Comparaisons multiples pour les microarrays
Journal de la société française de statistique, Volume 146 (2005) no. 1-2, p. 45-62
@article{JSFS_2005__146_1-2_45_0,
     author = {Bar-Hen, Avner and Daudin, Jean-Jacques and Robin, St\'ephane},
     title = {Comparaisons multiples pour les microarrays},
     journal = {Journal de la soci\'et\'e fran\c caise de statistique},
     publisher = {Soci\'et\'e fran\c caise de statistique},
     volume = {146},
     number = {1-2},
     year = {2005},
     pages = {45-62},
     language = {fr},
     url = {http://www.numdam.org/item/JSFS_2005__146_1-2_45_0}
}
Bar-Hen, Avner; Daudin, Jean-Jacques; Robin, Stéphane. Comparaisons multiples pour les microarrays. Journal de la société française de statistique, Volume 146 (2005) no. 1-2, pp. 45-62. http://www.numdam.org/item/JSFS_2005__146_1-2_45_0/

[1] Allison D.B., Gadbury G.L., Moonseong Heo, Fernández J.R., Cheol-Koo Lee, Prolla T.A., Weindruch R. (2002). A Mixture Model Approach for the Analysis of Microarray Gene Expression Data, Computational Statistics & Data Analysis, 39, 1-20. | MR 1895555 | Zbl 1119.62371

[2] Aubert J., Bar-Hen A., Daudin J.J., Robin S. (2004). Determination of the differentially expressed genes in microarray experiments using local FDR, BMC Bioinformatics, 5, 125.

[3] Benjamini Y., Hochberg Y. (1995). Controlling the false discovery rate : a practical and powerful approach to multiple testing, Journal of the Royal Statistical Society Series B, 57 (1), 289-300. | MR 1325392 | Zbl 0809.62014

[4] Cheng C., Pounds S.B., Boyett J.M., Pei D., Kuo M.L., Roussel M.F. (2004). Statistical Significance Threshold Criteria For Analysis of Microarray Gene Expression Data, Statistical Applications in Genetics and Molecular Biology, Vol. 3, No. 1, Article 36. | MR 2101483 | Zbl 1166.62335

[5] Dalmasso C., Broët P., Moreau T. (2005). A simple procedure for estimating the false discovery rate, Bioinformatics, 21, 660-668.

[6] Delmar P., Robin S., Daudin J.J. (2005). VarMixt : efficient variance modelling for the differential analysis of replicated gene expression data, Bioinformatics, 21, 502-508.

[7] Dudoit S., Yang Y.H., Callow M.J., Speed T.P. (2002). Statistical methods for identifying differentially expressed genes in replicated cdna microarray experiments, Statistica Sinica, 12,1. | MR 1894191 | Zbl 1004.62088

[8] Dudoit S., Shaffer J.P., Boldrick J.C. (2003). Multiple hypothesis testing in microarray experiments, Statistical Science, 18 :1, 71-103. | MR 1997066 | Zbl 1048.62099

[9] Dudoit S., Van Der Laan M.J., Pollard K.S. (2004). Multiple hypothesis. Part I. Single-Step procedures for control of generl type I error rates, Statistical Applications in Genetics and Molecular Biology, Vol 3, No. 1, article 13. | Zbl 1166.62338

[10] Efron B., Tibshirani R., Storey J.D., Tusher V. (2001). Empirical Bayes analysis of a microarray experiment, Journal of the American Statistical Association, 96, 1151-1160. | MR 1946571 | Zbl 1073.62511

[11] Efron B. (2004), Large scale simultaneous hypothesis testing : the choice of a null hypothesis, Journal of the American Statistical Association, 99, 96-104. | MR 2054289 | Zbl 1089.62502

[12] Genovese C., Wasserman L. (2002). Operating Characteristics and Extensions of the FDR Procedure, Journal of the Royal Statistical Society Series B, 64 (1), 499-518. | MR 1924303 | Zbl 1090.62072

[13] Genovese C., Wasserman L. (2004). A stochastic process approach to false discovery control, Ann. Statist., 32, 3, 1035-61. | MR 2065197 | Zbl 1092.62065

[14] Hedenfalk I., Duggan D., Chen Y., Radmacher M., Bittner M., Simon R., Meltzer P., Gusterson B., Esteller M., Kallioniemi O.P. et al. (2001). N. Engl.J.Med., 344, 539-548.

[15] Liao J.G., Lin Y., Selvanayagam Z.E., Shih W.J. (2004). A mixture model for estimating the local false discovery rate in DNA microarray analysis, Bioinformatics, 20, 2694-2701.

[16] Pounds S., Cheng C. (2004). Improving false discovery rate estimation, Bioinformatics, 20, 1737-1745.

[17] Pounds S., Morris S.W. (2003). Estimating the occurrence of false positives and false negatives in microarray studies by approximating and partitioning the empirical distribution of p-values, Bioinformatics, 19, 1236-1242.

[18] Pan W., Lin J., Le C. (2003). A Mixture model approach to detecting differentially expressed genes with microarray data, Functional Integrative Genomics, 3, 117-124.

[19] Storey J.D., Taylor J.E., Siegmund D. (2004). Strong control, conservative point estimation, and simultaneous conservative consistency of false discovery rates : A unified approach, Journal of the Royal Statistical Society Series B, 66, 187-205. | MR 2035766 | Zbl 1061.62110

[20] Storey J.D., Tibshirani R. (2003). Statistical significance for genomewide studies, Proceedings of the National Academy of Sciences, 100, 16, 9440-45. | MR 1994856 | Zbl 1130.62385