@article{JSFS_2003__144_4_5_0, author = {Biau, G\'erard}, title = {Estimation de la densit\'e et tests par la m\'ethode combinatoire p\'enalis\'ee}, journal = {Journal de la Soci\'et\'e fran\c{c}aise de statistique}, pages = {5--24}, publisher = {Soci\'et\'e fran\c{c}aise de statistique}, volume = {144}, number = {4}, year = {2003}, language = {fr}, url = {http://www.numdam.org/item/JSFS_2003__144_4_5_0/} }
TY - JOUR AU - Biau, Gérard TI - Estimation de la densité et tests par la méthode combinatoire pénalisée JO - Journal de la Société française de statistique PY - 2003 SP - 5 EP - 24 VL - 144 IS - 4 PB - Société française de statistique UR - http://www.numdam.org/item/JSFS_2003__144_4_5_0/ LA - fr ID - JSFS_2003__144_4_5_0 ER -
%0 Journal Article %A Biau, Gérard %T Estimation de la densité et tests par la méthode combinatoire pénalisée %J Journal de la Société française de statistique %D 2003 %P 5-24 %V 144 %N 4 %I Société française de statistique %U http://www.numdam.org/item/JSFS_2003__144_4_5_0/ %G fr %F JSFS_2003__144_4_5_0
Biau, Gérard. Estimation de la densité et tests par la méthode combinatoire pénalisée. Journal de la Société française de statistique, Volume 144 (2003) no. 4, pp. 5-24. http://www.numdam.org/item/JSFS_2003__144_4_5_0/
[1] Neural Network Learning : Theoretical Foundations, Cambridge University Press, Cambridge. | MR | Zbl
et (1999),[2] Risk bounds for model selection via penalization, Probability Theory and Related Fields, Vol. 113, pp. 301-413. | MR | Zbl
, et (1999),[3] Probabihty and Measure, 3rd Edition, Wiley, New York. | MR | Zbl
(1995),[4] Mixture density networks, Neural Computing Research Group Report NCRG/94/004, Department of Computer Science and Applied Mathematics, Aston University, Birmingham.
(1994),[5] Sélection d'histogrammes à l'aide d'un critère de type Akaike, Comptes Rendus de l'Académie des Sciences de Paris, Vol. 330, pp. 729-732. | MR | Zbl
(2000),[6] Computational and inferential difficulties with mixture posterior distributions, Journal of the American Statistical Association, Vol. 95, pp. 957-970. | MR | Zbl
, et (2000),[7] Testing in locally conic models, and application to mixture models, ESAIM : Probability and Statistics, Vol. 1, pp. 285-317. | Numdam | MR | Zbl
et (1997),[8] The estimation of the order of a mixture model, Bernoulh, Vol. 3, pp. 279-299. | MR | Zbl
et (1997),[9] Testing the order of a model using locally conic parametrization : population mixtures and stationary ARMA processes, The Annals of Statistics, Vol. 27, pp. 1178-1209. | MR | Zbl
et (1999),[10] A Course in Density Estimation, Birkhäuser, Boston. | MR | Zbl
(1997),[11] Universal smoothing factor selection in density estimation: theory and practice, Test, Vol. 6, pp. 223-320. | MR | Zbl
(1997).[12] A note on robust hypothesis testing, IEEE Transactions on Information Theory, Vol. 48, pp. 2111-2114. | MR | Zbl
, et (2002),[13] Combinatorial Methods in Density Estimation, Springer-Verlag, New York. | MR | Zbl
et (2001),[14] Estimation of finite mixture distributions through Bayesian sampling, Journal of the Royal Statistical Society, Series B, Vol. 56, pp. 363-375. | MR | Zbl
et (1994),[15] Central limit theorems for empirical measures, The Annals of Probability, Vol. 6, pp. 899-929. | MR | Zbl
(1978),[16] Linear Operators Part I, Wiley, New York. | MR
et (1963),[17] Finite Mixture Distributions, Chapman and Hall, London. | MR | Zbl
et (1981),[18] Unsupervised learning of finite mixture models, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 24, pp. 381-396.
et (2002),[19] Likelihood ratio of unidentifiable models and multilayer neural networks, The Annals of Statistics, Vol. 3 1 , pp. 833-851. | MR | Zbl
(2003),[20] A failure of likelihood asymptotics for normal mixtures, Proceedings of the Berkeley Conference in Honor of Jerzy Neyman and Jack Kiefer, Volume II, pp. 807-810. | MR
(1985),[21] Estimating mixtures of regressions, Journal of Computational and Graphical Statistics, Vol. 12, pp. 1-25. | MR
, et (2003),[22] Consistent estimation of mixture complexity, The Annals of Statistics, Vol. 29, pp. 1281-1296. | MR | Zbl
, et (2001),[23] Hierarchical mixtures of experts and the EM algorithm, Neural Computation, Vol. 6, pp. 181-214.
et (1994),[24] Some applications of concentration inequalities to statistics, Annales de la Faculté des Sciences de Toulouse, Vol. 9, pp. 245-303. | Numdam | MR | Zbl
(2000),[25] On the method of bounded differences, in Surveys in Combinatorics 1989, pp. 148-188, Cambridge University Press, Cambridge. | MR | Zbl
(1989),[26] On bootstrapping the likelihood ratio test statistic for the number of components in a normal mixture, Journal of Applied Statistics, Vol. 36, pp. 318-324.
(1987),[27] Mixture Models : Inference and Applications to Clustering, Marcel Dekker, New York. | MR | Zbl
et (1988),[28] Finite Mixture Models, John Wiley, New York. | MR | Zbl
et (2000),[29] Adaptive mixtures, Journal of the American Statistical Association, Vol. 89, pp. 796-806. | MR | Zbl
(1994),[30] On Bayesian analysis of mixtures with an unknown number of components, Journal of the Royal Statistical Society, Series B, Vol. 59, pp. 731-792. | MR | Zbl
et (1997),[31] Practical Bayesian density estimation using mixtures of normals, Journal of the American Statistical Association, Vol. 92, pp. 894-902. | MR | Zbl
et (1997),[32] A procedure for model complexity selection in semiparametric mixture model density estimation, Technical Report, Naval Surface Warfare Center, Dahlgren Division, Virginia.
, et (2002),[33] Statistical Analysis of Finite Mixture Distributions, Wiley, Chichester. | MR | Zbl
, et (1985),[34] On the uniform convergence of relative frequencies of events to their probabilities, Theory of Probabihty and its Applications, Vol. 16, pp. 264-280. | Zbl
et (1971),[35] Rates of convergence of minimum distance estimators and Kolmogorov's entropy, The Annals of Statistics, Vol. 13, pp. 768-774. | MR | Zbl
(1985),[36] Density estimation through convex combinations of densities ; approximation and estimation bounds, Neural Networks, Vol. 10, pp. 90-109. | Zbl
et (1997),