JOURNAL

DR

MATHÉMATIQUES

PURES ET APPLIQUÉES

FONDÉ EN 1836 ET PUBLIE JUSQU'EN 1874

PAR JOSEPH LIOUVILLE

I.E.HIGHBERG

A note on abstract Polynomials in complex Spaces

Journal de mathématiques pures et appliquées 9^e série, tome 16, nº 1-4 (1937), p. 307-314.

<http://www.numdam.org/item?id=JMPA_1937_9_16_1-4_307_0>

Article numérisé dans le cadre du programme Gallica de la Bibliothèque nationale de France http://gallica.bnf.fr/

et catalogué par Mathdoc dans le cadre du pôle associé BnF/Mathdoc http://www.numdam.org/journals/JMPA A note on abstract Polynomials in complex Spaces;

Br I. E. HIGHBERG (').

Fréchet $\binom{2}{2}$, in his 1929 paper, gave a definition of polynomials in a very general sort of a space — an « espace algébrophile » — with a real multiplier domain. His definition is essentially as follows. A function f(x) defined on an « espace algébrophile » E, to a like space E', will be called a polynomial, if f(x) is continuous and for some integer n, $\Delta^n f(x) \equiv 0$, where

 $\Delta^n f(x) = \Delta_n [\Delta^{n-1} f(x)], \qquad \Delta^0 f(x) = f(x), \qquad \Delta_i f(x) = f(x + \Delta_i x) - f(x)$

and the $\Delta_i x$ are arbitrary increments.

Gateaux (3) has defined a polynomial in a different manner and Michal (4) and Martin (5) have considered similar definitions in Banach spaces. Let E and E' be Banach spaces and A the associated number system, where A is either R, the real number system, or C, the complex number system. If $f(\mu)$ is a function on A to E, Martin

⁽¹⁾ I wish to thank Professor A. D. Michal for many helpful criticisms and suggestions in the preparation of this paper.

^{(&}lt;sup>2</sup>) Les polynomes abstraits (Journal de Mathématiques pures et appliquées, 9^e série, t. 8, 1929, p. 71).

⁽³⁾ Sur diverses questions du Calcul fonctionnel (Bull. Soc. de France, vol. 50, 1922).

⁽⁴⁾ A. D. MICHAL and R. S. MARTIN, Some Expansions in Vector Space (Journal de Mathématiques pures et appliquées, 9^e série, t. 13, 1934, p. 69).

^{(&}lt;sup>5</sup>) R. S. MARTIN, Contributions to the Theory of Functionals (Thesis, California Institute of Technology, 1932).

I. E. HIGHBERG.

defines it to be a polynomial if it is expressible in the form

$$f(\mu) = a_0 + \mu . a_1 + \ldots + \mu^n . a_n$$

where the a_i are fixed elements in E. Let p(x) be a function on E to E'. Martin calls it a polynomial if, 1° p(x) is continuous, 2° for each pair $x, y, p(x + \mu. y)$ is a polynomial in μ with coefficients in E'. When A is R, Martin showed that his definition and Fréchet's were equivalent. (Incidentally, Fréchet proved half of the equivalence in his paper). Martin conjectured that if A is C, we would have to add to Fréchet's conditions the further condition of Fréchet differentiability of p(x) at x = o in order that the two definitions be equivalent. That this is not enough I will show later.

In this paper will be considered what additional restrictions must be imposed in a complex « espace algébrophile » in order that the definition of a polynomial given by Fréchet be equivalent to the definition considered by Martin and Michal.

I.

Let E be a complex « espace algébrophile. » In Fréchet's postulates we can replace the real number system R by C, and all the theorems on continuity remain valid. I shall assume them in the remainder of this paper.

Definition 1. — If f(x) is a function on a space E to a space E' of like nature, it will be said to possess a Gateaux differential at the point x_0 , if for any z in E

$$\lim_{\mu \to 0} \frac{f(x_0 + \mu.z) - f(x_0)}{\mu} \qquad (\mu \text{ in } \mathbf{C})$$

exists, independent of the way in which $\mu \rightarrow 0$.

We do not require this limit to be linear in z.

LEMMA 1. — Let $\chi(\mu) = f(\mu).a$, where a is in E and $f(\mu)$ is a function on C to C having a derivative everywhere. Then $\chi(\mu)$ is Gateaux differentiable everywhere.

308

A NOTE ON ABSTRACT POLYNOMIALS IN COMPLEX SPACES. 309

Proof

$$\frac{\chi(\mu+t\lambda)-\chi(\mu)}{t}=\lambda\frac{f(\mu+t\lambda)-f(\mu)}{t\lambda}\cdot a$$

Since $\lim_{t \neq 0} \frac{f(\mu + t\lambda) - f(\mu)}{t\lambda} = f'(\mu)$, and since $g(\mu)$. *a* is a continuous function of μ , we conclude that the Gateaux differential exists and equals $\lambda f'(\mu)$. *a*.

That $f(\mu).a + g(\mu).b$ has a Gateaux differential everywhere if $f(\mu)$ and $g(\mu)$ have derivatives everywhere follows from the continuity of the operation x + y. The extension to any finite number of terms is obvious.

Definition 2. — If $\Phi(\mu)$ is a function on C to E, then it will be called a C polynomial if it can be expressed in the form

(1)
$$\Phi(\mu) = a_0 + \mu \cdot a_1 + \ldots + \mu'' \cdot a_n$$

where a_0, \ldots, a_n are fixed elements in E. If $a_n \neq 0$ it will be said to be of degree n.

Definition 2'. — Let $\Phi(\mu)$ be a function on C to E. Then $\Phi(\mu)$ will be said to be a C polynomial if :

1° $\Phi(\mu)$ is continuous,

2° for some integer $n, \Delta^{n+1} \Phi(\mu) \equiv 0$,

3° $\Phi(\mu)$ possesses a Gateaux differential everywhere. It will be said to be of degree *n*, if $\Delta^n \Phi(\mu) \not\equiv 0$.

I shall now prove the equivalence of the two definitions. First I shall show that if $\Phi(\mu)$ is a polynomial of degree *n* according to definition 2, then it is a polynomial of degree *n* according to definition 2'.

The proof that $\Phi(\mu)$, where $\Phi(\mu)$ has the form (1), satisfies condition 1° and 2° in definition 2' is the same as in Fréchet's paper. That it satisfies 3° is a consequence of lemma 1 and the remarks following the lemma. That $\Delta^n \Phi(\mu) \not\equiv 0$ is obvious.

To prove the converse, that a polynomial of degree n according to definition 2' is a polynomial of degree n according to definition 2, we have.

Journ. de Math., tome XVI. — Fasc. III, 1937. 40

I. E. HIGHBERG.

Case 1: n = 0. Then $\Delta \Phi(\lambda) \equiv 0$, or $\Phi(\lambda + \mu) - \Phi(\lambda) \equiv 0$. Hence $\Phi(\lambda) = a_0$, which is of the form (1).

Case II : n = 1, $\Delta^2 \Phi(\lambda) \equiv 0$. Then

$$\Phi(\lambda + \mu + \nu) - \Phi(\lambda + \mu) - \Phi(\lambda + \nu) + \Phi(\lambda) \equiv 0.$$

Setting $\lambda = 0$, we get

(2)
$$\Phi(\mu + \nu) - \Phi(\mu) - \Phi(\nu) + \Phi(\sigma) \equiv \sigma.$$

Set $\chi(\lambda) \equiv \Phi(\lambda) - \Phi(0)$. Then $\chi(\lambda)$ is continuous since $\Phi(\lambda)$ is continuous, and moreover is Gateaux differentiable for the same reason. Using equation (2) we get

(3)
$$\chi(\lambda + \mu) = \chi(\lambda) + \chi(\mu).$$

Then by familiar methods we have

$$\chi(a.\mu) = a.\chi(\mu)$$

where a is a real multiplier. Hence if $\lambda = \lambda_1 + i\lambda_2$

$$\chi(\lambda) = \lambda_1 \cdot \chi(1) + \lambda_2 \cdot \chi(i) = \frac{\lambda + \overline{\lambda}}{2} \chi(1) + \frac{\lambda - \overline{\lambda}}{2i} \chi(i)$$

where $\overline{\lambda}$ is the complex conjugate of λ . Hence

$$\Phi(\lambda) = a_0 + \lambda \cdot a_1 + \overline{\lambda} \cdot b_1$$

Since it was assumed that $\Phi(\lambda)$ was Gateaux differentiable we see that $\overline{\lambda}.b_1$ must also be. This is a contradiction and hence $b_1 = 0$. Then $\Phi(\lambda)$ is of the form (1).

It is to be noted that in this case we do not require the full condition on $\Phi(\lambda)$ of Gateaux differentiability everywhere, differentiability at one point is sufficient to make the two definitions equivalent. When n = 1, condition 3° of definition 2' may be replaced by the algebraic condition,

3°'
$$\frac{\Phi(i) - \Phi(o)}{i} = \frac{\Phi(i) - \Phi(o)}{i}$$

I shall now prove the general case by induction.

Case III :
$$n = n$$
, $\Delta^{n+1} \Phi(\lambda) \equiv 0$. Then $\Delta^n [\Phi(\lambda + \mu) - \Phi(\lambda)] \equiv 0$.

310

A NOTE ON ABSTRACT POLYNOMIALS IN COMPLEX SPACES. 311

Since $\Phi(\lambda)$ is continuous, $\Phi(\lambda + \mu) - \Phi(\lambda)$ considered as a function of λ is continuous. Since $\Phi(\lambda)$ possesses a Gateaux differential everywhere, $\Phi(\lambda + \mu) - \Phi(\lambda)$ is also Gateaux differentiable everywhere ('). Hence under the induction hypothesis we will assume that $\Phi(\lambda + \mu) - \Phi(\lambda)$ is a C polynomial in λ of the form (1), and of degree n - 1 at most. Let us set

(4)
$$\psi(\lambda,\mu) = \Phi(\lambda + \mu) - \Phi(\lambda) - \Phi(\mu).$$

Evidently, $\psi(\lambda, \mu)$ is also a C polynomial of degree at most n-1 in λ and since it is symmetric in λ , μ it is also a C polynomial in μ of degree at most n-1.

In exactly the same manner as in Fréchet's paper we prove that

(5)
$$\psi(\lambda,\mu) = g(\lambda+\mu) - g(\lambda) - g(\mu)$$

where

$$g(\lambda) = -\psi_0 + \sum_{1}^r \lambda^s. B_s,$$

and where ψ_0 and B_s are constant elements in E. We set

$$\mathbf{H}(\boldsymbol{\lambda}) = \boldsymbol{\Phi}(\boldsymbol{\lambda}) - g(\boldsymbol{\lambda})$$

and it follows that

$$H(\lambda + \mu) = H(\lambda) + H(\mu).$$

Now $\Phi(\lambda)$ is continuous and Gateaux differentiable, and $g(\lambda)$ is continuous and is Gateaux differentiable by lemma 1. Hence $H(\lambda)$ is continuous and Gateaux differentiable and we may conclude that $H(\lambda) = \lambda . H(I)$. Hence

$$\Phi(\lambda) = -\psi_0 + \lambda . \Pi(t) + \sum_{1}^{s} \lambda^s . B_s.$$

Now $\psi(\lambda, \mu)$ is of degree n - 1 at most in λ , but the right hand side of equation (5) is of degree r - 1 at most and hence $r \leq n$.

⁽¹⁾ It is essential that $\Phi(\lambda)$ be differentiable everywhere. For if it is differentiable at only one point we cannot assert that $\Phi(\lambda + \mu) - \Phi(\lambda)$ is differentiable at all. For example $\Phi(\lambda) = \overline{\lambda}^2$. *a* is differentiable at $\lambda = 0$ but nowhere else.

I. E. HIGHBERG.

If $\Delta^{n}\Phi(\lambda) \not\equiv 0$, r = n. Thus the equivalence of the two definitions is established.

П.

In this section we will complete the equivalence proofs by discussing polynomials on a complex « espace algébrophile » E to a space E' of like nature.

Definition 3. — Let p(x) be a function on E to E'. Then p(x) will be said to be an E polynomial if :

1° p(x) is continuous,

2° for every pair $x, y, p(x + \lambda, y)$ is a C polynomial in λ .

It will be said to be of degree n, if for some x, y $p(x + \lambda, y)$ is a C polynomial of degree n and for all x, y is a C polynomial of degree $\leq n$.

Definition 3'. — Let p(x) be a function on E to E'. Then p(x) will be said to be an E polynomial if :

1° p(x) is continuous,

2° for some integer $n, \Delta^{n+1}p(x) \equiv 0$,

3° p(x) possesses a Gateaux differential everywhere.

It will be said to be of degree n, if $\Delta^{n} p(x) \neq 0$.

I shall first prove that a polynomial of degree n according to definition 3' is a polynomial of degree n by definition 3.

Let $\Phi(\mu) = p(x + \mu, y)$. Then $\Phi(\mu)$ is a function on C to E' and is continuous. Furthermore $\Delta^{\mu+1}\Phi(\mu)\equiv 0$. It may also be readily shown that $\Phi(\mu)$ is Gateaux differentiable everywhere. Hence, using the results of section I, we conclude that $p(x + \mu, y)$ is a C polynomial of degree $\leq n$. That its degree is exactly n, or that for some $x, y \Delta^{n} \Phi(\mu) \not\equiv 0$ will be shown later.

In order to prove that if p(x) is an E polynomial of degree n by definition 3, it is also an E polynomial of degree n by definition 3', I shall state some results without proof from Martin's thesis. These results can be readily proved.

312

A NOTE ON ABSTRACT POLYNOMIALS IN COMPLEX SPACES. 313 Let $p(x + \mu, \gamma)$ be represented in the form

(6)
$$p(x+\mu,y) = k_0(x,y) + \mu \cdot k_1(x,y) + \ldots + \mu^n \cdot k_n(x,y).$$

The following lemmas all assume that p(x) is a polynomial according to definition 3.

LEMMA 2. — If p(x) is an E polynomial, then $k_r(x, y)$ is homogeneous in y of degree r.

LEMMA 3. — For fixed $x, k_r(x, y)$ is a polynomial in y of degree $\leq n$, and for fixed $y, k_r(x, y)$ is a polynomial of degree $\leq n$ in x.

LEMMA 4. — If p(x) is a homogeneous polynomial, then $k_r(x, y)$ is homogeneous of degree r in y and homogeneous of degree n - r in x.

LEMMA 5. — If p(x) is a polynomial of degree n and is homogeneous of degree m, then m = n.

LEMMA 6. — If p(x) is a homogeneous polynomial of degree m, then for some Δx , $\Delta p(x)$ is a polynomial of degree m - 1.

We can also express p(x) as a sum of homogeneous polynomials,

(7)
$$p(y) = h_0(y) + h_1(y) + \ldots + h_n(y),$$

by setting $h_r(y) = k_r(0, y)$. By taking p(x) as the sum of homogeneous polynomials and using lemma 6 successively, we prove :

LEMMA 7. — If p(x) is an E polynomial of degree n, then $\Delta^{n+1}p(x) \equiv 0$ and for some choice of the increments $\Delta_i x$, $\Delta^n p(x) \not\equiv 0$.

We must now prove that p(x) is Gateaux differentiable.

$$p(x + \mu \cdot \Delta x) = k_0(x, \Delta x) + \mu \cdot k_1(x, \Delta x) + \ldots + \mu^n \cdot k_n(x, \Delta x)$$
$$p(x + \mu \cdot \Delta x) - p(x) = \mu \cdot k_1(x, \Delta x) + \ldots + \mu^n \cdot k_n(x, \Delta x)$$

since $k_0(x, \Delta x) = k_0(x, 0)$. Dividing by μ we see that the limit as $\mu \to 0$ exists and equals $k_1(x, \Delta x)$. Using this result and lemma 7 we conclude that if p(x) is an E polynomial of degree *n* by definition 3 then it is also an E polynomial of degree *n* by definition 3'.

314 I. E. HIGHBERG. — ABSTRACT POLYNOMIALS, ETC.

In the proof of the converse which preceded this we did not show that if p(x) is a polynomial of degree *n* by definition 3' then it is exactly of degree *n* by definition 3. This now follows from lemma 7, for if it were of degree < n by definition 3 then $\Delta^n p(x) \equiv 0$, and it could not be of degree *n* by definition 3'. Hence we have proved the complete equivalence of the two definitions 3 and 3'.

Note. — It seems to be true that if in definition 2' of a C polynomial we leave out the condition of Gateaux differentiability, or in other words, if we do not add the requirements of Gateaux differentiability to Fréchet's definition of a polynomial, then $\Phi(\mu)$ will have the form

$$\Phi(\mu) = a_{00} + \mu \cdot a_{10} + \overline{\mu} \cdot a_{11} + \mu^2 \cdot a_{20} + \mu \overline{\mu} \cdot a_{21} + \overline{\mu}^2 \cdot a_{22} + \dots \\ + \mu^n \cdot a_{n0} + \mu^{n-1} \overline{\mu} \cdot a_{n1} + \dots + \mu \overline{\mu}^{n-1} \cdot a_{n,n-1} + \overline{\mu}^n \cdot a_{nn}$$

This has been verified for n = 0, 1, 2, but the general case has not yet been proved. It is my intention to discuss the properties of functions like the above — and which we might call \overline{C} polynomials — in a later paper.