Numéro spécial : Sondages
Estimation in Multiple Frame Surveys: A Simplified and Unified Review using the Multiplicity Approach
Journal de la société française de statistique, Volume 155 (2014) no. 4, pp. 51-69.

Multiple frame surveys are useful for reducing cost for given precision constraints, improving coverage (under or over) and dealing with elusive or rare populations for which a direct sampling frame may not exist. Unlike model-based coverage bias adjustments traditionally used for single-frame surveys where domains of units subject to coverage bias are not identificable, multiple frame surveys assume identifiability of such domains, and supplementary sampling frames along with multiplicity adjustments are used to deal with the coverage bias. Point and variance estimation for multiple frame surveys are somewhat challenging because of multiplicity of units due to overlapping frames, and possible duplication of units in the sample. A simple single-frame solution can be used if selected units from the supplementary frame are screened out whenever they are listed in the main frame. However, this may not be desirable in practice because a major portion of the cost is already incurred in contacting the selected unit for the screening information. Despite the practical appeal of multiple frame surveys, they have not been commonly used possibly because of non-standard complex nature and a lack of general understanding of estimation as well as lack of consensus about a preferred methodology among researchers. However, there has been a recent resurgence of interest in multiple frame due to the practical necessity of mitigating increased cost in data collection and use of non-area frames such as cell and landline telephones. In this paper, we provide a simplified and unified review of different existing methods which should help in a better understanding in choosing a suitable method in any application, and promoting more use of multiple frames in practice.

Les enquêtes à bases multiples sont utiles afin de réduire les coûts pour une précision donnée ainsi que pour améliorer la (sous ou sur) couverture et pour le traitement des populations difficiles à joindre ou rares pour lesquelles il n’existe pas une base de sondage directe. Contrairement aux ajustements pour le biais de couverture traditionnellement utilisés pour les enquêtes à bases uniques pour lesquelles les sous-groupes d’unités sujets à des biais de couverture ne sont pas identifiables, les enquêtes à bases multiples font l’hypothèse que les sous-groupes d’unités sont identifiables et utilisent des bases de sondage supplémentaires ainsi que des ajustements pour la multiplicité afin de corriger le biais de sous-couverture. L’estimation ponctuelle et l’estimation de la variance présentent un certain défi dû à la multiplicité des unités provenant de bases chevauchantes et au possible problème de duplicata des unités dans l’échantillon. Une solution basée sur une unique base peut être utilisé pourvu que les unités échantillonnées à partir des bases supplémentaires soient dépistées lorsque présente sur la base principale. Cependant, cela n’est peut-être pas souhaitable en pratique car une partie importante du coût est déjà engagée afin de contacter les unités lors de l’étape de dépistage. Malgré l’attrait pratique des sondages à bases multiples, ils n’ont pas été couramment utilisés probablement en raison de leur nature complexe et non-standard et un manque de compréhension générale de l’estimation ainsi que de l’absence de consensus à propos d’une méthodologie préférée parmi les chercheurs. Cependant, il y a eu un regain d’intérêt récent pour les bases multiples en raison de la nécessité pratique d’atténuer l’augmentation des coûts de collecte des données et de l’utilisation des bases non-aréolaires telles que les téléphones cellulaires et les téléphones fixes . Dans cet article, nous présentons une revue simplifiée et unifiée des différentes méthodes existantes, qui permettront de mieux comprendre le choix d’une méthode appropriée dans n’importe quelle application, et d’encourager la promotion d’une utilisation de méthodes à bases multiples.

Keywords: Coverage bias, Elusive/rare populations, GMHT-reg class, Horvitz-Thompson estimation, Imperfect frames, Zero functions
Mot clés : Bases imparfaites, Biais de couverture, class GMHT-reg, estimation d’Horvitz-Thompson, populations rares/difficiles à joindre
@article{JSFS_2014__155_4_51_0,
     author = {Mecatti, Fulvia and Singh, Avinash C.},
     title = {Estimation in {Multiple} {Frame} {Surveys:} {A} {Simplified} and {Unified} {Review} using the {Multiplicity} {Approach}},
     journal = {Journal de la soci\'et\'e fran\c{c}aise de statistique},
     pages = {51--69},
     publisher = {Soci\'et\'e fran\c{c}aise de statistique},
     volume = {155},
     number = {4},
     year = {2014},
     mrnumber = {3286189},
     zbl = {1316.62021},
     language = {en},
     url = {http://www.numdam.org/item/JSFS_2014__155_4_51_0/}
}
TY  - JOUR
AU  - Mecatti, Fulvia
AU  - Singh, Avinash C.
TI  - Estimation in Multiple Frame Surveys: A Simplified and Unified Review using the Multiplicity Approach
JO  - Journal de la société française de statistique
PY  - 2014
SP  - 51
EP  - 69
VL  - 155
IS  - 4
PB  - Société française de statistique
UR  - http://www.numdam.org/item/JSFS_2014__155_4_51_0/
LA  - en
ID  - JSFS_2014__155_4_51_0
ER  - 
%0 Journal Article
%A Mecatti, Fulvia
%A Singh, Avinash C.
%T Estimation in Multiple Frame Surveys: A Simplified and Unified Review using the Multiplicity Approach
%J Journal de la société française de statistique
%D 2014
%P 51-69
%V 155
%N 4
%I Société française de statistique
%U http://www.numdam.org/item/JSFS_2014__155_4_51_0/
%G en
%F JSFS_2014__155_4_51_0
Mecatti, Fulvia; Singh, Avinash C. Estimation in Multiple Frame Surveys: A Simplified and Unified Review using the Multiplicity Approach. Journal de la société française de statistique, Volume 155 (2014) no. 4, pp. 51-69. http://www.numdam.org/item/JSFS_2014__155_4_51_0/

[1] Bankier, M.D. Estimators Based on Several Stratified Samples with Applications to Multiple Frame Surveys., Journal of the American Statistical Association, Volume 81 (1986), pp. 1074-1079 | Zbl

[2] Birnbaum, S.; Sirken, M.G. Design of Sample Surveys to Estimate the Prevalence of Rare diseases: Three Unbiased Estimates, Vital and Health Statistics, Volume Series 2, No. 11 (1965), p. 65-82,149

[3] Ernst, L. Panel Surveys, John Wiley and Sons New York (1989)

[4] Eurostat Push and Pull Factors of International Migration, Country Report: Italy (2000) no. 5, p. 65-82,149 (Technical report)

[5] Fuller, W.A.; Burmeister, L.F. Estimators of samples selected from two overlapping frames., Proceedings of the Social Statistics Sections, American Statistical Association (1972), pp. 245-249

[6] Gonzales, G.; Villalobos, A.; Wallace, M.A. Multiple Frame Agricultural Surveys., FAO Rome, Volume 1-2 (1996)

[7] Hartley, H.O. Multiple frame surveys. Proceedings of the Social Statistics Sections, American Statistical Association (1962), pp. 203-206

[8] Hartley, H.O. Multiple Frame Methodology and Selected Applications, Sankhya, Series C, Volume 36 (1974), pp. 99-118

[9] Iacan, D.; Iachan, R.; Dennis, M.L. A multiple frame approach to sampling the homeless and transient population, Journal of Official Statistics, Volume 9 (1993), pp. 747-764

[10] Kalton, G.; Anderson, D.W. Sampling rare populations, Journal of Royal Statistical Society, Volume A (1986), pp. 65-82

[11] Kwok, P.K.; Shin, H.C.; Murphy, W.; O’Muircheartaigh, C.; Debello, A.; Carris, K. Cross-community Comparison and Multi-frame Weighting in REACH U.S., Proceedings of the Joint Statistical Meeting - Section on Survey Research Methods (2009), pp. 2655-2662

[12] Lavallée, P. Indirect Sampling, Springer Series in Statistics (2007) | MR | Zbl

[13] Lohr, S.L. Multiple Frame Survey in Sample Survey: Design, Methods and Applications, Handbook of Statistics, Pfeffermann D. and Rao C.R. Eds, Volume 29 A (2009), pp. 71-88 | MR

[14] Lohr, S.; Rao, J. N. K. Estimation in Multiple Frame Surveys., Journal of the American Statistical Association, Volume 101 (2006), pp. 1019-1030 | MR | Zbl

[15] Lund, R.E. Estimators in multiple frame surveys., Proceedings of the Social Statistics Sections, American Statistical Association (1968), pp. 282-288

[16] Mecatti, F. A Single Frame Multiplicity Estimator for Multiple Frame Surveys., Survey Methodology, Volume 33 (2007), pp. 151-158

[17] Rao, J.N.K Some Nonresponse Sampling Theory When the Frame Contains an Unknown Amount of Duplication., Journal of the American Statistical Association, Volume 63 (1968), pp. 87-90 | MR

[18] Rao, J. N. K.; Wu, C. Pseudo Empirical Likelihood Inference for Multiple Frame Surveys., Journal of the American Statistical Association, Volume 105 (2010), pp. 1494-1503 | MR | Zbl

[19] Sirken, M. G. Network Sample Surveys of Rare and Elusive Population: a Historical review., Proceedings of Statistics Canada Symposium (2004)

[20] Skinner, C. J. On the Efficiency of Raking Ratio Estimation for Multiple Frame Surveys, Journal of the American Statistical Association, Volume 86 (1991), pp. 779-784 | MR | Zbl

[21] Singh, A.C.; Mecatti, F. A Generalized Multiplicity-adjusted Horvitz Thompson Class of Multiple Frame Estimators., Book of Abstract - ITACOSM09, June 10-12/2009, Siena, Italy, Volume Invited Paper (2009), pp. 75-77

[22] Singh, A.C.; Mecatti, F. Generalized Multiplicity-adjusted Horvitz-Thompson type Estimation as a Unified Approach to Multiple Frame Surveys., Journal of Official Statistics, Volume 27 (2011), pp. 633-650

[23] Singh, A.C.; Mecatti, F. Use of Zero Functions for Combining Information from Multiple Frames, in Contributions to Sampling Statistics - ITACOSM 2013 Selected Papers, Volume F. Mecatti, P.L. Conti and M.G. Ranalli Editors, Springer, 2014. See also Singh, A.C. and F. Mecatti. Generalized Multiplicity-Adjusted Multiple Frame Estimation via Regression. Proceedings of Statistics Canada Symposium 2013 Producing reliable estimates from imperfect frames (2014)

[24] Skinner, C.J.; Rao, J.N.K. Estimation in dual frame surveys with complex designs., Journal of American Statistical Association, Volume 91 (1996), pp. 349-356 | MR | Zbl

[25] Singh, A.C.; Wu, S. An Extension of Generalized Regression Estimator to Dual Frame Surveys, Proceedings of the Joint Statistical Meeting - Section on Survey Research Methods (2003), pp. 3911-3918

[26] Singh, A.C.; Wu, S. Estimation for Multiframe Complex Surveys by Modified Regression., Proceedings of the Statistical Society of Canada, Survey Methods Section,n (1996), pp. 69-77

[27] Wu, C.; Rao, J.N.K. Pseudo-empirical likelihood ratio confidence intervals for complex surveys., Canadian Journal of Statistics, Volume 34(3) (2006), pp. 359-375 | MR | Zbl