of the reverse hazard function

The reverse hazard function, rF , of a twice differentiable distribution function, F , is defined
as

rF (y) =
f (y)
F (y)

, y ∈ support o f F.

In this subsection we present a characterization of log-xgamma distribution in terms of the
reverse hazard function.

Proposition 7. Let Y : Ω→ (0,1) be a continuous random variable. The random variable Y
has pdf (5) , if and only if its reverse hazard function rF (y) satisfies the following differential
equation

r′F (y)+ y−1rF (y) = θ
2y−1 d

dy

 1+ θ(lny)2

2

1+θ −θ lny+ θ 2(lny)2

2

 , y ∈ (0,1) .

Proof. If Y has density (5), then clearly the above differential equation holds. Now, if the
differential equation holds, then

d
dy
{yrF (y)}= θ

2 d
dy

 1+ θ(lny)2

2

1+θ −θ lny+ θ 2(lny)2

2

 , y ∈ (0,1) ,

from which we obtain the reverse hazard function of (5).

4. Estimation

In this section, the maximum likelihood estimation, method of moments and least squares
estimation method are considered to estimate the unknown parameter of the log-xgamma distri-
bution.
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4.1. Maximum likelihood estimation

Let y1,y2, . . . ,yn be a random sample from the log-xgamma distribution. The log-likelihood
function of log-xgamma distribution is given by

`= n ln
(

θ 2

1+θ

)
+

n

∑
i=1

ln
(

1+
θ

2
ln(yi)

2
)
+(θ −1)

n

∑
i=1

ln(yi). (17)

Taking partial derivative from (17) with respect to θ , the following normal equation is obtained

∂`

∂θ
= n

(θ +2)
θ (θ +1)

+
n

∑
i=1

ln(yi)
2

θ ln(yi)
2 +2

+
n

∑
i=1

ln(yi).

The maximum likelihood estimate (MLE) of θ , say θ̂ , is the solution of the following equa-
tion: ∂`

∂θ
= 0. Since the likelihood equation contains non-linear functions, it is not possible to

obtain explicit form of the MLE. Therefore, it needs to be solved using numerical methods. S-
Plus, R or MATLAB can be used to obtain the MLE of the parameter. It is well-known that under
the regularity conditions that are fulfilled for the parameter, the asymptotic distribution of θ̂ , as
n→∞, is a normal distribution with mean θ and variance I−1

F (θ) where IF(θ) =E
(
−∂ 2`

/
∂θ 2

)
.

Therefore, the asymptotic equi-tailed 100(1− p)% confidence interval (CI) for the parameter θ

is given by

θ̂ ± zp/2

√
V̂ar(θ̂),

where zp/2 is the upper p/2 quantile of the standard normal distribution.

4.2. Method of moments

The method of moments (MM) estimate of the the parameter θ can be obtained by equating
the theoretical moment to the corresponding sample moment as given below

ȳ =
θ 2
(
θ 2 +3θ +1

)
(θ +1)4 , (18)

where ȳ is the sample mean. The MM estimate of the parameter θ can be obtained by solving
the following equation

ȳ−
θ 2
(
θ 2 +3θ +1

)
(θ +1)4 = 0. (19)

4.3. Least squares estimation

Let y(1), y(2), y(3), · · · , y(n) denote the ordered sample of the random sample of size n from the
log-xgamma distribution. The least square estimator (LSE) of θ can be obtained by minimizing
the following equation

n

∑
i=1

(
F
(
Y(i)
)
− i

n+1

)2

, (20)
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The log-xgamma distribution 49

where F
(
Y(i)
)

is the cdf of log-xgamma distribution. Inserting (6) in Equation (20), the following
equation is obtained.

n

∑
i=1

[
yθ
(i)(θ +1)−1

(
1+θ −θ ln

(
y(i)
)
+

θ 2 ln
(
y(i)
)2

2

)
− i

n+1

]2

. (21)

5. Simulation

In this section, MLE, LSE and MM methods are considered to estimate the unknown pa-
rameter of log-xgamma distribution. We compare the parameter estimation efficiency of MLE,
LSE and MM methods for the parameter of log-xgamma distribution by means of Monte Carlo
simulation. The following simulation procedure is implemented:

1. Set the sample size n and the parameter θ ,

2. Generate random observations from the log-xgamma(θ) distribution with size n using the
Equation (9),

3. Using the generated random observations in Step 2, estimate θ by means of MLE, LSE
and MM methods,

4. Repeat steps 2 and 3 N times,

5. Using θ̂ and θ compute the mean relative estimates (MREs) and mean square errors
(MSEs) via the following equations:

Bias =
N
∑
j=1

θ̂ j−θ

N ,

MRE =
N
∑
j=1

θ̂ j
/

θ

N ,

MSE =
N
∑
j=1

(θ̂ j−θ)
2

N .

.

The simulation results are computed with software R. The chosen parameter of simulation study
is θ = 2.5, N = 1.000 and n = (20,25,30, ...,500). We expect that MREs are closer to one when
the MSEs are near zero. Figure 4 represents estimated biases, MSEs and MREs obtained by
MLE, LSE and MM methods. Based on Figure 4, the biases and MSE of all estimates tend to zero
for large n values, and also as expected, the values of MREs tend to one. As seen from Figure
4, the MLE approaches nominal value of the MSEs faster than the LSE and MM estimates.
Therefore, the MLE method can be chosen as the more suitable method than LSE and MM
methods for estimating the parameter of the log-xgamma distribution.
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FIGURE 4. Estimated biases, MSEs and MREs for the parameter of the log-xgamma distribution.

6. Empirical study

In this section, two real data sets are used to compare the log-xgamma model with Beta, Ku-
maraswamy and Topp-Leone distributions. The optim function is used to estimate the unknown
model parameters. The MLEs and corresponding standard errors, estimated −`, Kolmogorov-
Smirnov (K-S) statistic and corresponding p value, Cramér-von Mises (W*), Anderson-Darling
(A*) statistics, Akaike Information Criteria (AIC) and Bayesian Information Criteria (BIC) are
reported in Tables 1 and 2. The lowest values of these criteria show the best fitted model on the
data set, except p-value. The log-xgamma distribution is compared with the following distribu-
tions defined on the unit interval.

1. Beta distribution

f (x;α,β ) =
Γ(α +β )

Γ(α)Γ(β )
xα−1(1− x)β−1,α > 0,β > 0, 0≤ x≤ 1. (22)

2. Kumaraswamy distribution

f (x;α,β ) = αβxα−1(1− xα)β−1,α > 0,β > 0, 0≤ x≤ 1. (23)

3. Topp-Leone distribution

f (x;θ) = θ (2−2x)
(
2x− x2)θ−1

,θ > 0, 0≤ x≤ 1. (24)
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The following data is from Caramanis et al. (1983) and Mazumdar and Gaver (1984), where they
compare the two different algorithms called SC16 and P3 for estimating unit capacity factors.
The values resulted from the algorithm SC16 is 0.853, 0.759, 0.866, 0.809, 0.717, 0.544, 0.492,
0.403, 0.344, 0.213, 0.116, 0.116, 0.092, 0.070, 0.059, 0.048, 0.036, 0.029, 0.021, 0.014, 0.011,
0.008, 0.006. The information about the hazard shape can be helpful in selecting the suitable
model. For this purpose, a device called the total time on test (TTT) plot (Aarset, 1987) can be
used. The TTT plot is obtained by plotting

G(r/n) =

[(
r

∑
i=1

y(i)

)
+(n− r)y(r)

]
/

n

∑
i=1

y(i),

where r = 1, ...,n and y(i) (i = 1, ...,n) are the order statistics of the sample, against r/n. If the
shape of TTT plot is a straight diagonal, the hazard is constant. The TTT plot has convex shape
for decreasing hazards and concave shape for increasing hazards. The bathtub-shaped hazard is
obtained when first is convex and then concave. As seen from Figure 5, the hazard shape of SC16
data set is bathtub-shaped. Therefore, log-xgamma distribution can be good a choice to model
this data set.
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FIGURE 5. The TTT plot of SC16 data set.

Table 1 lists the estimated parameters of the models, corresponding standard errors and goodness-
of-fit statistics for the SC16 data set. As seen from Table 1, log-xgamma distribution has the
lowest values of the goodness-of-fit statistics. Figure 6 displays the fitted pdfs of the models
on the histogram of the SC16 data set and fitted functions of the log-xgamma distribution. The
right panel of the Figure 6 shows that the log-xgamma distribution provides an adequate fit to
the SC16 data set. As seen from application to real data set, one-parameter log-xgamma distri-
bution provides better fits than two-parameter Beta and Kumaraswamy distributions as well as
Topp-Leone distribution. The log-xgamma distribution opens new opportunity for modeling the
bathtub hazard shape.

Figure 7 displays the fitted hrfs of Beta, Kumaraswamy and Topp-Leone distributions. As seen
from Figure 7, all fitted hrfs have bathtub shape.
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TABLE 1. MLEs and their SEs (on second line) of the fitted models and goodness-of-fit statistics for SC16 data

Models Parameter estimations −` AIC BIC A* W* K-S p-value

Beta(α,β ) 0.4869 1.1679 -9.6075 -15.2149 -12.9439 0.6901 0.1099 0.1836 0.4202
(0.1208) (0.3578)

Kumaraswamy(α,β ) 0.5044 1.1861 -9.6708 -15.3416 -13.0706 0.6816 0.1084 0.1790 0.4526
(0.1288) (0.3264)

Topp-Leone(θ ) 0.5943 -8.1151 -14.2303 -13.0948 0.7456 0.1197 0.1690 0.5273
(0.1239)

Log-xgamma(θ ) 0.9319 -10.7977 -19.5955 -18.4600 0.4982 0.0761 0.1512 0.6693
(0.1318)
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FIGURE 6. The fitted pdfs of the models for SC16 data (left-panel), the fitted functions of log-xgamma distribution
(right-panel).
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FIGURE 7. The fitted hrfs of Beta, Kumaraswamy and Topp-Leone distributions
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7. Conclusion

A new one-parameter lifetime distribution called, "log-xgamma" is introduced for model-
ing lifetime data sets. Some of the statistical properties including the moments, shapes of the
hazard rate function, incomplete moments and mean residual life function are obtained. The
maximum likelihood, least square and method of moments methods are discussed for estimat-
ing the unknown parameter of the log-xgamma distribution via simulation study. Two real data
sets are analysed to demonstrate the flexibility and comparability of the log-xgamma distribu-
tion against the Beta, Kumaraswamy and Topp-Leone lifetime distributions. The log-xgamma
regression model as an alternative to beta regression model can be viewed as a future work of
this study. We hope that the results given here will be helpful to the researchers dealing with
distribution theory.
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Appendix A

Theorem 1. Let (Ω,F ,P) be a given probability space and let H = [a,b] be an interval
for some a < b (a =−∞, b = ∞ might as well be allowed) . Let Y : Ω→ H be a continuous
random variable with the distribution function F and let q1 and q2 be two real functions defined
on H such that

E [q2 (Y ) | Y ≥ y] = E [q1 (Y ) | Y ≥ y]ξ (y) , y ∈ H,

is defined with some real function ξ . Assume that q1,q2 ∈ C1 (H), ξ ∈ C2 (H) and F is twice
continuously differentiable and strictly monotone function on the set H. Finally, assume that the
equation ξ q1 = q2 has no real solution in the interior of H. Then F is uniquely determined by
the functions q1,q2 and ξ , particularly

F (y) =
∫ y

a
C
∣∣∣∣ ξ ′ (u)
ξ (u)q1 (u)−q2 (u)

∣∣∣∣exp(−s(u)) du ,

where the function s is a solution of the differential equation s′ = ξ ′ q1
ξ q1−q2

and C is the normal-
ization constant, such that

∫
H dF = 1.

We like to mention that this kind of characterization based on the ratio of truncated moments
is stable in the sense of weak convergence (see, Glänzel, 1990), in particular, let us assume that
there is a sequence {Yn} of random variables with distribution functions {Fn} such that the
functions q1n , q2n and ξn (n ∈ N) satisfy the conditions of Theorem 1 and let q1n → q1 ,
q2n → q2 for some continuously differentiable real functions q1 and q2 . Let, finally, Y be
a random variable with distribution F . Under the condition that q1n (Y ) and q2n (Y ) are
uniformly integrable and the family {Fn} is relatively compact, the sequence Yn converges to
Y in distribution if and only if ξn converges to ξ , where

ξ (y) =
E [q2 (Y ) | Y ≥ y]
E [q1 (Y ) | Y ≥ y]

.

This stability theorem makes sure that the convergence of distribution functions is reflected
by corresponding convergence of the functions q1 , q2 and ξ , respectively. It guarantees,
for instance, the ’convergence’ of characterization of the Wald distribution to that of the Lévy-
Smirnov distribution if α → ∞.
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A further consequence of the stability property of Theorem 1 is the application of this theorem
to special tasks in statistical practice such as the estimation of the parameters of discrete distribu-
tions. For such purpose, the functions q1, q2 and, specially, ξ should be as simple as possible.
Since the function triplet is not uniquely determined it is often possible to choose ξ as a linear
function. Therefore, it is worth analyzing some special cases which helps to find new charac-
terizations reflecting the relationship between individual continuous univariate distributions and
appropriate in other areas of statistics.
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