Observations longitudinales incomplètes : de la modélisation des observations disponibles à l'analyse de sensibilité
Journal de la société française de statistique, Volume 145 (2004) no. 2, p. 5-18
@article{JSFS_2004__145_2_5_0,
     author = {Minini, Pascal and Chavance, Michel},
     title = {Observations longitudinales incompl\`etes : de la mod\'elisation des observations disponibles \`a l'analyse de sensibilit\'e},
     journal = {Journal de la soci\'et\'e fran\c caise de statistique},
     publisher = {Soci\'et\'e fran\c caise de statistique},
     volume = {145},
     number = {2},
     year = {2004},
     pages = {5-18},
     language = {fr},
     url = {http://www.numdam.org/item/JSFS_2004__145_2_5_0}
}
Minini, Pascal; Chavance, Michel. Observations longitudinales incomplètes : de la modélisation des observations disponibles à l'analyse de sensibilité. Journal de la société française de statistique, Volume 145 (2004) no. 2, pp. 5-18. http://www.numdam.org/item/JSFS_2004__145_2_5_0/

Baker S.G., Rosenberger W.F. and Dersimonian R. (1992). Closed-form estimates for missing counts in two-way contengency tables. Statistics in medicine 11, 643-657.

Birmingham J., Rotnitzky A. and Fitzmaurice G.M. (2003). Pattern-mixture and selection models for analysing longitudinal data with monotone missing patterns. Journal of the royal statistical society, Serie B 65, 275-297. | MR 1959827 | Zbl 1063.62039

Bishop Y.M.M., Fienberg S.E. and Holland P.W. (1975). Discrete multivariate analysis : theoy and practice, MIT Press : Cambridge, Massachussetts. | MR 381130

Chavance M. et Manfredi R. (2000). Modélisation d'observations incomplètes. Revue d'épidemiologie et de santé publique 48, 389-400.

Dempster A.P., Laird N.M. and Rubin D.B. (1977). Maximum likelihood estimation from incomplete data via the EM algorithm (with discussion). Journal of the royal statistical society, Serie B 39, 1-38. | MR 501537 | Zbl 0364.62022

Diggle P.J. and Kenward M.G. (1994). Informative drop-out in longitudinal data analysis (with discussion). Applied statistics 43, 49-93. | Zbl 0825.62010

Diggle P.J., Heagerty P., Liang K.Y. and Zeger S.L. (2002). Analysis of longitudinal data, 2nd edition, Oxford University Press : Oxford. | MR 2049007 | Zbl 1031.62002

Jamshidian M. and Jennrich R.I. (2000). Standard errors for EM estimation. Journal of the royal statistical society, Serie B 62, 257-270. | MR 1749538

Kenward M.G. (1998). Selection and models for repeated measurements with nonrandom dropout : An illustration of sensitivity. Statistics in medicine 17, 2723-2732.

Little R.J.A. (1993). Pattern-mixture models for multivariate incomplete date. Journal of the american statistical association 88, 125-134. | Zbl 0775.62134

Little R.J.A. ( 1994a). A class of pattern-mixture models for normal data. Biometrika 81, 471-483. | MR 1311091 | Zbl 0816.62023

Little R.J.A. ( 1994b). Discussion to Diggle and Kenward : Informative drop-out in longitudinal data analysis. Applied statistics 43, 78.

Little R.J.A. (1995). Modelling the drop-out mechanism in repeated measures studies. Journal of the american statistical association 90, 1112-1121. | MR 1354029 | Zbl 0841.62099

Little R.J.A. and Rubin D.B. (1987). Statistical analysis with missing data Wiley : New-York. | MR 890519 | Zbl 0665.62004

Minini P. and Chavance M. ( 2004a). Sensitivity analysis of longitudinal normal data with drop-outs. Statistics in medicine 23, 1039-1054.

Minini P. and Chavance M. ( 2004b). Sensitivity analysis of longitudinal binary data with non-monotone missing values. Biostatistics (sous presse). | Zbl 1069.62101

Molenberghs G., Goetghebeur E., Lipsitz S.R. and Kenward M.G. (1999). Nonrandom missingness in categorical data : strengths and limitations. The American Statistician 53, 110-118.

Molenberghs G., Kenward M.G. and Goetghebeur E. (2001). Sensitivity analysis for incomplete contingency tables : the Slovenian plebiscite case. Applied statistics 50, 15-29. | Zbl 1021.62045

Molenberghs G., Thijs H., Michiels B., Verbeke G. and Kenward M.G. (2004). Pattern-mixture models. Journal de la Société Française de Statistique 145, 2, 49-77.

Robins J.M., Rotnitzky A. and Zhao L.P. (1995). Analysis of semi-parametric regression models for repeated outcomes in the presence of missing data. Journal of the american statistical association 90, 106-121. | MR 1325118 | Zbl 0818.62042

Rotnitzky A., Robins J.M. and Scharfstein D. (1998). Semiparametric regression for repeated outcomes with nonignorable nonresponse. Journal of the american statistical association 93, 1321-1339. | MR 1666631 | Zbl 1064.62520

Rotnitzky A., Scharfstein D., Su T.L. and Robins J.M. (2001). Methods for conducting sensitivity analysis of trials with potentially nonignorable competing causes of censoring. Biometrics 57, 103-113. | MR 1833295 | Zbl 1209.62251

Rubin D.B. (1987). Multiple imputations for nonresponse in surveys. Wiley : New-York. | MR 899519

Rubin D.B. (1994). Discussion to Diggle and Kenward : Informative drop-out in longitudinal data analysis. Applied statistics 43, 80-82.

Rubin D.B., Stern H.S., and Vehovar V. (1995). Handling "don't know" in survey responses : the case of the Slovanian plebiscite. Journal of the american statistical association 90, 822-828.

Scharfstein D., Rotnitzky A. and Robins J.M. (1999). Adjusting for nonignorable dropout using semiparametric nonresponse models (with discussion). Journal of the american statistical association 94, 1096-1146. | MR 1731478 | Zbl 1072.62644

Unnebrink K. and Windeler J. (1999). Sensitivity analysis by worst and best case assessment : is it really sensitive?. Drug information journal 33, 835-839.