Numéro spécial : Statistique pour les données spatiales et spatio-temporelles et réseau RESSTE
Application of satellite image to the implementation of two stochastic models for modeling the transport of chlorophyll-a on Lake Valencia (Venezuela)
[Application des images satellitales à la mise en œuvre de deux modèles stochastiques pour modéliser le transport de chlorophylle-a sur le Lac de Valence du Venezuela]
Journal de la société française de statistique, Tome 158 (2017) no. 3, pp. 35-61.

Dans cet article deux méthodes de diffusion de particules sont proposés pour modéliser le transport de polluants à la surface du Lac de Valencia (Venezuela). Les deux méthodes utilisent comme champ de vitesses sur la surface du lac les solutions de l’équation de Saint-Venant. Ces deux procédures sont comparées à l’aide d’une simulation de Monte Carlo. De plus, et comme une nouveauté, un algorithme qui utilise l’information obtenue d’une image satellite est construit pour générer les positions initiales des particules.

In this article, two statistical methods of diffusion of particles are proposed for modeling the transport of pollutants in Lake Valencia (Venezuela). Both methods use as velocity field on the lake surface solutions of the Saint-Venant equations. The two procedures are compared through Monte Carlo simulation. Furthermore, as a novelty an algorithm to randomly generate the initial positions of the particles using information obtained from a satellite image is designed.

Mots clés : diffusion de particules, vol aléatoire, pollution de surface d’eau, équation de Saint-Venant, image de satellite
@article{JSFS_2017__158_3_35_0,
     author = {Valera-L\'opez, Maira and Pineda, Angie and Le\'on, Jos\'e R.},
     title = {Application of satellite image to the implementation of two stochastic models for modeling the transport of chlorophyll-a on {Lake} {Valencia} {(Venezuela)}},
     journal = {Journal de la soci\'et\'e fran\c{c}aise de statistique},
     pages = {35--61},
     publisher = {Soci\'et\'e fran\c{c}aise de statistique},
     volume = {158},
     number = {3},
     year = {2017},
     zbl = {1375.86016},
     language = {en},
     url = {http://www.numdam.org/item/JSFS_2017__158_3_35_0/}
}
TY  - JOUR
AU  - Valera-López, Maira
AU  - Pineda, Angie
AU  - León, José R.
TI  - Application of satellite image to the implementation of two stochastic models for modeling the transport of chlorophyll-a on Lake Valencia (Venezuela)
JO  - Journal de la société française de statistique
PY  - 2017
DA  - 2017///
SP  - 35
EP  - 61
VL  - 158
IS  - 3
PB  - Société française de statistique
UR  - http://www.numdam.org/item/JSFS_2017__158_3_35_0/
UR  - https://zbmath.org/?q=an%3A1375.86016
LA  - en
ID  - JSFS_2017__158_3_35_0
ER  - 
Valera-López, Maira; Pineda, Angie; León, José R. Application of satellite image to the implementation of two stochastic models for modeling the transport of chlorophyll-a on Lake Valencia (Venezuela). Journal de la société française de statistique, Tome 158 (2017) no. 3, pp. 35-61. http://www.numdam.org/item/JSFS_2017__158_3_35_0/

[1] Arcos, M. P.; Ávila, S. L.; Estipinan, S. M.; Goméz, A.C. Indicadores microbiológicos de contaminación de las fuentes de agua, Nova-Publicación Científica, Volume 3 (2005), pp. 69-79

[2] Arnold, L. Stochastic differential equations: Theory and applications (Wiley, first edition, ed.), Wiley, 1974 | Zbl 0278.60039

[3] Awad, M. Sea water chlorophyll-a estimation using hyperspectral images and supervised artificial neural network, Elseiver Ecol. Inf, Volume 24 (2014), pp. 60-68

[4] Bossy, M.; Gobet, E.; Talay., D. A symmetrized Euler scheme for an efficient approximation of reflected diffusions, J. Appl. Prob., Volume 41 (2004), pp. 877-889 | Zbl 1076.65009

[5] Courant, Richard; Friedrichs, Kurt; Lewy, Hans On the partial difference equations of mathematical physics, IBM journal of Research and Development, Volume 11 (1967) no. 2, pp. 215-234 | Zbl 0145.40402

[6] De Baas, A. F.; Van Dop, H.; Nieuwstadt, F. T. M. An application of the Langevin equation for inhomogeneous conditions to dispersion in a convective boundary layer, Quart Journ. Roy. Met. Soc., Volume 12 (1980), pp. 165-180

[7] Doukhan, P. Mixing: properties and examples, Lecture Notes in Statistics 85 (1994) | Zbl 0801.60027

[8] Fattler, T.; Grothaus, M. Strong Feller properties for distorted Brownian motion with reflecting boundary condition an application to continuous N -particle systems with singular interactions, Journal of Functional Analysis, Volume 246 (2007), pp. 217-241 | Zbl 1128.60066

[9] Fan, D.; Huang, Y.; Song, L.; Liu, D.; Zhang, G.; Zhang, B. Prediction of chlorophyll-a consentration using HJ-1 satellite imagery for Xiangxi Bay in Three Gorges Reservoir, Water Science and Engineering, Volume 7 (2014) no. 1, pp. 70-80

[10] Fisher, H. B.; List, E. J.; Koh, R. C. Y.; Imberger, J.; Brooks, N. H. Mixing in inland and coastal waters, Academic Press (1979)

[11] Fukushima, M.; Oshima, Y.; Takeda, M. Dirichlet forms and symmetric Markov processes, De Gruyter studies in Mathematics, Volume 19 (2010) | Zbl 0838.31001

[12] Fei, W.; Xuan, W.; Ying, Z.; Zhifeng, Y. Long-term changes of water level associated with chlorophyll-a concentration in Lake Baiyangdian, North China, Procedia Environmental Sciences, Volume 13 (2012), pp. 1227-1237

[13] García, R.; Kahawita, R. A. Numerical solution of the St. Venant equations with the MacCormack finite difference scheme, International Journal for Numerical Methods in Fluids, Volume 6 (1986), pp. 259-274 | Zbl 0591.76027

[14] Griffa, Annalisa Applications of stochastic particle models, Stochastic Modelling in Physical Oceanography, 1996, pp. 113-140 | Zbl 0864.76074

[15] Heemink, A. W. Stochastics modelling of dispersion in shallow water, Stochastic Hydrology and Hydraulics, Volume 4 (1990), pp. 161-174

[16] Karatzas, I.; Shreve, S. E. Brownian Motion and Stochastic Calculus, Springer GTM, Volume 113 (1991) | Zbl 0734.60060

[17] Li, L.; Binghu, Z.; Lusan, L. Biomonitoring and bioindicadors used for river ecosystems: definitions, approaches and trends, Procedia Environmental Sciences, Volume 2 (2010), pp. 1510-1524

[18] Lanza, G. De La; Hernández, S.; Carbajal, J. L. Organismos indicadores de la calidad de agua y de la contaminación (Bioindicadores), Universidad Nacional Autónoma de México (2000)

[19] Lions, P.L.; Sznitman, A.S. Stochastic Differential Equations with Reflecting Boundary Conditions, Comm. Pure and Applied Math., Volume XXXVII (1984), pp. 511-537 | Zbl 0598.60060

[20] Ministerio del ambiente Estudio del Lago de Valencia : Parámetros fisicoquímicos y biológicos (1971-1995), Caracas, Venezuela : Informe del 2do Seminario Técnico del Programa de Saneamiento Ambiental Integral de la Cuenca del Lago de Valencia, Caracas (1995)

[21] MacCormack, R. W. Numerical solution of the interaction of a shock wave with a laminar boundary layer, Lectures Notes in Physics, Springer-Verlag, Volume 8 (1971), pp. 151-163 | Zbl 0228.76098

[22] Nelson, Edward Dynamical theories of Brownian motion, 3, Princeton university press Princeton, 1967 | MR 214150 | Zbl 0165.58502

[23] Ostapczuk, P.; Burow, M.; May, K.; Mohl, C.; Froning, M.; Sübembach, B.; Widmann, E.; Emons, H. Mussels and algaes as bioindicadors for long-term tendencies of element pollution in marine ecosystems, Chernosphere, Volume 37 (1997), pp. 2049-2058

[24] Peña, E.; Palacio, M.; Ospina-Alvarez, N. Algas como indicadores de contaminación, Universidad de Valle-Programa Editorial (2005)

[25] Reed, M.; Simon, B. Analysis of Operators, Academic Press, Volume IV (1978)

[26] Roberts, G. O.; Tweedie, R. Exponential Convergence of Langevin Distribution and their Discrete approximations, Bernoulli, Volume 2 (1996) no. 4, pp. 341-363 | MR 1440273 | Zbl 0870.60027

[27] Silverman, B.W. Density Estimation for Statistics and Data Analysis, Chapman & Hall (1986) | MR 848134 | Zbl 0617.62042

[28] Soize, Christian The Fokker-Planck equation for stochastic dynamical systems and its explicit steady state solutions, 17, World Scientific, 1994 | MR 1287386 | Zbl 0807.60072

[29] Tsanis, I. K.; Saied, U. A wind-driven hydrodynamic and pollutant transport model, Global NEST Journal, Volume 9 (2007) no. 2, pp. 117-131

[30] Valera-López, M.; J. Guevara-Jordan, R. García; Saavedra, I.; León, J. R. Understanding Circulation in Lake Valencia, Venezuela by a Shallow-Water Model, Ingeniería y Ciencias Aplicadas: Modelos Matemáticos y Computacionales (2014), p. MM37-MM42

[31] Valera-López, M.; J. Guevara-Jordan, R. García; Saavedra, I.; León, J. R. Modeling wind-driven circulation and pollution in Lake Valencia, Journal of Applied Fluid Mechanics, Volume 9 (2016) no. 6

[32] Zhuowei, H.; Hongqi, L.; Z. Lin, L. Feina Quantitative inversion model of water chlorophyll-a based on spectral analysis, Procedia Environmental Sciences, Volume 10 (2010), pp. 523-528