A class of goodness-of-fit tests in linear errors-in-variables model
[Une classe de tests d’adéquation pour les modèles linéaires avec erreurs de mesure]
Journal de la société française de statistique, Tome 153 (2012) no. 1, pp. 52-70.

Cet article étudie, dans le cadre du modèle linéaire avec erreurs de mesure, une classe de tests d’adéquation pour l’ajustement d’une famille paramétrique de densités à la distribution de l’erreur du modèle. Ces tests sont basés sur une classe de distances L 2 entre un estimateur à noyau fondé sur les résidus et un estimateur de l’espérance de la densité des erreurs sous l’hypothèse nulle. L’article établit que les statistiques de test proposées sont asymptotiquement normales sous l’hypothèse nulle. Les puissances asymptotiques des tests considérés sont obtenues sous des contre-hypothèses fixées et sous des suites de contre-hypothèses locales, et un test optimal est identifié dans cette classe de tests. Un algorithme de bootstrap paramétrique est proposé pour mettre en oeuvre la procédure de test quand la taille d’échantillon est petite à modérée. Une simulation met en évidence les très bonnes propriétés des procédures d’inférence introduites dans cet article.

This paper discusses a class of goodness-of-fit tests for fitting a parametric family of densities to the regression error density function in linear errors-in-variables models. These tests are based on a class of L 2 distances between a kernel density estimator of the residual and an estimator of its expectation under null hypothesis. The paper investigates asymptotic normality of the null distribution of the proposed test statistics. Asymptotic power of these tests under certain fixed and local alternatives is also considered, and an optimal test within the class is identified. A parametric bootstrap algorithm is proposed to implement the proposed test procedure when the sample size is small or moderate. A finite sample simulation study shows very desirable finite sample behavior of the proposed inference procedures.

Mots clés : L 2 distance, optimal power, bootstrap approximation
@article{JSFS_2012__153_1_52_0,
     author = {Koul, Hira L. and Song, Weixing},
     title = {A class of goodness-of-fit tests  in linear errors-in-variables model},
     journal = {Journal de la soci\'et\'e fran\c{c}aise de statistique},
     pages = {52--70},
     publisher = {Soci\'et\'e fran\c{c}aise de statistique},
     volume = {153},
     number = {1},
     year = {2012},
     zbl = {1316.62052},
     mrnumber = {2930290},
     language = {en},
     url = {http://www.numdam.org/item/JSFS_2012__153_1_52_0/}
}
TY  - JOUR
AU  - Koul, Hira L.
AU  - Song, Weixing
TI  - A class of goodness-of-fit tests  in linear errors-in-variables model
JO  - Journal de la société française de statistique
PY  - 2012
DA  - 2012///
SP  - 52
EP  - 70
VL  - 153
IS  - 1
PB  - Société française de statistique
UR  - http://www.numdam.org/item/JSFS_2012__153_1_52_0/
UR  - https://zbmath.org/?q=an%3A1316.62052
UR  - https://www.ams.org/mathscinet-getitem?mr=2930290
LA  - en
ID  - JSFS_2012__153_1_52_0
ER  - 
Koul, Hira L.; Song, Weixing. A class of goodness-of-fit tests  in linear errors-in-variables model. Journal de la société française de statistique, Tome 153 (2012) no. 1, pp. 52-70. http://www.numdam.org/item/JSFS_2012__153_1_52_0/

[1] P. J. Bickel and M. Rosenblatt. On some global measures of the deviations of density function estimates. Ann. Statist., 1:1071–1095, 1973. | MR 348906 | Zbl 0275.62033

[2] D. Bachmann and H. Dette. A note on the bickel-rosenblatt test in autoregressive time series. Statist. Probab. Lett., 74:221–234, 2005. | MR 2189461 | Zbl 1070.62067

[3] R.J. Carroll, D. Ruppert, and L.A. Stefanski. Measurement Error in Nonlinear Models. Chapman & Hall/CRC, Boca Raton, 1995. | MR 1630517

[4] R. B. D’Agostino and M. A. Stephens. Goodness-of-fit techniques. Marcel Dekker, Inc., New York, 1986. | MR 874534 | Zbl 0597.62030

[5] W.A. Fuller. Measurement Error Models. Wiley, New York, 1987. | MR 898653 | Zbl 1105.62071

[6] P.J. Hall. Central limit theorem for integrated square error of multivariate nonparametric density esitmators. J. Multivariate Anal., 14:1–16, 1984. | MR 734096 | Zbl 0528.62028

[7] H.L. Koul and N. Mimoto. A goodness-of-fit test for garch innovation density. 2010. To appear in Metrika. | MR 2878112 | Zbl 1241.62067

[8] H.L. Koul and P. Ni. Minimum distance regression model checking. J. Stat. Plan. Inference, 119:109–141, 2004. | MR 2018453 | Zbl 1032.62036

[9] H.L. Koul and W. Song. Minimum distance regression model checking with berkson error. Ann. Statist., 37:132–156, 2009. | MR 2488347 | Zbl 1155.62028

[10] S. Lee and S. Na. On the bickel-rosenblatt test for first-order autoregressive models. Statist. Probab. Lett., 56:23–35, 2002. | MR 1881127 | Zbl 0994.62082