State-space models for maxima precipitation
Journal de la Société française de statistique & Revue de statistique appliquée, Volume 148 (2007) no. 1, pp. 107-120.

A very active research field in atmospheric sciences is centered around the modeling of weather extremes. This is mainly due to the large economic and human impacts of such extreme events. In this paper, we focus on the statistical temporal modeling of precipitation maxima because daily and monthly maxima have been recorded for many decades and at various sites. Our goal is to propose two new state-space models whose distributional foundations lie in Extreme Value Theory (EVT). Our first model takes advantage of max-stable processes, previously studied by Davis and Resnick (1989), among others. It can be viewed as a “translation“ of the gaussian linear Kalman filter into a Fréchet-type world in which the classical addition a+b has been replaced by the max operator ab=max(a,b) and the noise component is from a heavy-tailed distribution instead of being gaussian. Our second state-space model is built from the mixture extremes framework proposed by Fougères et al., (2006). Its strong points are its flexibility and richness with respect to applications. In addition to addressing the theoretical questions brought by our models, the main benefit of introducing them is to propose simple and powerful connections between EVT and data assimilation communities. The latter term “data assimilation” regroups statistical/dynamical techniques extensively used in climate studies. These procedures involve the combination of observational data with the underlying dynamical principles governing the physical system under observation. Hence, improving our knowledge about the representation of extremes in a state-space model framework is of strong interest from a data assimilation point of view.

La modélisation des événements climatiques extrêmes est aujourd’hui un champ de recherches particulièrement actif, notamment de par l’importance de leurs impacts économiques et sociaux. Dans cet article nous portons notre attention sur la modélisation statistique des maxima de précipitations, car de telles données sont disponibles aux pas de temps journalier et mensuel sur plusieurs décennies et en de nombreux sites. Notre but est de proposer deux nouveaux modèles à espace d’états dont les fondations probabilistes reposent sur la théorie des valeurs extrêmes (EVT en anglais). Notre premier modèle tire parti des processus max-stables, étudiés entre autres par Davis and Resnick (1989). Il peut être vu comme la transposition du filtre de Kalman linéaire et gaussien à un monde de type Fréchet, où l’addition a+b est remplacée par l’opération maximum ab=max(a,b), et où les bruits sont à queue lourde au lieu d’être gaussiens. Notre second modèle se base sur le modèle de mélange pour les extrêmes proposé par Fougères et al. (2006). Sa flexibilité et sa richesse en termes d’applications en sont un atout essentiel. En plus des interrogations théoriques que suscitent nos modèles, leur principal intérêt est de créer des liens simples et puissants entre la EVT et le domaine de l’assimilation de données. Ce dernier regroupe des techniques statistiques et dynamiques abondamment utilisées dans les études climatiques. Ces procédures nécessitent de combiner d’une part des données issues d’observations et d’autre part les principes dynamiques sous-jacents qui gouvernent le système physique à l’œuvre. C’est pourquoi l’amélioration de notre connaissance des extrêmes et de leur représentation dans le cadre d’un modèle à espace d’états est d’un intérêt tout particulier du point de vue de l’assimilation de données.

Keywords: data assimilation, Kalman filter, extreme value theory, generalized extreme value distribution, max-stable state-space model, GEV state-space model
Keywords: assimilation de données, filtre de Kalman, théorie des valeurs extrêmes, distribution généralisée des valeurs extrêmes, modèle à espace d'états max-stable, modèle à espace d'états GEV
     author = {Naveau, Philippe and Poncet, Paul},
     title = {State-space models for maxima precipitation},
     journal = {Journal de la Soci\'et\'e fran\c{c}aise de statistique & Revue de statistique appliqu\'ee},
     pages = {107--120},
     publisher = {Soci\'et\'e fran\c{c}aise de statistique},
     volume = {148},
     number = {1},
     year = {2007},
     language = {en},
     url = {}
AU  - Naveau, Philippe
AU  - Poncet, Paul
TI  - State-space models for maxima precipitation
JO  - Journal de la Société française de statistique & Revue de statistique appliquée
PY  - 2007
SP  - 107
EP  - 120
VL  - 148
IS  - 1
PB  - Société française de statistique
UR  -
LA  - en
ID  - JSFS_2007__148_1_107_0
ER  - 
%0 Journal Article
%A Naveau, Philippe
%A Poncet, Paul
%T State-space models for maxima precipitation
%J Journal de la Société française de statistique & Revue de statistique appliquée
%D 2007
%P 107-120
%V 148
%N 1
%I Société française de statistique
%G en
%F JSFS_2007__148_1_107_0
Naveau, Philippe; Poncet, Paul. State-space models for maxima precipitation. Journal de la Société française de statistique & Revue de statistique appliquée, Volume 148 (2007) no. 1, pp. 107-120.

[1] Buishand T.A. (1991) Extreme rainfall estimation by combining data from several sites. Hydrolog. Sci. J. 36(4):345-365.

[2] Chevallier F., Lopez P., Tompkins A.M., Janiskov M., and Moreau E. (2004) The capability of 4D-Var systems to assimilate cloud-affected satellite infrared radiances. Quart. J. Roy. Meteor. Soc. 130:917-932.

[3] Coles S.G. (2001) An Introduction to Statistical Modeling of Extreme Values. Springer Series in Statistics. Springer-Verlag London Ltd., London. | MR | Zbl

[4] Cooley D., Naveau P., Jomelli V., Rabatel A., and Grancher D. (2005) A bayesian hierarchical extreme value model for lichenometry. Environmetrics 16:1-20.

[5] Davis R.A. and Resnick S.I. (1989) Basic Properties and Prediction of Max-Arma Processes. Adv. Appl. Probab. 21:781-803. | MR | Zbl

[6] Dharssi I., Lorenc A.C., and Ingleby N.B. (1992) Treatment of gross errors using maximum probability theory. Quart. J. Roy. Meteor. Soc. 118(507), Part B:1017-1036(20).

[7] Embrechts P., Klüppelberg C., and Mikosch T. (1997) Modelling Extremal Events for Insurance and Finance, Volume 33 of Applications of Mathematics. Springer-Verlag, Berlin. | MR | Zbl

[8] Evensen G. (1994) Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res. 5:10143-10162.

[9] Fisher R.A. and Tippett L.H.C. (1928) Limiting forms of the frequency distribution of the largest or smallest member of a sample. Proc. Cambridge. Philos. Soc. 24:180-190. | JFM

[10] Fougères A.L., Nolan J.P., and Rootzén H. (2006) Mixture Models for Extremes. Submitted..

[11] Guo W., Wang Y., and Brown M. (1999) A signal extraction approach to modeling hormone time series with pulses and a changing baseline. J. Amer. Stat. Assoc. 94:746-756.

[12] Helland I.S. and Nilsen T.S. (1976) On a General Random Exchange Model. J. Appl. Probab. 13(4):781-790. | MR | Zbl

[13] Hosking J.R.M., Wallis J.R., and Wood E.F. (1985) Estimation of the Generalized Extreme-Value Distribution by the Method of Probability-Weighted Moments. Technometrics, 27(3):251-261. | MR

[14] Katz R.W., Parlange M.B., and Naveau P. (2002) Statistics of extremes in hydrology. Adv. Water Resour. 25:1287-1304.

[15] Kharin V. and Zwiers F. (2000) Changes in the extremes in an ensemble of transient climate simulations with a coupled atmosphere-ocean gcm. J. Climate 13:3760-3788.

[16] Koutsoyiannis D. and Baloutsos G. (2000) Analysis of a Long Record of Annual Maximum Rainfall in Athens, Greece, and Design Rainfall Inferences. Natural Hazards 22(1):31-51.

[17] Naveau P., Genton M.G., and Shen X. (2005) A skewed Kalman filter. J. Multiv. Anal. 94(2):382-400. | MR | Zbl

[18] Rodgers C.D. (2000) Inverse methods for atmospheric sounding. Theory and practice. Series on Atmospheric, Oceanic and Planetery Physics, Volume 2. World Scientific. Singapore-New Jersey-London-Hong-Kong. | MR | Zbl

[19] Shephard N. (1994) Partially Non-Gaussian State-space Models. Biometrika 81:115-131. | MR | Zbl

[20] Stuck B.W. (1977) Minimum Error Dispersion Linear Filtering of Scalar Symmetric Stable Processes. IEEE Trans. Automat. Contr. AC-23(3):507-509. | Zbl

[21] Tawn J. (1990) Modelling multivariate extreme value distributions. Biometrika 77:245-253. | Zbl

[22] West M. and Harrison J. (1997) Bayesian forecasting and dynamic models. Springer, New York. | MR | Zbl

[23] Wilson P.S. and Toumi R. (2005) A fundamental probability distribution for heavy rainfall. Geophys. Res. Lett. 32(14).