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A note on abstract Polynomials in complex Spaces;

Br 1. E. HIGHBERG (*).

Fréchet (°), in his 1929 paper, gave a definition of polynomials in
a very general sort of a space — an « espace algébrophile » ‘— With
a real multiplier domain. His definition is essentially asfollows. A
function f(x) defined on an « espace algébrophile » E, to a like
space E', will be called a polynomial, if f(x)1s continuous and for
some integer n, A”f(x)=__ o, where

Afi(æ)=A,,[Afl-lf(æ)], A°f(æ)=f(æ), A,f(x)=/(æ+A,x)—f(æ)

and the A,-æ are arbitrary increments.
Gateaux (“) has defined a polynomial in a different manner and

Michal (") and Martin ("‘) have considered similar definitions in
Banach spaces. Let E and E' be Banach spaces and A the associated
number system, where A is either R, the real number system, or C,
the complex number system. Iff( p…) is a function on A to E, Martin 

(') I wish to thank Professor A. D. Michal for many helpful criticisms and
suggestions in the preparation of this paper.

(°) Les polynomes abstraits (Journal de Mathématiques pures et appli—
quées, 9° série,t. 8, 1929,pp..71)

(" ) Sur diverses questions du Calcul fonctionnel (Bull. Sac. de France,
vol.50,1922).( ) A. D. Mumu. and R. S. MARTIN, Some Expansion: in Vector Space
(Journal de Mathématiques pures et appliquées, 9° série, t. 13, 1934, p. 69).

(5) R. S. MARTIN, Contributions to the Theory of Functionals (Thesis,
California Institute of Technology, 1932).
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defines it to be a polynomial if it is expressible in the form
f(P—) =ao+ [J—.a.+. . .+ p.".a,,

where the a; are fixed elements in E. Let p(æ) be a function on E to E’.
Martin calls it a polynomial if, 1° p(x) is continuous, 2° for each
pair a:, y, p(æ+ p..y) is a polynomial in p. with coefficients in E'.
When A is R, Martin showed that his definition and Fréchet’s were
equivalent. (Incidentally, Fréchet proved half of the equivalence in
his paper). Martin conjectured that ifA is C, we would have to add
to Fréchet’s conditions the further condition of Fréchet difl'erentia-
bility ofp(œ) at w = 0 in order that the two definitionsbe equivalent.
That this is not enough I will show later.

In this paper will be considered what additional restrictions must
be imposed in a complex « espace algébr0phile » in order that the
definition of a polynomial given by Fréchet be equivalent to the
definition considered by Martin and Michal.

[.

Let E be a complex « espace algébrophile. » In Fréchet—’s postu—
lates we can replace the real number system R by C, and all the
theorems on continuity remain valid. I shall assume them in the
remainder of this paper.

Definition l. — lf f(æ) is a function on a space E to a space E’ of
like nature, it will be said to possess a Gateaux differential at the
point a:.,, if for any 2 in E

limf(æ0+ P—-3l —f(£n) '
C

PM P
(p.… )

exists, independent of the way in which p. —+ 0.
We do not require this limit to be linear in :.
Lan… 1. —— Let x(p)=f(p).a, where a is in E and f(p.) is a

function on C to C having a derivative everywhere. Then y_ ( p.) is
Gateaux difl‘erentiable everywhere.



A NOTE ON ABSTRACT POLYNOMIALS IN COMPLEX SPACES. 309
Proof

“/…W+ … —x(u) =) ./'(H+… —f<#>_a! ‘
t7l

' 
Since lim/___WHl‘l—W)

l->0
t)

' . . .
function of p., we conclude that the Gateaux d1fi‘erent1al ex1sts and
equals X/"(p.) . a.

That f(p.).a+g(p.).b has a Gateaux differential everywhere if
f( p…) and g( p.) have derivatives everywhere follows from the conti-
nuity of the operation .:v—l—y. The extension to any finite number of
terms is obvious.

=f’({L), and since g(p.).a is a continuous

Definition 2. — If <b(p) is a function on C to E, then it will be
called a C polynomial if it can be expressed in the form

(!) ®(p)=ao+p.al+.…+p.".an

where a… . . ., a,, are fixed elements in E. If a,,#o it will he said to
be of degree n.

Definition 2’. —— Let (I)( p.) be a function on C to E. Then ®(p) will
he said to be a C polynomial if :

1° Œ(p) is continuous,
'2" for some integer n, A"+' (I)(p.) E 0,
3" Œ(p.) possesses a Gateaux differential everywhere. It will he

said to be of degree n, if A"<D(p.) #. o.

1 shall now prove the equivalenceof the two definitions. First [ shall
show that if ‘D(p.) is a polynomial of degree n according to defini—
tion 2, then it is a polynomial of degree n according to definition 2’.

The proof that ®(p), where <D( p.) has the form (i), satisfies
condition 1° and 2° in definition 2’ is the same as in Fréchet’s paper.
That it satisfies 3° is a consequence of lemma 1 and the remarks
following the lemma. That A"‘D( p.) ÿé 0 is obvious.

To prove the converse, that a polynomial of degree n according to
definition ‘2’ is a polynomial of degree n according to definition 2, we
have.

laura. de Math., tome XVI. — Faso. III, 1q37. [IO
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Case 1 : n = 0. Then A<D(‘A)æ 0, or (DO. + p.)— (b(k) E 0. Hence
®(l): a… which is of the form (1).

Case ll : n=r, A'-’(l>(7Ç)æo. Then
«D().+p+v)—-Œ(7.+y.l ««lbü.+v)—f—«b(}.)5u.

Setting ).=o, we get
(a) ‘D(p+v)—‘D(W—®(‘J)+‘D(o)so.

Set 7.(7«.3£‘D(1)—Œ(0). Then '/_(‘A) is continuous since Œ(l) is
continuous, and moreover is Gateaux diflerentiable for the same
reason. Using equation (2) we get
(3) x(7.+p)=fll)+x(pl

Then by familiar methods we have

x(a.p)=a.z(p.)
where a is a real multiplier. Hence if ‘A = ‘A. + z'l2

l+Î 1_z
7.…+  y_(_7.)=L.7_(H+).._…x(i)= y_(i)

@
'>, [

where Ï is the complex conjugate of ?… Hence .
may=%+Lm+îm.

Since it was assumed that d’O.) was Gateaux differentiable we see

that Î.b. must also be. This is a contradiction and hence b' = 0.
Then CD(X) is of the form (1).

It is to be noted that in this case we do not require the full condi-
tion on ®(7k) of Gateaux differentiability everywhere, differentia-
bility at one point is sufficient to make the two definitions equivalent.
When n=1, condition 3° of definition 2’ may be replaced by the
algebraic condition,

(D(l) — Œ(o) _ ®(i) —— ®(o)_
[ !w  

[ shall now prove the general case by induction.

Case III : n: n, A”“®(X)EO. Then A”[(D(X + {i)—®(k)]EO.
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Since (D(°À) is continuous, (I)(X + p) ——<D(M considered as a func—
tion of X is continuous. Since ®(X) possesses & Gateaux differential
everywhere, ®(X + p…) —- <I>(X) is also Gateaux difl'erentiable every-
where ('). Hence under the induction hypothesis we will assume
that Œ(7t + p.) —Œ(X) is a C polynomial in )\ of the form (I), and
of degree n — 1 at most. Let us set

Evidently, ‘.lJ()\, p.) is also a C polynomial of degree at most n—— 1

in )\ and since it is symmetric in 7\, p. it is also a C polynomial in p. of
degree at most n — |.

In exactly the same manner as in Fréchet’s paper we prove that

(53 +(À,#)=g'(À+H)—g…—g(a)

where

g(M=— %—|—2_ÀS.B_.,
!

and where % and B_. are constantelements in E. We set

H(i>=<b(i)—gm
and it foll0ws that

ll().+p)=H(À)—+—ll(pi.

Now <I>(X) is continuous and Gateaux differentiable, and g(X) is
continuous and is Gateaux differentiable by lemma 'l. Hence H(X)
is continuous and Gateaux difi‘erentiable and we may conclude that
HO!) = 7\ . H(1). Hence

<b…=-%+ L….)+2 is.B..

Now L]J(l, p.) is of degree n— 1 at most in )\, but the right hand
side of equation (5) is of degree r— 1 at most and hence rg n. 

(1) It is essential that <D(À) be dilferentiable everywhere. For if it is differen-
tiable at only one point we cannot assert that ‘D(l + p.) — ®(pÀ) is differentiable
at all. For example <D(7.): Î2.a is differentiable at À: 0 but nowhere else.
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lfA"Çb(X-)$o, r: n. Thus the equivalence of the two definitions

is established.

Il.

In this section we will complete the equivalence prool‘s by discus—
sing polynomials on a complex « espace algéhrophile » E to a
space E’ of like nature.

Definition 3. —— Let p(æ) be a function on E to E’. Then p(æ) will
he said to be an E polynomial if :

1° p(x) is continuous,
2° for every pair x,y, p(æ+ 7..y) is a C polynominal in 7…

lt will he said to be of degree n, if for some æ,y p(æ + ). .y) is a C
polynomial of degree n and for all x,y is a C polynomial ofdegreeân.

Definition 3’. — Letp(æ) be a function on li to E’. Then p(æ) will
he said to be an E polynomial if :

1° p(x) is continuous,
2“ for some integer n, A"*'p(æ) E— 0, .
3° p(x) possesses a Gateaux differential everywhere.

It will he said to be of degree n, if A"p(æ) ;-é o.

1 shall first prove that a polynomialof degree n according to defini—
tion 3’ is a polynomialof degree n by definition 3.

Let d>(p)=p(æ+ p.y). Then <b(p.) is a function on C to E’ and
is continuous. Furthermore A"“d>(p)50. It may also be readily
shown that d>(p.) is Gateaux differentiable everywhere. Hence, using
the results of section 1, we conclude thatp(x+ p..y) is a C polyno-
mial of degree în. That its degree is exactly 71, or that for some
æ,y A"Œ(p) $ 0 will be shown later.

In order to prove that ifp(x) is an E polynomialof degree n by
definition 3, it is also an E polynomial of degree n by definition 3’,
l shall state some results without proof from Martin’s thesis. These
results can be readily proved.
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Letp(x+ u.y) be represented in the form

(6) p(x + puy): k0(x,y) + p..k,(x,y) +. . .+ p”.k,,(x,y)l

The following lemmas all assume that p(x) is a polynomial
according to definition 3. ’

LEMMA “2. — Ifp(x) is an Epolynomial, then k,.(x,y) is homogeneous
in y of degree r.

LEMMA 3. — Forfixed x, Icr(x, y) is a polynomial iny of degree g n,
andforfixed y, k,.(x, y) is a polynomial of degree ; n in x.

LEMMA 4. — Ifp(x) is a homogeneouspolynomial, then k,.(x, y) is
homogeneous of degree r in y and homogeneous of degree n — r in x.

LEMMA 5. — Ifp(x) is a polynomialof degree n and is homogeneous
of degree m, then m = n.

LEMMA 6. — pr(x) is a homogeneouspolynomialof degree m, then
for some Ax, Ap(x) is a polynomialof degree m — 1 . .

We can also express p(x) as a sum of homogeneous polynomials,
(7) P(Ï)_=ho(Ï)+hi()/)+--—+hn()’)y
by setting h,.(y) = Ic,(o,y). By taking p(x) as the sum of homoge—
neous polynomials and using lemma 6 successively,we prove :

LEMMA 7. — pr(x) is an Epolynomialofdegree n, thenA”“p(x) _=_ 0
and for some choice of the increments A,—x, A"p(x) % 0.

We must now prove thatp(x) is Gateaux differentiable.
p(x + p…Ax)=ko(x, Ax) + p..k1(x, Ax) +. . .+ p".k,.(x, Ax)
p(x+ p.Ax) —p(x) =p.lq(x, Ax) +. . .+ pt".k,,(x, Ax)

since le.,(x, Ax) ='lco(x,o). Dividing by p… we see that the limit
as p. —-> o exists and equals lc“, (x, Ax). Using this result and lemma 7
we conclude that if p(x) is an E polynomial of degree n by defini-
tion 3 then it is also an E polynomial of degree n by definition 3'.
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In the proof of the converse which preceded this we did not show

that if p(æ) is & polynomial of degree n by definition 3’ then it is
exactly of degree n by definition 3. This now follows from lemma 7,
for if it were of degree < n by definition 3 then A"p(æ) E 0, and it
could not be of degree n by definition 3’. Hence we have proved the
complete equivalence of the two definitions 3 and 3’.

Note. — It seems to be true that if in definition '2' of a C polynomial
we leave out the condition of Gateaux dill‘erentiàbility, or in other
words, if we do not add the requirements of Gateaux difl‘erentiahility
to Fréchet’s definition of a polynomial, then <b(p) will have the form

Ü((J—l =a.…+ y.a…+ ;.Î.a… + p".a,0+ pfi.a,i+Ç*.a,,+. ..
+ p.”.a,…+ p."“’ p.a… +. . .+ pp""‘ .a,,_,,.' + p.";a,….

This has been verified for n = o, 1, 2, but the general case has not
yet been proved. It is my intention to discuss the properties of func-
tions like the above — and which we might call Ü polynomials— in
a later paper.


