Numéro spécial : Special Issue on Statistics and Neurosciences
Modeling networks of spiking neurons as interacting processes with memory of variable length
[Modéliser les décharges de neurones par des processus en interactions avec une mémoire de longueur variable]
Journal de la société française de statistique, Tome 157 (2016) no. 1, pp. 17-32.

Nous considérons une nouvelle classe de processus non-markoviens à temps discret ou continu, comportant un nombre dénombrable de composantes en interaction. À chaque instant, chaque composante (neurone) peut prendre deux valeurs, indiquant la présence ou l’absence d’un potentiel d’action (spike). La dynamique du processus est définie de la manière suivante  : pour chaque composante, la probabilité d’avoir un potentiel d’action à l’instant suivant dépend de la trajectoire du système entier depuis l’instant du dernier spike de cette composante. Cette classe de processus stochastiques étend de manière non triviale à la fois les systèmes de particules en interaction, qui sont markoviens, et les chaînes de mémoire variable, qui ont un espace d’états fini. En temps continu, cette classe de processus peut être considérée comme une version des chaînes à mémoire variable pour les processus ponctuels auto-excitants de Hawkes mais avec un nombre infini de composantes. Cette classe de processus constitue ainsi une bonne classe de modèles pour décrire l’évolution temporelle de systèmes neuronaux biologiques. Nous présentons une revue critique des articles récents discutant cette classe de modèles, aussi bien en temps continu qu’en temps discret. Nous exposons brièvement des résultats sur la simulation parfaite, la décorrélation entre intervalles inter spike successifs, le comportement en temps long de systèmes finis ainsi que sur la propagation du chaos dans des systèmes en interaction du type champ moyen.

We consider a new class of non Markovian processes with a countable number of interacting components, both in discrete and continuous time. Each component is represented by a point process indicating if it has a spike or not at a given time. The system evolves as follows. For each component, the rate (in continuous time) or the probability (in discrete time) of having a spike depends on the entire time evolution of the system since the last spike time of the component. In discrete time this class of systems extends in a non trivial way both Spitzer’s interacting particle systems, which are Markovian, and Rissanen’s stochastic chains with memory of variable length which have finite state space. In continuous time they can be seen as a kind of Rissanen’s variable length memory version of the class of self-exciting point processes which are also called “Hawkes processes”, however with infinitely many components. These features make this class a good candidate to describe the time evolution of networks of spiking neurons. In this article we present a critical reader’s guide to recent papers dealing with this class of models, both in discrete and in continuous time. We briefly sketch results concerning perfect simulation and existence issues, de-correlation between successive interspike intervals, the longtime behavior of finite systems and propagation of chaos in mean field systems.

Keywords: biological neural nets, chains of variable length memory, Hawkes processes, interacting particle systems, mean field interaction, perfect simulation, propagation of chaos
Mot clés : réseaux de neurones biologiques, chaînes de mémoire variable, processus de Hawkes, systèmes de particules en interaction, interactions en champ moyen, simulation parfaite, propagation du chaos
@article{JSFS_2016__157_1_17_0,
     author = {Galves, Antonio and L\"ocherbach, Eva},
     title = {Modeling networks of spiking neurons as interacting processes with memory of variable length},
     journal = {Journal de la soci\'et\'e fran\c{c}aise de statistique},
     pages = {17--32},
     publisher = {Soci\'et\'e fran\c{c}aise de statistique},
     volume = {157},
     number = {1},
     year = {2016},
     mrnumber = {3491721},
     zbl = {1357.92012},
     language = {en},
     url = {http://www.numdam.org/item/JSFS_2016__157_1_17_0/}
}
TY  - JOUR
AU  - Galves, Antonio
AU  - Löcherbach, Eva
TI  - Modeling networks of spiking neurons as interacting processes with memory of variable length
JO  - Journal de la société française de statistique
PY  - 2016
SP  - 17
EP  - 32
VL  - 157
IS  - 1
PB  - Société française de statistique
UR  - http://www.numdam.org/item/JSFS_2016__157_1_17_0/
LA  - en
ID  - JSFS_2016__157_1_17_0
ER  - 
%0 Journal Article
%A Galves, Antonio
%A Löcherbach, Eva
%T Modeling networks of spiking neurons as interacting processes with memory of variable length
%J Journal de la société française de statistique
%D 2016
%P 17-32
%V 157
%N 1
%I Société française de statistique
%U http://www.numdam.org/item/JSFS_2016__157_1_17_0/
%G en
%F JSFS_2016__157_1_17_0
Galves, Antonio; Löcherbach, Eva. Modeling networks of spiking neurons as interacting processes with memory of variable length. Journal de la société française de statistique, Tome 157 (2016) no. 1, pp. 17-32. http://www.numdam.org/item/JSFS_2016__157_1_17_0/

[1] Benayoun, M.; Cowan, J.D.; van Drongelen, W.; Wallace, E. Avalanches in a Stochastic Model of Spiking Neurons., PLOS Comput Biol., Volume 6(7) (2010) | MR

[2] Baladron, J.; Fasoli, D.; Faugeras, O.; Touboul, J. Mean-field description and propagation of chaos in networks of Hodgkin-Huxley and Fitzhugh-Nagumo neurons., Journal of Mathematical Neuroscience, Volume 2 (2012) | DOI | MR | Zbl

[3] Brémaud, P.; Massoulié, L. Stability of nonlinear Hawkes processes., Ann. Probab., Volume 24 (1996) no. 3, pp. 1563-1588 | MR | Zbl

[4] Bojak, I.; Oostendorp, T.F.; Reid, A.T.; R. Kötter, Rolf Connecting Mean Field Models of Neural Activity to EEG and fMRI Data, Brain Topography, Volume 23 (2010) no. 2, pp. 139-149 | DOI

[5] Beggs, J.M.; Plenz, D. Neuronal avalanches in Neocortical Circuits, J. Neurosc, Volume 23 (2003), pp. 11167-11177

[6] Bressloff, P. C. Stochastic neural field theory and the system-size expansion., SIAM J. Appl. Math., Volume 70 (2009) no. 5, pp. 1488-1521 | DOI | MR | Zbl

[7] Brillinger, D. Maximum likelihood analysis of spike trains of interacting nerve cells, Biol. Cybern., Volume 59 (1988) no. 3, pp. 189-200 | Zbl

[8] Cessac, B.; Doyon, B.; Quoy, M.; Samuelides, M. Mean-field equations, bifurcation map and route to chaos in discrete time neural networks, Physica D: Nonlinear Phenomena, Volume 74 (1994), pp. 24 -44 | DOI | MR | Zbl

[9] Cessac, B. A discrete time neural network model with spiking neurons: II: Dynamics with noise, Journal of Mathematical Biology, Volume 62 (2011), pp. 863-900 | MR | Zbl

[10] Csiszár, I.; Talata, Z. Context tree estimation for not necessarily finite memory processes, via BIC and MDL, IEEE Trans. Inf. Theory, Volume 52 (2006) no. 3, pp. 1007-1016 | MR | Zbl

[11] Delattre, S.; Fournier, N.; Hoffmann, M. High dimensional Hawkes processes, To appear in Ann. of Appl. Probab. (2015)

[12] Delarue, F.; Inglis, J.; Rubenthaler, S.; Tanré, E. Particle systems with a singular mean-field self-excitation. Application to neuronal networks., Stochastic Processes Appl., Volume 125 (2014), pp. 2451-2492 | MR | Zbl

[13] De Masi, Anna; Galves, Antonio; Löcherbach, Eva; Presutti, Errico Hydrodynamic limit for interacting neurons., J. Stat. Physics, Volume 158 (2015), pp. 866-902 | MR | Zbl

[14] Duarte, A.; Ost, G. A model for neural activity in the absence of external stimuli, To appear in Markov Proc. Related Fields (2015) | MR | Zbl

[15] Duarte, A.; Ost, G.; Rodrigues, A. Hydrodynamic Limits for spatially structured interacting neurons., To appear in J. Stat. Physics (2015) | MR | Zbl

[16] Ecker, A. S.; Berens, P.; Keliris, G. A.; Bethge, M.; Logothetis, N.K.; Tolias, A.S. Decorrelated Neuronal Firing in Cortical Microcircuits, Science, Volume 327 (2010) no. 5965, pp. 584-587 | DOI

[17] Fournier, N.; Löcherbach, E. On a toy model of interacting neurons, To appear in Ann. I. H. P. (2015) | MR | Zbl

[18] Faugeras, O.; Touboul, J.; Cessac, B. A constructive mean-field analysis of multi-population neural networks with random synaptic weights and stochastic inputs, Frontiers in Comp. Neuroscience, Volume 3 (2009), pp. 1-28

[19] Gerstner, W.; Kistler, W. M. Spiking neuron models. Single neurons, populations, plasticity., Cambridge: Cambridge University Press., 2002 | MR | Zbl

[20] Galves, A.; Löcherbach, E. Stochastic chains with memory of variable length., TICSP Series vol. 38 (2008), pp. 117-133

[21] Galves, A.; Löcherbach, E. Infinite systems of interacting chains with memory of variable length - a stochastic model for biological neural nets, J. Stat. Phys., Volume 151 (2013), pp. 896-921 | MR | Zbl

[22] Galves, A.; Orlandi, E.; Takahashi, D.Y. Identifying interacting pairs of sites in Ising models on a countable set., Braz. J. Probab. Stat., Volume 29 (2015), pp. 443-459 | MR | Zbl

[23] Hawkes, A. G. Point spectra of some mutually exciting point processes., J. R. Stat. Soc., Ser. B, Volume 33 (1971), pp. 438-443 | MR | Zbl

[24] Hodara, P.; Löcherbach, E. Hawkes processes with variable length memory and an infinite number of components, Manuscript, arXiv 1410.5235 (2014) | MR | Zbl

[25] Huntsman, M.M.; Porcello, D.M.; Homanics, G.E.; DeLorey, T.M.; Huguenard, J.R. Reciprocal inhibitory connections and network synchrony in the mammalian thalamus., Science, Volume 283 (1999), pp. 541-543

[26] Hansen, N.; Reynaud-Bouret, P.; Rivoirard, V. Lasso and probabilistic inequalities for multivariate point processes, Bernoulli, Volume 21 (2015), pp. 83-143 | MR | Zbl

[27] Kac, M. Foundations of Kinetic Theory, Proc. 3rd Berkeley Sympos. Math. Statist. Probability 3 (1956), pp. 171-197 | MR | Zbl

[28] Kipnis, C.; Landim, C. Scaling limits of interacting particle systems., Grundlehren der Mathematischen Wissenschaften. 320. Berlin: Springer, 1999 | MR | Zbl

[29] Krumin, M.; Reutsky, I.; Shoham, S. Correlation-based analysis and generation of multiple spike trains using Hawkes models with an exogenous input, Frontiers in Comp. Neuroscience, Volume 4 (2010) | DOI

[30] Liggett, T.M. Interacting Particle Systems, Springer Berlin Heidelberg, 1985 | MR | Zbl

[31] Löcherbach, E.; Orlandi, E. Neighborhood radius estimation for variable-neighborhood random fields., Stochastic Processes Appl., Volume 121 (2011) no. 9, pp. 2151-2185 | DOI | MR | Zbl

[32] Masi, A. De; Presutti, E. Mathematical methods for hydrodynamic limits, Lecture Notes in Mathematics. 1501. Berlin: Springer-Verlag, 1991 | MR | Zbl

[33] Møller, J.; Rasmussen, J. G. Perfect simulation of Hawkes processes., Adv. Appl. Probab., Volume 37 (2005) no. 3, pp. 629-646 | MR | Zbl

[34] Moynot, O.; Samuelides, M. Large deviations and mean-field theory for asymmetric random recurrent neural networks, Probability Theory and Related Fields, Volume 123 (2002) no. 1, pp. 41-75 | MR | Zbl

[35] Pinotsis, D.; Robinsons, P.; beim Graben, P.; Friston, K. Neural masses and fields: modeling the dynamics of brain activity., Frontiers in Comp. Neuroscience, Volume 8:149 (2014)

[36] Renart, A.; de la Rocha, J.; Bartho, P.; Hollender, L.; Parga, N.; Reyes, A. The asynchronous state in cortical circuits., Science, Volume 327 (2010), pp. 587-590

[37] Rissanen, J. A universal data compression system, IEEE Trans. Inform. Theory, Volume 29 (1983) no. 5, pp. 656-664 | MR | Zbl

[38] Robert, P.; Touboul, J. On the dynamics of random neuronal networks, Manuscript, arXiv 1410.4072 (2014) | MR

[39] Spitzer, F. Interaction of Markov Processes, Adv. Math., Volume 5 (1970) no. 2, pp. 246-290 | MR | Zbl

[40] Sznitman, A-S. Topics in propagation of chaos., Calcul des probabilités, Ec. d’Été, Saint-Flour/Fr. 1989, Lect. Notes Math. 1464, 165-251 (1991), 1991 | MR | Zbl

[41] Touboul, J. Propagation of chaos in neural fields, Ann. of Appl. Probab., Volume 24 (2014) no. 3, pp. 1298-1328 | DOI | MR | Zbl

[42] van Vreeswijk, C.; Sompolinsky, H. Chaos in neuronal networks with balanced excitatory and inhibitory activity., Science, Volume 274 (1996), pp. 1724-1726