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ABSTRACT

We present a generalization of hit and run algorithms for Markov chain Monte Carlo
problems that is ‘equivalent’ to data augmentation and auxiliary variables. These
algorithms contain the Gibbs sampler and Swendsen-Wang block spin dynamics as
special cases. The unification allows theorems, examples, and heuristics developed
in one domain to illuminate parallel domains.

Keywords: Markov chain Monte Carlo algorithms, hit and run, data augmentation,
auxiliary variables, Swedsen-Wang algorithm, Burnside process.

RESUME

Nous présentons une généralisation des algorithmes de “hit and run” en Markov
chain Monte Carlo. Cette généralisation est ‘équivalente’ aux méthodes de type
data augmentation et auxiliary variables. La classe d’algorithmes ainsi obtenue con-
tient comme cas particuliers I’échantillonnage de Gibbs et les block spin dynamics
de Swendsen et Wang. Cette unification permet aux théoréemes, exemples et heuris-
tiques développés dans I'un ou l'autre de ces contextes de venir éclairer de facon
intéressante les approches ainsi mises en parallele.

1. Introduction

There are now a bewildering variety of algorithms in use for Markov chain
Monte Carlo. The present paper offers a simple unifying scheme showing
that the following algorithms all have the same basic structure: hit and
run, Metropolis with single particle moves, Gibbs sampler, Swendsen-Wang,
data augmentation, auxiliary variables, slice sampling, Burnside process. The
algorithms in this list are among the most successful basic tools in simulation.
Some of them can make big jumps in the underlying space and mix much
more rapidly than local algorithms. Each has generated a fair sized literature.
We hope that our unification allows the special tuning of ideas developed to
make one of these algorithms particularly effective to carry over to the others.
The same goes for theorems and counterexamples.
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We also show that other algorithms, such as the hybrid Monte Carlo method,
orientational bias Monte Carlo, multiple try Metropolis, have a common
structure that is an elaboration of the structure of hit and run, and that
parallel tempering, the product replacement algorithm, and the differential
genetics algorithm have a common structure that is a further elaboration.

Our unification proceeds via a natural generalization of the hit and run
algorithm. The original procedure may roughly be described as follows: Let
7(x) be a probability density on a d-dimensional Euclidian space. To sample
from 7, run a Markov chain: From x select a point uniformly on the unit
sphere centered at x. Choose a point z on the line determined by z and y
from the density 7 restricted to this line. The resulting Markov chain, ‘from
x go to z’, has 7 as stationary distribution on the whole space. The algorithm
hits a point on the sphere and runs in that direction.

In section 2, we review the growing literature on hit and run and offer a simple
abstraction. We work in a general space that may be discrete, curved, or
infinite dimensional. The lines of Euclidian space are replaced by generalized
‘lines’ (essentially arbitrary subsets). The uniform choice on the sphere is
replace by a general choice, and the choice of z on the line is replaced
by a general step of an appropriately chosen Markov chain. A contingency
table example illustrates the speed ups possible. The Gibbs sampler and slice
sampling are shown to be special cases.

Here is an example of hit and run in a statistical setting. It is well known that
the usual unbiased estimate of the covariance matrix of a multivariate normal
distribution, in p dimensions based on a sample of size n, performs poorly if
p is at all large (e.g. even for p greater that 5). The currently accepted best
estimator is a formal Bayes estimator based on a reference prior suggested by
Yang and Berger (1994). The estimator is given as the mean of the posterior
on the cone of p X p positive definite matrices. Yang and Berger carry out its
computation by using the hit and run algorithm.

Auxiliary variables and data augmentation approach Markov chain design
by introducing an auxiliary space and then constructing a Markov chain
that alternates between these two spaces. Both approaches have generated
a rich literature reviewed in section 3. If the ‘lines’ of hit and run algorithms
are viewed as auxiliary variables, hit and run may be seen as a special
case. Conversely, we show how to use auxiliary variables to define ‘lines’
in the original space so that hit and run procedures are equivalent to
auxiliary variable algorithms. The Swendsen-Wang block-spin dynamics was
the motivation for auxiliary variables. We illustrate the method with a fresh
example using ranking data.

Despite the theoretical equivalence of these various methods, the ways of
thinking that motivate them can be very different. The ‘mindset’ of data
augmentation is missing data. This is very different from the mindset of
Swendsen-Wang, and these two are different again from the geometric mindset
of hit and run. We hope that adding a geometric view to data augmentation
and auxiliary variables helps in their understanding. Many similar points are
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made in the textbook account of Liu (2001), an excellent overview of Monte
Carlo from a statistician’s perspective.

This paper was presented as the Sixth Lucien Le Cam Lecture at the annual
meeting of the Société frangaise de Statistique (2006). Le Cam was a long
time friend and colleague through the close connection between Berkeley and
Stanford. Le Cam built a true theory of statistics based on asymptotics. This
is wonderfully surveyed in Van der Vaart (2002).

The present project is an attempt to make sense of the zoo of Monte Carlo
techniques. Viewing them in Le Cam’s aura, it is natural to ask for more.

e Is there a way to interface asymptotics with the computer to make a
relevant theory? Of course, we use simulation in just this way to judge
if asymptotic distribution theory is relevant to small or medium size
samples. The idea here is to use the mathematics behind basic theorems
of probability to design more efficient Monte Carlo algorithms. First steps
in this direction are developed in Diaconis and Holmes (2004). See also
Blanchet and Meng (2007).

e Is there a statistical theory that would allow the analysis, comparison, and
interpretation of the huge data bases that are currently available? Google’s
translation programs offer hope for something like this. They found that
linguistic theory was a hindrance to successful translation and that clever
use of available translation is much more successful.

e Is there a theory about efficient generation or efficient use of Monte
Carlo? Most statisticians use quite naive method of moments estimators
to process their Monte Carlo output. Work of Kong et al. (2003) and
of Diaconis, Holmes, Reinert, and Stein in Diaconis and Holmes (2004)
suggests other procedures. Perhaps now is a time to make a theoretical
base for these choices. The “bit counting”’, “complexity” approaches do
not seem particularly relevant.

We are sorry not to have Lucian’s amazing mathematical skills and wise
counsel for the trek ahead.

2. Hit and run algorithms

This section presents a review of classical hit and run algorithms (sec. 2.1),
an extension for countable state spaces (sec. 2.2), examples (sec. 2.3), and an
abstract extension (sec. 2.4).

2.1. Literature review

The basic hit and run algorithm for generating points from an essentially
arbitrary probability density on a high dimensional euclidian space was very
clearly described in Turcin (1971). This same paper very clearly describes
the Gibbs sampler in essentially its modern form. These references appear in
Borovkov (1991), which gives a novel auxiliary variables method for generating
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points from the uniform distribution on the boundary of a compact convex
set in a Euclidian space. See Comets et al. (2007) for more on this. The basic
hit and run algorithm was independently introduced for generating uniform
points in a compact convex subset of a Euclidian space by Boneh and Golen
(1979) as a way of eliminating needless constraints in optimization problems.
Independently, Smith (1984) studied the procedure as a sampling algorithm
and proved geometric convergence in total variation. Belisle et al. (1993)
introduced the extension to general densities f and proved basic convergence
results. Further extensions and a careful review of the literature appear in
Belisle et al. (1998). Among other things, this paper allows the choice of lines
to be driven by a Markov chain. Some comparisons of hit and run with other
algorithms are given by Chen and Schmeiser (1993). For a textbook account
of hit and run, see Chen et al. (2000)

The rates of convergence discussed above often have bad dependence on di-
mension, even though practice seems to show good behavior in high dimen-
sional problems. A breakthrough here was achieved by Lovasz (1999). This
work is refined and extended in recent work of Lovasz and Vempalla (2003,
2006). Among many other things, they show that if f is a log concave density
in a d-dimensional Euclidian space, a version of the hit and run algorithm
converges to f in order d®t¢ steps. Their ‘version’ involves making an affine
transformation (which they explain can be efficiently found) to ‘round the
problem’ and beginning with a ‘warm start’, e.g. the initial step is drawn
from a density not too far from f (again they explain how this can be achieved
efficiently).

Of course, log concave densities are basically unimodal, and the problem of
understanding how hit and run algorithms behave in the many natural multi-
modal problems that appear in applications is for the future.

The proofs of the convergence results above contain useful lessons for conver-
gence in parallel domains discussed below. For example, the first convergence
results in Smith (1984) use the basic Doeblin technique of minorization. While
this is usually useless for Markov chains making local moves, the chains here
make global moves and the required minorization is easily established. The
lesson learned from this is applied to bounding rates of convergence of the
Burnside process (cf. section 3.4 below) in Diaconis (2003). Perhaps the im-
provements due to Lovasz and coworkers can be similarly adapted.

2.2. A generalization of hit and run algorithms (countable case)

Let X be a finite or countable set. Let w(x) > 0, > m(x) = 1 be a probability
measure on X. We construct a Markov chain on & with stationary distribution
m. Three ingredients must be specified.

(2.1a) Let {L;}ic; be non-empty subsets with U;e;L; = X. Suppose I is at
most countable. Define I(z) ={i € I:xz € L;}.

(2.1b) For each z, let wy(-) be a probability distribution on I(z). Suppose
wy (i) > 0 for all ¢ € I(x).
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(2.1c) For each i € I, let K;(z,y) be a Markov kernel on L; with stationary
distribution proportional to 7(z)ws ().

ProprosITION. — For X countable and {L;}icr, wy(i), K;(x,y) defined by
(2.1), the composite chain

K(z,y) = Zwm(i)Ki(%y) (1)

has 7 as a stationary distribution. In (1), K;(x,y) = 0 ify ¢ L;, and w, (i) = 0
ifi ¢ I(x). So the sum is over all i.

Proof. —
Y w@)K(zy) =) () Zwi(x)Ki(w,y) = ZZW(x)wx(i)Ki(xvy)

= m(y)wy(i) = n(y)

i

It is easily shown that if the kernels K;(-,-) are reversible, then K(-,-) is
reversible.

Remarks. — 1) The L; replace the lines of the original hit and run chain,
and the w, (i) replace the uniform distribution on the sphere. Condition (2.1c)
shows how the stationary distributions have to be chosen so that the combined
procedure works out.

2) One choice that always works out is K;(z,y) = Z; ' (y)w, (i) for z,y € L;
with Z; a normalization constant. In many cases, |{i : € L;}| = k for all .
Then w, (i) = 1/k is a possible choice (below we shall refer to such weights as
balanced) and any K; reversible with respect to m on L; (e.g. via a Metropolis
chain) may be chosen. Arguments in Diaconis, Holmes, and Neale (2000) and
elsewhere show that working with non-reversible chains may be useful.

3) For any of these choices, irreducibility and aperiodicity must be checked.

4) The analogy with hit and run should not hide the extreme generality of
this class of procedures. For example, let K(z,y) be any Markov chain on
X with 7 as stationary distribution. Let L; = X and w,(¢) = 1. Then the
construction gives K(z,y).

5) Kiatsupaibul et al. (2002) developed a version of hit and run for sampling
from bounded distributions supported on a d-dimensional lattice. They choose
‘lines’ by generating them by a random walk and construct an appropriate
Markov kernel for each line using the Metropolis algorithm. They are able to
prove that order d° steps suffice for convergence for a simple special case.
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2.3. Examples
A. Contingency tables and discrete exponential families

Let X be the set of all I x J arrays with non-negative integer entries, fixed row
sums r1,79,...,7r; and column sums ci,co,...,¢;. Let m(x) be the uniform
distribution on &. The problem of generating from 7 was independently
introduced by Darroch, Aldous, and Besag-Clifford. It is carefully studied in
Diaconis and Sturmfels (1998) which contains extensive references. See also
Diaconis and Gangolli (1994), Chen et al. (2005), and Cryan et al. (2006),
which document the improvement possible. To use the hit and run algorithm,
pick a pair of distinct rows (7,4') and a pair of distinct columns (4, ). For
z € X, let L(z;4,i';4,5') be all tables in X equal to z except at coordinates
(4,7), (4, 4"), (7, 7), (', j"). The tables in the ‘lines’ indexed by I(z) consist of
all tables that differ from z in four such entries, and

- () (2)

The weights w,,(-) may be chosen uniformly (or in any other way so that all
possibilities are positive). It is easy to choose from the uniform distribution
restricted to L(z, 4,4, j, j'). Just choose the (7, j) entry uniformly in its allowed
range. This determines the remaining three variable entries. More specifically,
suppose the 2 x 2 table determined by z in the four positions is

a b

c d
The row sums of this table are s; = a + b and s; = ¢ + d. The column sums
are t1 = a + ¢ and to = b+ d. Choose o’ uniformly in ¢ < o/ < u, with
¢ = max(s; — t2,0), u = min(sy, t2).
In the discussion above, m was taken as uniform. Usually in statistical work,
one wants to generate from the hypergeometric distribution. While this is easy
to do in the two-way table example [Diaconis et al. (1999)], it is useful to note
that the hit and run technique works easily here as well. Proceed as above,
but sample the (i, 7) entry from the hypergeometric distribution for the small
table. Diaconis and Efron (1985) and Diaconis and Sturmfels (1998) discuss
a variety of related statistical tasks for discrete exponential families (logistic
regression, higher way tables, permutation data). For each of these the analog

of the J_r _T_ moves are given using techniques from computational algebra.

Now, the hit and run idea may be applied to all of these examples.

B. The Metropolis algorithm with single particle moves

Let X = [[I, ;, with X; a finite set with |X;| points. Let the desired
stationary distribution be proportional to f(z1,...,2.). With the current
state being x, the single particle move Metropolis algorithm generates the

10
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next state y by picking ¢ uniformly in {1,2,...,m}, picking «} uniformly from
X;\{z;}, replacing x; by a} with probability

max [f(T1, . Ti 1,5, Tiv1s -y Tim) [ F (X1, s Tm), 1]

and otherwise not making a replacement. The result is y.

This may be seen as a special case of hit and run, taking as ‘lines’
L.i={(i,. - .syn) iyyp =2p,nF# i} for z€ X and i € {1,2,...,m}

There are exactly m lines containing a point . Choose w, (i) = 1/m and the
kernel K ; as

1
K. i(z,y) = e (f(y)/f(2),1) fory #a, x,y € L.,
K, i(z,z)=1— Z K(z,y') forz € L, ;

y' (Fx)EL-

The Metropolis algorithm with single particle moves is perhaps the most
widely used Markov chain algorithm for computer simulations of matter in the
physical sciences. The version given here is appropriate for spin systems and
interacting particles on lattices, but it can easily be generalized to particles
that have coordinates that are real numbers.

C. The Gibbs sampler/Glauber dynamics

The algorithm for the Gibbs sampler is the same as that for the Metropo-
lis algorithm with single particle moves, except that x} is sampled from
’/T(iL’HCL’l,ZEQ, ey Zi_17$i+1, e ,ZL’m).

Thus, it too may be seen as a special case of hit and run, with the same
interpretation of lines as for the single particle move Metropolis algorithm.

There has been extensive practical development of the Gibbs sampler [Liu
(2001), Chen et al. (2000)] and much theoretical development. See Diaconis
et al. (2007, 2007A) for a recent survey. Perhaps, some of these insights can
be carried over to the more general hit and run chains described above.
For example, there has been some comparison of the random scan chains
with systematic scan chains that run through the m coordinates in order.
While definitive results are scarce [Dyer et al. (2006), Diaconis and Ram
(2000)], when things can be proved, surprisingly the two scanning strategies
are equivalent.

It is worth noting that for the hit and run chains delineated in remark 2 of
section 2.2, hit and run is exactly a two component Gibbs sampler on the

11
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product space X x I for the joint distribution 7(z)w, (7). Thus, some of the
mathematics of Diaconis et al. (2007B) and Berti et al. (2007) for stochastic
alternating projections may be used to prove convergence for Gibbs samplers.

The Gibbs sampler is ‘balanced’: each point is contained in exactly m lines.
Here is a similar, but different, example. Let X be a countable set. Let I be
a collection of non-empty sets ¢ such that each point is in exactly m subsets
in I. If X is finite and all subsets in I have the same size, I is a block design.
Choose w, (i) = 1/m and K;(z,y) = w(y)/7(i) for ,y € i. Clearly (2.1) is
satisfied.

Ifx=1{0,1,2,3,...} and
I ={{0,1},{0,2},{1,3},{2,4},{3,5},{4,6},...},

the conditions are satisfied, with m = 2. If ¥ = {0,1,2,...,n — 1} and
I={(—-1,74+1),0<j<n-—1,coefficients modulo n}
and ,
w(j+1)
AG-D G+ 1)
m(j—1)
m(j =1 +7(i+1)’
the resulting Markov chain is Barker dynamics applied to nearest neighbor
walk on the circle.

K141 +1) =

K111y - 1) =

D. An unbalanced example

All of the examples above are balanced. Here is a family of unbalanced
examples suggested by Harry Kesten (personal communication). Let X = Z3.
Take the lines for the generalized hit and run algorithm to be all lines parallel
to the coordinate axes. Let © = (x1,22,23). Then z lies on three lines, say
fl, fz, (3 Take

wy (1) = Pa(x2) + ¢3(x3) (2)
wy(l2) = ¢1(z1) — ¢3(3) (3)
we(l3) =1 — ¢1(w1) — da(z2) (4)

for arbitrary functions ¢1, @2, ¢3 : Z — [0,1] such that the three right sides of
(2)-(3) are always positive. For example

1+ sinx 1+ sinx 1+sinx
d1(z) = 4_170, P2 = +T’ ¢3(z) = +470
Observe that w,(¢) only depends on ¢, not on z; that is, if ¢ lies on both
x = (r1,29,23) and on &’ = (2], xh,z}), then w,(¢) = w, (¢). This means
that the w,(¢) factor in (2.1c) cancels out and Ky(z,y) can be chosen as
any Markov chain on ¢ with 7 as stationary distribution. For example,
Ky(x,y) = n(y)/m(¢) is a possible choice.

12
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2.4. An abstract hit and run algorithm

In this section we write out a version of the hit and run algorithm for abstract
spaces. The ideas are the same as in the finite case but the notion is more
opaque. This section can be skipped on a first reading, since the rest of the
paper does not depend on it.

Let (X,B) and (Z, M) be measurable spaces. For each i € Z, let L; be a
measurable subset of X (i.e. L; € B) with (x,i) — 0, (z) B x M measurable.

Let w,(di) be a kernel supported on {i : € L;}. Thus, for fixed x, w,(7) is
a probability measure on {Z, M}, for M € M , the map taking = to w, (M)
is B measurable, and

JRACIOR 5)
T

Let m be a probability measure on {X,B}. Together, 7 and w, define a
probability P on {X x Z,B x M}:

P(A, M) = /A wa(M)m(dz) (6)

This has marginal v(M) = P(X,M). Assume that P admits a regular
conditional probability on X' given i. This is a kernel ;(dz) with

P(A, M) = /B T (A)v(di). ™)

Finally, let K;(z,dy) be a Markov kernel on {X, B} with stationary distribu-
tion ;.

K(z, ) = / 51, Ky, AYwa(di) (8)
I
ProposiTION. — With notation as in (5) (8) above, the kernel K(x,A) in (8)
admits 7 as a stationary distribution: m( fX m(dx).

Proof. — For A€ B

/Kﬁv A)m / U op,(x A) x(di)] m(dz)
/ { / O, (x)Ki(x A)m(dw)} v(di) 2 / [ / o, (x wz(da:)} v(di)

( (5)
/A 161, (2w ()] w(d) L m(A)

Example (the original hit and run). — Let X = R?% with its Borel sets.
Let Z be the family of all lines in RY. Let p be any measure on the unit
sphere S¢~! and pick a line through = € R? by first picking a point y on
S9! and then using the line through = and z 4 y. This induces a measure
wg(di). Suppose for definiteness that 7 has a density f(z) which is positive

13
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everywhere. Then restricting f to L; gives m; and any Markov chain with this
stationary distribution will do.

Example — feature walks. — In this example, the ‘lines’ are the level sets of an
arbitrary collection of functions {T;};cz. If T; is thought of as ‘feature i’ the
walk proceeds by choosing a feature of the current state x and then changing x
(preserving the feature). More formally, let (X, B) be a measurable space. Let
(Z, M) be a measurable space. Suppose for each ¢ € 7 there is a measurable
space (i, B;) and a measurable map T; : X — ;. The maps (i,z) — T;(x)
are (B x M) measurable.

Let 7 be a probability on (X, B) and @Q; a proper conditional probability for
7 given T;. Recall that @; is thus a real valued function Q;(x, A) from X x B
such that:

(1) For each z € X, Q;(x,-) is a probability measure on B.
(2) For each B € B, Q;(-, B) is B; measurable (T, C B;).
(3) For every Ac A, Be B

AQmquwm:wmmB>

4)Forze Aec A, Q(z,A) =1.

This classical corner of measure theoretic probability is carefully discussed in
Breiman (1968). It is known that regular conditional probabilities satisfying
properties (1)-(3) exist when the spaces X and 7 are complete separable metric
spaces. Further, property (4) can be assumed at m—almost all points of X.
Blackwell and Ryll-Nardzewski (1963) show that in present circumstances, the
exceptional null set cannot be removed. Sufficient conditions for everywhere
proper conditional distributions are that the range of T; is a Borel set and
that all sections T, *(y) are o-compact.

Going back to algorithms, suppose w(di) is a probability on (Z, M) and for
each i, we are given a kernel K; : X x B such that for each z € T, '(B;),
K;(z,-) is a probability on T, ' (B;) and the kernel has Q;(-) defined above as
stationary distribution. Define

mezzmm@mw> (9)

ProPosITION. — The kernel (9) has m as stationary distribution.

Proof. — This is a special case of the proposition above. Here, the choice of
lines does not depend on x.

14
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3. Auxiliary variables, data augmentation, slice sampling,
and Burnside processes

The four algorithms in the title of this section are each well developed sets
of tools with real applications, some theory, and a number of practical tricks
that allow them to work well in real circumstances. Seen at a distance, they
look quite different. The purpose of this section is to present simple versions of
each and show that they are essentially the same as the hit and run algorithm
of section 2. Throughout we work in finite spaces. The extension to general
spaces follows through the equivalence, from section 2.4.

3.1. Auxiliary variables

Let X be a finite or countable set, w(z) > 0 a probability on x. The job is
to invent a Markov chain to sample from 7(z). Introduce a set I of auxiliary
variables. For each ¢ € I and each z € X, choose a proposal kernel w, (i) > 0,
such that )  w,(¢) = 1 and for each ¢ there is at least one x such that
wy (i) > 0. These ingredients define a joint probability f(z,7) = m(x)w, (i) on
X x I. To proceed, for each ¢, a Markov chain K;(x,y) with stationary density
f(x]?) must be specified. The auxiliary variables algorithm is: from z, choose
i from w, (i) and then take a step from K;(x,y). This is regarded as one step
in the chain on X. The total kernel is given by

K(.’E,y) = wa<z)Kl(m7y) (10)

The calculation in the Proposition of section 2.2 shows that the chain K (z,y)
has m(z) as stationary distribution.

Moreover, it is straightforward to show that if the chains K; are reversible,
then K is reversible.

The structure of this algorithm closely parallels that of the generalization of
hit and run in section 2.2, and the notation for auxiliary variables has been
chosen to emphasize the similarity. The only difference between the two is
that in the generalized hit and run algorithm, the objects ¢ are labels for
non-empty subsets of X whose union is X', whereas in the auxiliary variables
method the nature of the auxiliary variables i is unspecified. From this it is
clear that the generalized hit and run algorithm can be regarded as a special
case of the auxiliary variables algorithm. Conversely, if, within the context of
the auxiliary variables method, we define L; for i € I as L; = {z : w,(i) > 0},
then the auxiliary variables method satisfies the condition of the Proposition
in section 2.2 that defines the generalized hit and run algorithm and therefore
is a special case of hit and run.

Thus the two types of algorithm are equivalent. However, as shown below, the
examples and mindset associated with the two approaches are quite different,
and it takes some mental adjustment to translate between domains.

Auxiliary variables was introduced as an abstraction of the Swendsen-Wang
algorithm [Swendsen and Wang 1987)] by Edwards and Sokal (1988). The
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simple presentation given above follows Besag and Green (1993). Many
examples and variations are given in the readable account of Higdon (1998).
Extremely effective use is made of these ideas in a paper by Damien et al.
(1999). Their applications are to a variety of Bayesian computations, and the
basic method above are developed and extended.

To get a flavor for the subject, consider the problem of sampling from an
exponential distribution:

d
m(x) =27 By, Ba) | D BTy ()
j=1
with X a finite set, §; fixed numbers, T;(x) real valued functions, and
Z~Y(B4,...,B4) a normalizing constant. Let I = [0, 00)?. Let
w, (i) = the uniform distribution on {7 :i; < e%Ti(®) 1 <5 <d}.  (11)
Now f(x,4) is uniform on its support
{(z,i) i, < PTW 1 <5 <d}
Thus, one simple choice for K;(z,y) is
K;(z,y) = the uniform distribution on {y:i; <e»TiW 1< j<d} (12)

This leads to the following composite chain.
(i) From z, pick ¢ uniformly as in (11).
(ii) From ¢, pick y uniformly as in (12).

Step (i) is easy. Simply choose independently from the uniform density on
[0,e%T5(*)], Step (ii) may be extremely difficult. One of the discoveries of
Edwards-Sokal (and Swendsen-Wang before them) is that for some problems
step (ii) is easy as well.

The original example involves an undirected graph on n vertices, assumed
connected with no loops or multiple edges. Fix an integer ¢ > 2, and let X be
all functions from the vertex set to {1,2,...q}. For § > 0, set

m(w) = 271 (B)e” 2 T
where the sum is over edges e in the graph and

Te(z) =1 if z; =z, for e = (i,7)
=0 ifx; #x; for e = (4,)

Thus, if 5 is large, w(x) concentrates on colorings with big clusters of the same
color. The auxiliary variables algorithm now specializes to the well known
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Swendsen-Wang block spin dynamics. For simplicity, we restrict attention to
the case of ¢ = 2.

The first step in the algorithm outlined above requires assigning a real random
number to each bond. The number for a bond is uniformly distributed between
0 and 1 if the vertices at the two ends of the bond have a different color and
uniformly distributed between 0 and e (which is greater than 1) if they have
different color. These random variables are the auxiliary variables. The second
step requires assigning new colors to the vertices, such that: 1. if an edge has
an auxiliary variable whose value is greater than 1, both vertices attached to
the edge are assigned the same color; and 2. all such assignments consistent
with these requirements are equally likely to be chosen. Auxiliary variables
with values less than unity have no influence on the probability of the final
coloring. The auxiliary variables chosen for bonds whose vertices have different
color are all equal to or less than unity, so they don’t even have to be assigned.

The steps in the algorithm then become:

(A) Given a coloring x, consider the subgraph of the original graph with an
edge between two vertices if and only if there is an edge connecting them in
the original graph and they are assigned the same color in x.

(B) For each edge in this subgraph, flip a coin with success probability
1/(1 + €%). (This is the probability that the auxiliary variable for this edge
is less than or equal to 1.) Erase the edges in the subgraph where successes
occur. This gives a new subgraph.

(C) Partition the vertices of this new subgraph into disjoint clusters, with two
vertices in the same cluster if and only if they are connected by a path in the
new subgraph.

(D) For each cluster, assign all vertices in the cluster the same color (zero or
one) with probability 1/2. The choices are independent from cluster to cluster.

This produces a new coloring z’. The algorithm is capable of changing whole
blocks at a time and is thus called “block spin dynamics” in the literature.

For further details and many useful bells and whistles (e.g. an external field
and different g, for different edges), see the developments in Higdon (1998).

One point to be drawn from the above example is that auxiliary variables
seems quite distinct from hit and run algorithms. Here is a second fresh
example where the updating in step two can be done efficiently.

Example: Mallows model for permutations. — In a seminal paper, Mallows
(1957) introduced a natural family of nonuniform distributions on the per-

mutation group S,,. These models have a location parameter oy and a scale
parameter 0 > 0. Then, one instance of Mallows’ model is

(o) =2"7" <—ﬂz (o(i) = oo(i))2> (13)
i=1

When = 0, this is the uniform distribution. For § > 0, this model assigns
highest probability to o¢ and falls off exponentially. Mallows derived these
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models from a more general scheme. Nowadays, the models are used to fit
data as simple natural alternatives to the uniform distribution. For more
references and development, see Marden (1995), Diaconis (1988), Diaconis
and Ram (2000).

We here address the problem of sampling from the model (13) when n = 52.
Without essential loss, take o (i) = ¢ in the rest of this section. Rewrite (13)

(o) =271 (ﬁZw(z))

To proceed via auxiliary variables, introduce positive variables uy, us, ..., Un,
with u; chosen independent and uniform on [0, ePi7@] 1 < j < n. Let
u = (uy,us,...,u,). The joint distribution of ¢ and w then is uniform on

{o,u:u; <eP70) 1 <5< n}

The two step algorithm becomes: Given o, choose u; as above. Given u, choose
o € S, uniformly on

o log u,;
. Bio(5) ; J oy,
u; < e or o(j) > ——:=b;
Bj

This last step is easy to do: Look at places j with b; < 1 and place symbol 1 at
a uniform choice among these. Look at places with b; < 2 and place symbol 2
in a uniform choice among those (with the place where 1 was placed deleted).
In general, look at places j with b; < k. Of these k£ — 1 will be occupied. There
will always be one or more available. Choose uniformly among these and place
k there.

Numerical example of Mallow’s model. — Take

n
following calculations result from a single step from o = (

j 1 2 3
eU) 403 580 403
w; 29 1500 200
b, 1.68 1.83 0.88

Thus symbol 1 must be placed third but then symbol 2 can be placed second
or third. For a proof that this always works see Diaconis et al. (1999). This
algorithm has an elegance and appeal that suggests it will move around
much faster than a Metropolis type algorithm based on random transposition.
However, when, e.g., n = 52 and § = 1, starting at the permutation
o(1) = n+1—i we found the time needed to move symbol n down to positions
near 1 impossibly long.

Comment. — One of the most interesting discoveries about the Swendsen-
Wang algorithm is that in problems with phase transitions at a critical
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temperature, the algorithm can mix extremely slowly, right at the critical
temperature. This was first demonstrated for the mean-field Ising model in
work of Gore and Jerrum (1999). More convincingly, work of Borgs et al.
(1999,2004) shows slow mixing for the usual Ising model on a two-dimensional
lattice and elsewhere. This work is continued in Galvin and Tetali (2004). It
seems like a fascinating project to carry these counterexamples over to other
instances of hit and run. One instance of this is described in our section on
the Burnside process (sec 3.4).

The developments of this section suggest several research projects: under-
standing what kinds of problems allow efficient implementation of step (ii),
and understanding when these algorithms mix rapidly.

Example: Switching between different Markov kernels. — A simple, well
known application of auxiliary variables comes from switching Markov chains
with the same stationary distribution. Let X be a countable space, and let
Ki,Ks, ..., K, be a Markov kernels each of which has 7(x) as a stationary
distribution. One or more or perhaps all of the K; might be a reducible
chain and have more than one stationary distribution. Nevertheless 7(x) is a
common stationary distribution for all of them. Choose a probability w(i) > 0
for all i such that ) . w; = 1. Then K(z,y) = >, w(i)K;(x,y) is a Markov
kernel that has the desired stationary distribution, and if the collection of
K; are chosen properly, the resulting chain will be irreducible and have a
unique stationary distribution. The algorithm is: from z, choose i from w(7),
then choose y from K;(z,y). This is a strategy used in the physical sciences
for constructing irreducible Monte Carlo algorithms with a desired stationary
distribution [for example, see Andersen (1980), Ceperley (1995)]. Mixing in
random cuts when shuffling cards is a more familiar example.

3.2. Data augmentation

This method is widely discussed and implemented, so our treatment will be
brief. The original paper by Tanner and Wong (1987) is still most useful and
readable. This may be supplemented by the comprehensive discussion of Van
Dyk and Meng (2001). Finally, the textbook account of Liu (2001) is highly
recommended.

The idea of data augmentation can be easily understood through the following
simple example. Consider carrying out a Bayesian analysis of corrupted
data obtained from n independent samples from a k-category multinomial
distribution. Before the sampling is carried out, the possible locations of
an object, which are cells labeled 1 to k, are partitioned into subsets. A
partition is created for each of the n objects. Let sg.l] be the jth subset in
the partition created for object i. Then the n objects are randomly and
independently placed in k cells according to a multinomial distribution with
parameters 61, ...,0;. The actual location of object ¢ is z;, with 1 < i < n
and 1 < z; < k. However, this information is not available to the person doing
the analysis. Instead, for each particle ¢ the person is told not x; but only y;,
which is the label of the subset of cells in which object 4 is located. (In other
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words, y; is reported for particle i if x; € s[yz]) There is a prior distribution
7w(01,...,0k) for the k-multinomial parameters. The object is to compute or
approximate the posterior probability of 6,,..., 60 given y1,...,y,, which is
denoted 7(0|y1, - .-, Yn)-

Data augmentation is easy to implement for this example. Begin with a
preliminary guess, §°. With this fixed, for each y;, choose an actual observation
x; in y; from the multinomial distribution whose parameters are #°. Thus
if y; = {1,3,6}, ¥; = 1 or 3 or 6 with probabilities 69/(69 + 69 + 62),
09/(09+609+62), 02 /(69 + 69 +63). With these x; fixed, compute the posterior
7(f|z1,...,2,) and then sample 1) from this, iterating the procedure.
The empirical measure of the Markov chain 6°, 61, 92 ... converges to
m(0y1, Y2, Yn)-

It is easy to relate this to the hit and run algorithm of section 2, or to auxil-
iary variables. The measure to be sampled from is 7(0|y1,...,¥yn). The aux-
iliary variables are the z1,...,z, that are compatible with (y1,...,y,) and
0. wy(xy,...,xy,) is specified by the conditional multinomial. The original
formulation takes K (0,0") = n(¢'|x1,...,2,) but in more complicated prob-
lems this sampling step may be complicated to carry out. The developments
in section 2 show that K,(6,0) may be taken as any Markov chain with
w(0|x1,...,x,) as stationary distribution.

Again, despite the similarities, the mindset of data augmentation is usually
Bayesian missing data problems, which seem far removed from the geometric
picture of hit and run. There are many further ideas around data augmenta-
tion in the literature cited above. It seem worthwhile to see if and how these
can be carried over to other domains.

3.3. Slice sampling

Perhaps the simplest version of auxiliary variables has come to be known as
‘slice sampling’. Since this topic has recently been reviewed by Neal (2003)
in a discussion paper with much expert commentary, we will again be brief.
Let f(z) be a (perhaps unnormalized) probability density on a d dimensional
Euclidian space. Introduce a real valued auxiliary variable ¢ and consider the
region

{(2,8) : 0 <0 < f(a)}
Choose a point (z*,7*) from the uniform distribution on this region. Simply
neglecting ¢* yields z* distributed according to the normalized version of f.
This can be done by an alternating algorithm.
e From z, choose ¢* uniformly in [0, f(z)].

e From *, choose z* uniformly from {y : i* < f(y)}.

As above, the z-step can be taken instead from any Markov chain that
preserves normalized Lebesgue measure. Neal (2003) and the discussants
suggest a variety of clever ways to make this choice efficiently while having
only limited knowledge of f. Roberts and Rosenthal (1999) have provided
some theoretical underpinnings (including geometric ergodicity results) for

20



HIT AND RUN AS A UNIFYING DEVICE

the most elementary variants; like so many parts of this subject, analysis of
any variant in practical use remains an open research problem.

3.4. The Burnside process

This is a small topic, much less important than the ones above. It is mentioned
here because it seems so different from the others and there are many easy to
state open problems. Let X be a finite set and G a finite group acting on X
as permutations. This action splits X into disjoint orbits.

X = UZL:IOZ‘

where x and y are in the same orbit if y = 29 for some g (the image of = under
g is denoted z79). The problem is to choose an orbit uniformly at random.

Since this is not standard statistical fare, a few examples are in order.

Example 1. — Let X be the set of all trees on n labeled vertices. A classical
theorem of Cayley shows that |X| = n"~2. For example, when n = 3, there are
3 distinct trees. Let G be the symmetric group S,, acting on X by permuting
the labels on the vertices. The problem now becomes choosing an unlabeled
tree uniformly. (When n = 3 there is only one unlabeled tree. When n = 4
there are two.)

Example 2. — Let X = G with G acting by conjugation 29 = g~ 'xg. The
orbits are conjugacy classes. When & = G = §,,, the permutation group of n
objects, the conjugacy classes become the partitions of n. (When n = 4 there
are five partitions: {4}, {3,1}, {2,2}, {2,1,1}, {1,1,1,1}.) The problem is to
choose a random partition.

The Burnside walk was invented by Jerrum (1993) and studied by Goldberg
and Jerrum (2002). See also Diaconis (2003). It uses an alternating process
on X and G.

e From z, choose g with 29 = x uniformly.

e From g, choose y with y? = y uniformly.

The transition density K(z,y) for this chain is reversible with stationary
distribution proportional to 1/|0,|, with O, the orbit containing x. Thus,
running the walk “until convergence” and reporting the orbit containing the
last state of the chain gives a way of (approximately) choosing a random orbit.

To see this as a hit and run algorithm, define a line in X for each element
g € Gas Ly = {x : 29 = x}. The set of lines containing x is G, = {g : 29 = x}.
Following the notation of section 2.2, let w,(-) be the uniform distribution on
G, and let K (z,-) be the uniform distribution on Xj.

By using the correspondence with the Swendsen-Wang algorithm for the Ising
model, Goldberg and Jerrum (2002) were able to find examples where the
Burnside process mixes slowly. Aldous and Fill (2007) and Diaconis (2003)
studied the walk when X is the set of n-tuples with entries from {1,2,...,k}
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and G is the symmetric group S,, permuting coordinates. A random choice of
orbit then becomes a sample with Bose-Einstein probabilities. Here, the walk
mixes extremely rapidly. All other examples are open research problems.

4. Generalizations of the auxiliary variables method

4.1. First generalization

Although the generalized hit and run method (or equivalently the auxiliary
variables method) described above defines a large class of currently used
Monte Carlo methods for sampling from a desired probability distribution
m(x), methods have appeared in the literature that are similar to these
methods but that are in fact not equivalent to them. Here we describe such
a generalization of hit and run/auxiliary variables algorithms. It seems more
natural to use the auxiliary variables language as a basis for the discussion,
and the following discussion of what we call the generalized auxiliary variables
method closely parallels the definition of the auxiliary variables method in
section 3.1.

Let X be a countable set. w(xz) > 0 a probability on z. The job is to
invent a Markov chain to sample from 7(z). Introduce a set I of generalized
auxiliary variables. For each ¢ € I and each x € X, choose a probability

wy(7) > 0, such that ), w, (i) = 1. These ingredients deﬁne a joint probability
f(x i) = W(x)ww( ) on X x I. To proceed, a Markov chain k(z,i;y,j) on X x I,
with stationary density f(z,4), must be specified.

The generalized auxiliary variables algorithm is: from z, choose i from w, (),
take one Monte Carlo step using K;(z,%;y, j), discard the j value, and regard
y as the next point in X'. This is regarded as one step in the chain on X. The
total kernel for the resulting chain on X" is then

Cf. Eq. (10).

It is easily shown that 7(x) is a stationary distribution for this kernel.

> (@)K (x,y) Z sz k(z,i;y,7)
—ZZ k@, iy, ])
= ZT" y wy .7 = 7"-(y)

Moreover, it is easily shown that if k(-,-;-,-) is reversible, then K(,-) is
reversible.

For the special case that k(z,4;y, ) is of the form
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the kernel in (14) for the generalized auxiliary variable method is exactly of
the same form as the kernel for the auxiliary variable method (10) with exactly
the same choice of auxiliary variables in the two methods. Thus, the auxiliary
variable method can be regarded as a special case of the generalized method.
The important distinction between the two is that in the auxiliary variables
method the auxiliary variables do not change during the step, whereas in the
generalized method they may change during the step.

The question then arises of whether the generalized method is a true general-
ization, or whether, for an arbitrary choice of generalized auxiliary variables,
it might be possible to find a choice of auxiliary variables that generates ex-
actly the same kernel K (-,-). In fact, there are some trivial ways in which this
can always be done. For example, an auxiliary variable method in which there
is only one auxiliary variable can give exactly the same kernel as a correct
generalized method with any number of generalized auxiliary variables. Thus,
this formulation of the question is not a useful one.

The important question is whether the use of the generalized auxiliary
variable method can lead to the development of new algorithms that can
not be developed using the auxiliary variable method, and the answer to that
question is clearly yes.

The Hybrid Monte Carlo method of Duane et al. (1987) is an example of this
generalized method. At each step, the algorithm introduces randomly assigned
momenta that are then associated with the coordinates in x. Molecular
dynamics methods are used to integrate Hamiltonian equations of motion
for the coordinates and momenta for a specified period of time. The result
is used as a proposal step in the space of coordinates and momenta, which
is then accepted or rejected using the Metropolis criterion based on the
stationary distribution of coordinates and momenta. The final momenta are
then discarded, leaving the final coordinates.

Frenkel and Smit (2001) have presented an algorithm they call ‘Orientational
Bias’ Monte Carlo that is, in effect, a special case of the generalized auxiliary
variables method that uses a specific definition of the auxiliary variables. A
generalization of this special case, which is also a special case of the generalized
auxiliary variable method, was discussed by Liu (2001) and called ‘Multiple-
Try Metropolis’. Frenkel et al. (1991) and Consta et al. (1999) have developed
algorithms for performing Monte Carlo simulations of a system of many
flexible interacting polymer molecules. These algorithms are also, in effect,
special cases of the generalized auxiliary variables method.

The trial moves in simulations that use the methods we have just discussed
have a higher acceptance probability than achieved with previous methods,
and the success of the algorithms are based on the use of a generalized
auxiliary variable. There may be other such problems for which the generalized
auxiliary variable method will be useful.

To construct algorithms with the auxiliary variable method, it is necessary
to construct kernels K; that have a prescribed stationary distribution on X.
Similarly, with the generalized method, the kernel k£ must have a prescribed
stationary distribution on X x I. The construction of such kernels can be
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difficult, but a practical method to do this is to ensure that each desired kernel
is reversible for the desired stationary distribution. Frenkel and coworkers
[Frenkel et al. (1991), Frenkel and Smit (2001), Consta et al. (1999)] refer
to the equivalent reversibility condition in their algorithm as the condition
of “superdetailed balance”. The Hybrid Monte Carlo method uses the time
reversal properties of the Hamiltonian equations of motion to prove the
stationarity condition.

4.2. Second generalization

The structure of the first generalization immediately suggests a second gen-
eralization of the auxiliary variables method.

Let X be a countable set, w(xz) > 0 a probability on z. The job is to
invent a Markov chain to sample from 7(z). Introduce a set I of generalized
auxiliary variables. For each ¢ € I and each x € X, choose a probability
wy (1) = 0, such that ), w, (i) = 1. These ingredients define a joint probability
f(z,4) = m(x)w, (i) on X x I. To proceed, a Markov chain k(x,4;y,j) on X' x I,
with stationary density f(z,?), must be specified.

The second generalized auxiliary variables algorithm is simply to simulate the
Markov chain on X x I. The sequence of points in X’ x I that is obtained maps
onto a sequence of points in X. That sequence is not necessarily a Markov
chain. However its limiting distribution exists and is equal 7(x) if the chain
on X x [ is irreducible, since the limiting distribution for that chain must be
m(2)w,(2) in the irreducible case.

The first generalization is a special case of this second generalization, as
can be seen from the following argument. In the second generalization,
suppose each step in the chain on X x I is constructed in the following
way. Let K (z,%;y,7) be a chain with stationary distribution 7(x)w, (7). Let
Ko(z,4;y,j) = dgywy(j). Ko also has 7(z)w,(7) as a stationary distribution.
(Ka(x,i;y,7) is, in fact, a Gibbs sampler that retains = and samples j from the
marginal distribution of 7 given x.) Consider the chain obtained by taking one
step from K followed by one step from K. This chain clearly has 7(z)w,(7) as
a stationary distribution. Let this chain be the k for the second generalization.
Then it is easily shown that the sequence of x values obtained from this
Markov chain in X x I is a Markov chain in X', and this chain is the same
as that obtained using ko in the first generalization of the auxiliary variables
method.

The important distinction between the two generalizations is that in the first
generalization the values of auxiliary variables are discarded at the end of each
Monte Carlo step and are reassigned (conditional only on the new x values)
in the next Monte Carlo step, whereas in the second generalization the values
of the auxiliary variables at the end of one step are carried forward and may
influence the successive step.

Several algorithms in the literature are examples of this generalization. A
variety of algorithms to simulate from a density 7(z) introduce a population
of z; and sample from a measure on the the product space that has m(z) as
marginal. Examples include parallel tempering [Geyer (1991)], which is also
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called exchange Monte Carlo [Hukushima and Nemoto (1996)], the product
replacement algorithm of computational group theory [Pak (2001) for a
survey], and the differential genetics algorithm [Ter Braak (2006)].
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