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ON DRAWINGS COMPOSEÏ) OF UNIFORM STRAIGHT LINES. 22l  
On drawings composed of unifbrm straight lines;

BY GEORGE D. BIRRHOFF.

1. THE PROBLEM. — Suppose that one traces on a flat sheet of white
paper a large number of indefinitely extended straight lines. These
lines are supposed to be of the same constant Width and intensity
throughout. If it be assumed that the surface density of lead (or ink)
thereby deposited is additive, there arises (in the limiting case of a

smooth distributionof infinitely many lines) a certain densityfunction
F of position such that the quantity of lead in any infinitesimal area
dA is given by FdA where F is evaluated at some point of this area.
Similarly there is a distribution function f dépendent not only on
position but also on the angular coordinate <p of the line considered,
such that fdcp dA yields the amount of lead deposited in the same
small area dA, by lines l whose direction lies between cp and <p + dcp.
In this way one obtains the fundamentalrelation

“21!

F:! fdcp
0

between the density functionF and the distribution function [, which
holds at any point of the plane.

In what follows we shall choose some point 0 of the plane, as
origin of polar coordinates, and consider only continuous functions F
and/within a circle of radins 0 < R g+ oo having 0 as center. If we
adopt the coordinates indicated in the adjoining figure it is clear that
the density function at P may be written F(r, 6) with

F(——r, 0+7:)=FU,G),
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while the distribution function may be written f(s, ç) where
s=rsin(cp — 9).

Furthermore if we make the convention that the distribution function
has the same numerical value in whichever sense a line lis taken, we

  Fig. !.
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have similarly f(—s, (9 + 11) =f(s, cp). With these notations the
fundamental linear integral equation above takes the more explicit
form
(I) F(r,0)=füf[rsin(cp—O),cp]dcp.

The direct problem, namely, given the distribution functionf(5, cp‘),

to obtain the density function F(r, 0), is completely solved by the
equation just written. It is the inverse problem of determiningf(s,<p)

when F(r, 0) is given to which we shall devote attention. Interpreted
for the application to rectilinear drawings, this is the question of
ascertainingwhether or not a given drawing is possible by such recti-
linear means; and, if so, of détermining just how the drawing is
composed of the constituent lines.

Perhaps the simplest case is that afforded by a family of parallel
straight lines, with F = F*[rsin(cpo—O)] where cpo is the angle which
these straight lines make with a fixed direction, and F is an arbitrary
positive continuous function of its argument. This function_may also
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be written
F*(æcos<po—y sin (po),

that is as an arbitrary function of a general homogeneous linear
expression in œ and y. Here we evidently require a singular distri—
bution function fwhich vanishes for go # °Po- Bearing this special type
of solution in mind we easily obtain formal solutions of the inverse
problem by means of familiar identities such as the two following.

=417_2/‘:[:mf— […
F(_t, w)cos[a(l—1)+v(«v—y)]dtdwdudv,

,
‘

j ] dlIl+nP (0. O) dm+n ar+n.(2 ) P(æ’) ) = 24 m ! n! dæ'"dy” [dam di)” (8 . Il )'r=y=0i.
m., n :o

 (2) ,)(.1,1)  
For, the terms on the right formally express an arbitrary p(æ, y) as
the limit of sums or differences of functions of a linear eXpression of
rectangular coordinates a: and y, such as arise in the special casejust
referred to. Indeed the first of these is the familiar Fourier integral
identity forp(æ, y) and the second yields the Taylor’s expansion of
1) in a power seriesin ac andy. Itis difficult to see, however,how such
forms do more than show how an approximation to the desired
drawing may be accomplished by means of an extremely complicated
set of straight lines and rectilinear erasures. They do not show in the
least how to solve the problem without any erasures. Furthermore
they do not tell how to determine the distribution function over a
circle when the density function is merely given over the same circle.
It is these more specific problems which are discussed here.

It is obvious that the general type of problem under consideration
admits of generalization in various directions, as for instance to more
dimensions than two, and to other types of geometric figures than
straight lines.

In our approach we will assume that a certain further hypothesis(H)
be satisfied, namely that F(r, 0) and f(s, cp) are asymptotically
representable in a power series in the corresponding rectangular
coordinates

IF (r, 0) N a…,+ (a…æ+ a…y) + ;(a20æ2+ 2 a“ .7: y + a02y2)+

f(s,ç )…b….+ (b…x+ b…y)++L(b...fi+ 21… :ry+ b..y2)+. ..
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in the neighborhood of the origin. When this condition is satisfied
we may write for instance

F (I‘, 0) : a…,+ " (a…cosû + a…sin 0) +. ..
'i— l'…—' (a…_…COSM—10 ”+“ - ° ' + aUIIl—I 5in…—‘ 0) + "MQ/"(r, @)

where [Q…(r, O)]gQ… a fixed constant, for r small. Hence we find
that

21: 27t/ l“ (I‘, 0 ) COS… 0 (/0 = ,-m/ Q… ( ", O) 005 … 0 (l()_
o - 0

211[ F(r, 0) sinmOd0=r'”f Q… (l', 0) siumOd0.
0 ()

Consequently the coefficients F…(r) and G…(s) of cosm0 and sinm0
in the Fourier series for F(r, @) will vanish to at least the m-th order
with r; the similar coefficients f…(s) and g…(s) for f(s, <p) must
likewise vanish to the m-th order in s. Furthermore it' is apparent
from ( 1 ) that iff(s, <p) satisfies the condition (H) so must F (r, 0) also.

2. REDUCTION OF THE PROBLEM. — Evidently both F and f, being by
hypothesis continuous,admit of unique formal expansion in Fourier’s
series in 0 and <p respectively :

m=l
&

F (I', 0) = 1) l<‘o(r) +E[F…(r) cosm 9 + G…(l')sinm 0],

(3)

'f(s, <p) : âfo (3) +2 [f… (r) cosmcp + g,,,(r) sinm <p]

m=l

where F…(r) and G…(r) are even or odd in raccording as mis even
or Odd, and f…(s) and g…(s) are likewise even or cdd in 3 according
as m is even or odd. Conversely, given these Fourier coefficients of
such continuous functions it is of course easy to obtain the corres-
ponding functions in explicit terms. -

Now we can at once deduce certain necessary relations
betwen F…(r), G…(r) and f…(s), g…(s) in the following manner. The
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well known explicit values of these coefficients are

(4)(‘$
F…(l =%fmF(r, 0)cosmûdO, G…(r)=—;fmG…(r, 0)sinm0d0,

TU(4)( f…(")=ïïf211f(31fl0)005m<Pd% g…(r)=I—f- g,,,(s,cp)sinm<pdcp,

where we write in particular G,,(r): go (s) = o. Consequently if we
multiply the equation (I) through by cosm0 and by sinm0
for m: o, 1, . . ., and integrate from 0 to 2 n, there results the two
sets of equations

F)=…("ä{{°flf[f‘5in(<P—®,cp]dcp€cosm€d@,
G… (r):—îffi%“m[f[rsin((cp—0),œ

cp]rlcp%sinmôdÔ

which may be replaced by the single equivalent set :

(S’) H…(
=%f021tl/im[f[

rsin(cp—Û). <p]d<pîe""'°d9

where we write
(6) H…(l‘)=F…(r) +tG…(r), h…(S)=f…(S)+: g.…(8)

Conversely if (5) or (5’) holds for m = o, 1, 2, . . ., the Fourier series
for the left-and right-hand members of(1)are identical, and therefore
the equation (1 ) will hold. Thus we may replace the equation (1 ) by
the sequence (5’) of simpler type.

These équations (o’ ) may be further simplified. Replace the
variables cp, 0 by u, v where
(7) (19:11, 0=v—-u,

so that 3Ê°£’1}Îî=.The square region S of integration appearing 
in (5') is then transformed into the parallelogram T of the u, v plane
bounded by 9: o, (!= 211, v—— u = o, v— u = 211(see the adjoining
figure). But inasmuch asf(rsin u, v) is periodic of period 211 in a it
is clear that the integral in the transformed variables has the same
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value over T as over the square T’ bounded by u = o, u : 27m, "= o,
v = 2 n. Hence equations (5') may be rewritten in the form

.21: 271

(S”) Ils/((£) =% / [f f(l'5inu,
")8imv_u'dll:|llt’.

Fig. -,e.

? (21t,2n) v (2n,2n)  
    0 ? 0 u  

lntegrating first as to 9 and recalling the formulas for h…(s) we
obtain
(8) H…(s): [ lt…(l'Siiill)e—’""’dlt.

Here the functions H…(r) appear as given continuous function of (r),
and the functionsh…(s) are to be determined.

Thus we are led to the following preliminary result :

In order that there exists a continuous distribution functionf(s, <p)

corresponding to acontinuousdensity function F(r, @) it is necessary
and sufiîcient that : (a) the linear integral equations (8) admit 0fconta-
nuous solutions h…(s) for m = o, 1 with H…(r) : F…(r) + iG…(r)
Where F,,;(r) and G…(r) are the Fouriercoe_ficients of F(r, 0) as shown
in (3); (b) these functions h…(s): f…(s) + ig…(s) must correspond to
the Fourier series of a continuous function f(s, <p) with coefiïcients
f…(s) and g…(s) as shown in (3), (c) the function](s, <p) must bepositive
orzeroforr< R (‘). 

(') There is no essential restriction in taking f(s, <p) such that

f(—s, <p+7‘r)=f(s,cp)
since we can always write

- ( .f(s, <?) =
-2

ms, qo> +./<—s, @ +…].
The hypothesis (H) is not made in this first result.
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5.T11E CASE 01 CIRCULAR smuarnv. — When F(r, 0) depends only

on r, we have the case ofci1cular symmetry. Clearly iff(s, cp)depends
_

only on s, then this symmetric case will always arise. HoWever, even
if a non--symmet1ic f(s, @) could give rise to a symmetric F(r), we
see at once that

f(s): —-ff(s,o (hp.

would yield a symmetric f(s) leading to the same F(r). Hence there
is no limitation in restrictingf(s, go) to be of symmetric type also.

But under the circumstances the Fourier series of F and f reduce
to the first terms only and the theorem just stated leads to the conclu—
sion that in the case of circular symmetry there Will exist a corres—
ponding distribution function f(s) for the given density F(r) if and
only if the integral equation
(9) F(r)=fmf(rsinu)du,

admits a non—negative continuous solution f(s). But here we may
take F(r) and f(s) to be even functions of r and 3 respectively and
restrict attention to r> o, s > 0. The integral on the right is then four
times the same integral taken between the limits 0 and € Hence if we
employ the variable rsinu = s, the equation (9) becomes

F(,.): %f_(_—_S)dS_.(/r- — s
This is essentially an integral equation first treated by Abel (1828)
with unique continuous solution given by

__ 1 d r‘F(r‘)dr(…) f<s>—E,Æ[fo—Vs____J
provided that the integral on the right, which15 a continous function
ofs necessarily vanisbing for s=o, admits a continuous derivative
for rêo. There is no continuous solution when these conditions are
not fulfilled (').

 (9’) 
(‘) See, for example, BÔCHER, Introduction to the Study of Linear Integral

Equations, 1909, pp. 6—11.

Journ. de Math., tome XIX. — Faso. 3, 1940 29
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In the case of circular symmetry, therefore, a given continuous den-
sity function F(r) admitsof a corresponding distribution function](s)
if and only if the integral appearing in (10) represents a continuous
function of s with continuous non-negative derivative, in which case
the unique correspondingf(s) is that specified by the same equation.

It is interesting to remark upon one particular discontinuouscase,
name1y

F(l')={
° ("<’°°)’
1 (r>ro).

Here we have
‘

0 (r<ro),
(s): ,f

(
# ——“— (r>ro),
275 s" —rä

since for s> r0 we have

d " rdr _ 1 s  “ )=e_n dî ,.“ «ss—_7-“f m Vs'—’—rä

This shows that we may shade the plane uniform1y except over & circle
râr., by the means allowed; and that for this case the distribution
function must be proportionalto the secant ofhalf the angle subtended
from the point (s, 0) by the given circle.

4. THE“ GENERAL CASE. FIRST SOLUTION. — Turning now to the non-
symmetric case we observe first that for m = 0 we have

H.,(r‘)=\/h2fiIu,(rsinu)a‘u=4j0Eî—°=î
(.’s)ds

1-—s-

so that, as in the case of circular symmetry, we have

d ”H.,(r)rdr
"°<s>=aag[f îr_,——-— '

More generally, for m > 0 wc may rewrite (8) in the form
211

H…(r)=[ h…(r sin u) (cosa — !' sin u)e*“"‘*“”du.
' 0
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But, if we introduce the function

h‘,,j”(s)=f h…(s)ds,
0

we obtain at once
. 1 d

h…(rsmu)cosu=; c—l_
h‘,"(rsinu),

, . . _rd (_… .
z…(rsmu)smu_äî_hm (rsmu),

and thus the relation (8) is seen to be essentially the same as
211_ 1 d (—1)

«
' _ ' d (—l) ' —i(m—1)u

Hm(")—[ [; $— 1… (! smu) zd—,_hm (rs… u) e du.

Integratingthe first term under the integral sign here by parts and
observing that h£;“(rsinu) is periodic of period 211 in u We obtain as
the equivalent of (8)

z(—mHm(")=
rl———sz

h‘,Ï1)(ï‘sinu)e—ilm—'"du

_ '_ ("4) ' —i(m_—1)u

ldaljÔ‘“h… (rsmu)e du.

Multiplying through by ir“"‘+‘ this takes the form

ll:rÏ—Ë1r)=; ["—I…_ [” h(—ni)(,. si“
u)]e_ilm_'1

”du.

Integrating from 0 to r as is possible because of the hypothesis (H)
we obtain immediately the formula

 
r Hm(£)

till—l
(S’) " ' ir”‘-‘  211

dt—_f h‘,;' ’(r sin u)e—i'”l—““du.
0

We note that the constant of integration must be disposed of as indi-
cated since otherwise the right-hand member would vanish to the
order m+ 1 in r while the left-hand member “would vanish only to
the order m — 1.

But (8’)15 essentially of the form (8) With m replaced by m— 1,
and we may repeat again the type of1ntegrat10npstperformed. Thus
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by successive steps, min number, we are led finally to
_ r I… I‘ —_>n

(11) i'”f [f t…_....<f H',ÏL(_îl)dù> ]dl…=f ll…),î””(i'sinu).
0 0 0

,
0

If we replace the m—fold integral on the left by a simple integral (‘)
we may rewrite this equation as

ll …
2 ..__ H’_"(t) ° m—1 (— m) , '
(rn—1)![ l’_'”— (" —‘l) 611: 27th… (rsmu)du.

But h‘,,ï”"(rsinu) is clearly an even function of r, so that we may
assume rêo in ( 1 I’) and replace this integral by four times the inte-

 
(ll/)

gral With modified limits of integration 0 and E On rewriting
s = rsin u on the right, this member therefore becomes

r dc
[. [ h‘,,j”" s

uô
( )\1" s-

so that (1 1) is to be regarded as an integral equation for h‘,;""(s) of
Abel type. Solving, we obtain at once

[. m

_ [ (a) dlll+‘l
_ " " H…(l) & 2 "1—1 _ d_f‘_(12) hill(3)—EZÎ__IÎËfi-Êîlfol r<Â ,m—1 (, _t) dt \/82_,.2 '

Conversely if h…(s) given by (12) exists and is continuous, we find
by retracing steps that the corresponding equation (8) holds.

Now the equation (12) admits of a simplifying transformation. In
the first place it is readily seen that the double integral on the right

 
  

(’) Note that the integral in (1 1) may be written[f[ (“_—“P)……)
—— _! I HH,,;(\/)(l‘ _-)m—1d——

2111 (IN. _[)1 m ‘ "’
1—2—

where we set r,-= !? for i=1, .., m.



ON DRA\\'INGS COMPOSED OF UNIFORM STRAIGHT LINES. 23!
may be expressed in inverse order as

5
H… [ s ( ,.2 _ [! )Ill—l! “___/”(_1) [ ‘/_—9—7 r dr dt.

8 l . ! V S'— ’ '

Setting r”: t'-’+ (s'2 — t”) sin”a and using the familiar value of
17.f sin’”cda this becomes

0
]

2.û...2m—2f Hm(£)(sg_t2) 2d[.
0 .

 1.3...2m—1 t'”“"
Thus we have

‘… m+l " s
H… …_l_— [f 10

  z1t1.ô.…2m—1 ds…“

But since the integrand on the right and its first ni — 1 derivatives as
to 3 vanish for t=s, we may differentiate m times as to 3 under the
integral sign. However if we write s = tu, we see that

, » m——
dm (s‘! _ t2)m_‘î _ till—]

d"‘(uÈ’_ I) 2

dsm
_

du… ’

so that we may write the preceding equation for h…(s) in the essen-
tially equivalent form

! Lui/L

'

d . s d”L ,”_1 s_“_ —'-— H t — u‘-'——1 2dt u=-Z:_27r 1.3...2m—1 ds / '”( )du"l( ) ’ t—"0
(m’) h…(s):

Now let us establish that for all integral m, we have (')
dut—l _) ,”_.l l.3..-2m—l T‘“— m, '.:— m(13) <Pm(“)=W(u'—l) ”:_—2—m—l(u+\/u'—l> —<u—-\/u _!) ]

It is immediately seen that :p…(l) = 0 for all positive integral m, and
that the stated formula holds for m: 1, 2. Hence it suffices to show
that if the formula holds out to a certain m, then we have

1.3...2m+1
[(Il+VV—u2—l)m+l+(lt—VŒË——I)HLHJ

' u = _cP"l+l( )
2 \/u2— [

as it must be if the above formula (13) is to hold. (‘) This formula is doubtless a well known one.
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But we have
I

'

dm+l ., m ' d’” _) ,"_l
ç.,…,(u)=d—w1—+î(u-—l) +î2=(2m+1)d—wn[u(u-—1) z]

=(2m+ 1)[…P'…(u) +mcpm(u)]
__.l3.. .2m+1

[” <u+Wàu+£ul—Vuz
—l)m +(u+\/Î)m—

_(u_fiï__l)m:l
which yields the required expression for cpi… (u).

By use of
(13)d

then We obtain the final explicit formula

H(“=
%
> 1).

It is interesting to note that this formula also holds for m = 0.
Now it is clear that the m-th term of the Fourier series

for f(s, <p) is Œ[h…(s) e—"’"‘P] where & indicates « the real part of ».
Recalling the definition of H…(r) and using (14) we find that
the m-th term of this series may be written

   .

Œ{_Lirn%f2nfs
F(t e)l:(u+\/u2

_—l)m+(u—Vu2
_I)dt:l e‘im'Ÿ—0’d0}“az—__!

Thùs we obtain the following result :

Under the special hypothesis (H) upon F(r, 0) the only passible
distri'button functionf(s, <p) corresponding to the given densityfunc—
tion F(r @) is given by the Fourierseries

“‘ (u+\/u‘-’—_1)m+(u—\/È)m ) _im

ml:4—flzifll .d—smËf 5] F(r, e)[ «DTI drçe
—t«—°>d0

<us: ; > !) '

Here the operation Œ. (the real part 0f) is to be applied to each term
separately. If and only if the coefiîcientsof cosmcp, sinmcp sa obtained
are continuous, and form the Fourier coeflïcients of a non—negative
continuous function will there exist a (unique) solution f(s, :p),
namely that given by (1 5).
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It is interesting that there should exist at most one solution. At

first sight this seems paradoxical when it is observed that one and
the same density function, everywhere equal to 1, arises if we

take f(s, <p) =f(cp) with [2nf(ç)dqi= 1. Hence in this special case

we find many distribution functions for the same continuous density
function F(r, 0)=1. However, such functions f(cp) Will not be
continuous at the origin unlessf (cp) is independent of <p. Consequently
it appears that the uniqueness property flows from the continuity
assumption.

… ‘
5. EXTENSION or THE ABOVE nesuifii. — It is more or less evident that

the hypothesis (H) which we have employed can be eliminated
without essentially altering the formal solution which we havegiven.
We shall only make a single remark in this connection.

If for a continuous density function F(r, O), there is a corres—
ponding continuous distribution function f(s, cp), then it is obvious
that for any continuous f*(s, <p) near to f(s, <p) andsatisfying(H) the
corresponding F*(r, 6) will be continuous and near to F(r, 0) and
will also necessarilysatisfy (H), in view of ( 1 ). But thisf*(s, ?) may
be expressed in terms of F*(s, <p) as indicated above, whence the
following result :

If F(r, 0)êo is continuous but does not satisfy (H), and there
exists a corresponding continuousf(s, <p)êo, there will'be arbitrarin
nearly functions F*(r, Ô)êo satisfying (H) and yielding functions
f*(s, cp) satisfying (H), where f*(s, cp) is obtained from F*(s, cp) as
in (15). Furthermore a sequence of these functions F*(r, <p) with
limF*(r, O) = F(r, Ô) may be found so that limf*(s, cp) approaches a
continuous limit function f (s, <p). This will then yield the unique
solution of the problem.

In fact we infer at once that f(s, cp) as thus defined satisfies (i ).
The stated uniquenes follows from the fact that the difference
fî(s, <p)—f2(s, <p)=A(s, :p) betwen two distinct limits fî(s, cp)
andf;(s, cp) would satisfy the equation [compare with (1 )]

‘ZTC

o=f A[rsin(cp—O),o]dcp,
0
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whence it would follow that
-‘.’Tu

0 = / A…( r sincp) (:_/'"? dcp,
0

where A… (3) is related to A(s, co) just as h…(s) is to f(s, 39). As
before this leads by successive integration [see (1 1 )] to

‘)1t

Pm(r‘l)=/\JtAfi;’"’(rsinu)du=4fWt’
‘*0 Vr—"———I'

where P…(r") is polynomial of degree m— 1 at most in r". Solving
this integral equation of Abel type we find

d SPP/)t("2l \/—_32_T (TS[ 0 \/-———SE_I)dÏ']= 2TEIdS[QHL(IW8 ——I’-

where Q…(r2) is also a polynomial in r2 of degreeat mostm — [ . Thus
we find

Aw—m)($)—___
    

A—"“<s)= 2%Q…(O)

a constant, and this is impossible since A“’”(s) cannot reduce to a
mere constant.

6. ON A GENERAL GEOMETRIC CONDITION. — If A is any area and Ak is an
area enclosing A such that any line cutting A in a length lcuts Ak in
a length at least Icl, then it is obvious that

ffF(æ,)')(læ(l)'î/ÇffF(æ,y)dæd3n
A]; A

For example, if A _is a unit circle and A2 is & concentric circle of
double the radins, we see that at least twice as much lead is
deposited within the larger circle as within the smaller circle. Thus
the average density is at least 1/3 as great in the ring formed by the
two circles as within the smaller circle.

. It would be very interesting to determine just to‘what extent this
general geometric condition upon F(r, 0) is completely characte-
ristic. Clearly this condition strongly limits the kind of drawings
which can be made by the rectilinear method. The adjoining simple
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drawing by Mr. David Middleton, a student at Harvard University,
shows that this medium is not without amusing possibilities. 

In this connection one further remark may be made. Imagine a
negative of an arbitrary given drawing to be taken, and then subinited
to uniform additional exposure. Our rectilinear means enable us to
draw such a faint negative of any drawing whatsoever. --

To see this, we note first that, as seen above, we can draw a white
circular spot surrounded by a uniform gray background. Hence we
could stipple the given drawing against a uniform nearly black
background.
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7. Raman on rwo RELATED rnoemus. — We commenced with

“a F(r, 0)20, and looked for a f(s, cp)ëo such that (I) was satisfied.
It is, however, clear that this conditionof nonnegativeness upon F(r, 0)
and f(3, <p) is largely irrelevant to the analytic problem. Thus we
are able to deal similarly with the following more general question :

suppose that not only are uniformstraight linesallowed in the drawing
but that subsequent uniform rectilinear erasure is allowed, which
does not erase lines already drawn. Then F(r, 0) is positive as before
andf (3, <p) may be positive or negativeQ In this case there is a unique
continuous solution (obtained as before), or none at all. If we write

f<’: ?) =fî(°‘t ‘?) _fz(3: °F):

where f.(s, <p) is the positive part of f(s, <p) and f;.(s, <p) is the
negative part off(s, ap), then we have only to make the drawingwith
the positive distribution functionf. (3, :p) and then make subsequent
rectilinear erasures with the distribution function f2(s, <p), in order
to make the drawing associatedwith F(r, 0). The following conclu—
ding observation shows that to all intents and purposes one can
make any drawing if a single uniform erasure all over the figure
he allowed at the end. In fact the given F(r, 0) may be approxi-
mated by a polynomial in a: and y, corresponding to a terminating
Fourier series for F(r, <p). Our formulas show that then f(s, (9) is
given by a terminatingFourier series also which may be written

f‘(s, <p) + minf
where minf designates the minimum of f(5, <p) for r<R. Thus
f*(s, <p) is positive or zero. Consequently if we use the distribution
function f*(s, <p), and then erase uniformly a constant density minf,
the desired drawing with densityf (s, q») will be left.

Evidently the two problems we have just referred to are those of
mimbæumrectüinear erasure and of minimum umform erasure respec-
tively. and are to be regarded as solved by the explicit formulas
derived above for the problem without any erasure.+


