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A NOTE ON ABSTRACT POLYNOMIALS IN COMPLEX SPACES. 307

A note on abstract Polynomials in complex Spaces;

By 1. E. HIGHBERG (').

Fréchet (?), in his 1929 paper, gave a definition of polynomials in
a very general sort of a space — an « espace algébrophile » — with
a real multiplier domain. His definition is essentially as follows. A
function f(x) detined on an « espace algébrophile » E, to a like
space E', will be called a polynomial, if f(x) is continuous and for
some integer n, A" f(r) = o, where

Arf(z) =A, (A f(2)],  Af(2)=[f(2), Af(e)=[f(z+Az)—[f(2)

and the A;x are arbitrary increments.

Gateaux (*) has defined a polynomial in a different manner and
Michal (*) and Martin (*) have considered similar definitions in
Banach spaces. Let E and E’ be Banach spaces and A the associated
number system, where A is either R, the real number system, or C,
the complex number system. If /() is a function on A to E, Martin

(') I wish to thank Professor A. D). Michal for many helpful criticisms and
suggestions in the preparation of this paper.

(*) Les polynomes abstraits (Journal de Mathématiques pures et appli-
quées, g° série, t. 8, 1929, p. 71).

(*) Sur diverses questions du Calcul fonctionnel (Bull. Soc. de France,
vol, 50, 1922).

(*) A. D. MicsaL and R. S. MartiN, Some Ezpansions in Vector Space
(Journal de Mathématiques pures et appliquées, o° série, t. 13, 1934, p. 69).

(%) R. S. Marmin, Contributions to the Theory of Functionals ( Thesis,
California Institute of Technology, 1932).
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defines it to be a polynomial if it is expressible in the form
J(p)=a,+p.a+...+ p".a,

where the a; are fixed elementsin E. Let p(x)be a function on Eto E'.
Martin calls it a polynomial if, 1° p(x) is continuous, 2° for each
pair z, y, p(x + 1.y) is a polynomial in p. with coefficients in E'.
When A is R, Martin showed that his definition and Fréchet’s were
equivalent. (Incidentally, Fréchet proved half of the equivalence in
his paper). Martin conjectured that if A is C, we would have to add
to Fréchet’s conditions the further condition of Fréchet differentia-
bility of p(x) at = o0 in order that the two definitions be equivalent.
That this is not enough I will show later.

In this paper will be considered what additional restrictions must
be imposed in a complex « espacc algébrophile » in order that the
definition of a polynomial given by Fréchet be equivalent to the
definition considered by Martin and Michal.

L.

Let E be a complex « espace algébrophile. » In Fréchet’s postu-
lates we can replace the real number system R by C, and all the
theorems on continuity remain valid. I shall assume them in the
remainder of this paper.

Definition 1. — If f(x) is a function on a space E to a space E’ of
like nature, it will be said to possess a Gateaux differential at the
point x,, if for any z in E

lim_f(.z‘.,—*— Be3) — f(x)
p>0 *

(rin C)

exists, independent of the way in which i — o.
We do not require this limit to be linear in s.

Lemma 1. — Let y (p)=/f().a, where a is in E and f(p.) is a
Sunction on C to C having a derivative everywhere. Then y () is
Gateaux differentiable everywhere.
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Proof

2+t — () 5 [t —f»)
t ‘ th '

Since lim {2t = /()
>0 £ . . .
function of ., we conclude that the Gateaux differential exists and

equals A f'(p).a.

That f(p).a+ g(p).b has a Gateaux differential everywhere if
f(1) and g() have derivatives everywhere follows from the conti-
nuity of the operation x + y. The extension to any finite number of
terms is obvious.

= f'(), and since g(+).a is a continuous

Definition 2. — If ®(p) is a function on C to E, then it will be
called a C polynomial if it can be expressed in the form

(1) O(p)=a,+p.a+...+ p".az

where a,, ..., a, are fixed elements in E. If a,5£ o it will be said to
be of degree n.

Definition 2'. — Let ®(u.) be a function on C to E. Then ®@(p) will
be said to be a C polynomial if :

1° ®(w) is continuous,
'2° for some integer n, A"~'®(u)=o,
3* ®(u) possesses a Gateaux differential everywhere. It will be
said to be of degree n, if A"®(p.) = o.

1 shall now prove the equivalence of the two definitions. First 1 shall
show that if ®(w) is a polynomial of degree n according to defini-
tion 2, then it is a polynomial of degree n according to definition 2'.

The proof that ®(u), where ®(y) has the form (1), satisfies
condition 1° and 2° in definition 2’ is the same as in Fréchet’s paper.
That it satisfies 3° is a consequence of lemma 1 and the remarks
following the lemma. That A"®( ) =£ o is obvious.

To prove the converse, that a polynomial of degree n according to
definition 2’ is a polynomial of degree n according to definition 2, we
have.

Journ. de Math., Lome XVI. — Fasc. 111, 1937. 4o



310 1. E. HIGHBERG.

Case 1: n=o0. Then A®d()=o0, or ®(% + 1) — d(%) = 0. Hence
®(\) = a,, which is of the form (1).

Case Il : n=1, A?®()1)=0. Then
O +p+v) =B +p) - y) D) =0
Setting » = o, we get
(2) Q(p+v)—P(p) —Pv)+P(0)=o0.

Set Z(2)=®(A)— ®(0). Then 7 (4) is continuous since (1) is
continuous, and moreover is Gateaux differentiable for the same
reason. Using equation (2) we get

(3) YL+ ) = (2) + 7).
Then by familiar methods we have
rla.p)=a.y(p)
where a is a real multiplier. Hence if 7. =%, 417,

P r—1 .
701) A4 —— 7.(1)

2 21

L) =2y (D =+ dy oy (1) =

where 7. is the complex conjugate of 7.. Hence .

®(2)=a, - 2.a,+1.b,.

Since it was assumed that ®(2) was Galeaux differentiable we see
that %.5, must also be. This is a contradiction and hence b, = o.

Then ®(1) is of the form (1).

It is to be noted that in this case we do not require the full condi-
tion on ®(%) of Gateaux differentiability everywhere, differentia-
bility at one point is sufficient to make the two definitions equivalent.
When n =1, condition 3° of definition 2' may be replaced by the
algebraic condition,

D(1) —P(o) _ ®(J) —(D(o).

I l

30’

I shall now prove the general case by induction.

Case IIl : n=n, A" ®(X)=o0. Then A*[®(% + ) — P(1)]=0.
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Since ®(}) is continuous, ®(A + p) — ®(A) considered as a func-
tion of X is continuous. Since ®(1) possesses a Gateaux differential
everywhere, ®(% + ) — ®(}) is also Gateaux differentiable every-
where ('). Hence under the induction hypothesis we will assume
that ®(A + ) —®(}) is a C polynomial in A of the form (r), and
of degree n — 1 at most. Let us set

(%) Yy ) =B+ p) — O(N) — B(p).

Evidently, ¢(2, 1) is also a C polynomial of degree at most n—1
in X and since it is symmetric in A, 1+ it is also a C polynomial in . of
degree at most n — 1.

In exactly the same manner as in Fréchet’s paper we prove that

(3 Y p)=g(A+p)—gh) — g()
where

g =—1{+ X ¥.B,
' 8

and where ¢, and B, are constant elements in E. We set

HM =®() — g(M)
and it follows that
H(h+p)=HQ) + H(p.

Now @() is continuous and Galeaux differentiable, and g(%) is
continuous and is Gateaux differentiable by lemma 1. Hence H(A)
is continuous and Gateaux differentiable and we may conclude that

H(X)=A.H(1). Hence

(M) =— o+ hII(1) + 3 ¥.B.

Now (%, i) is of degree n — 1 at most in 2, but the right hand
side of equation (5) is of degree r — 1 at most and hence r<a.

() It is essential that ®(A) be differentiable everywhere. For if it is differen-
tiable at only one point we cavnot assert that ® (A + ) — ®(2) is differentiable

at all. For example ®(2) = 2".a is differentiable at A= o but nowhere else.
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If A"®(A) £ o, r=n. Thus the equivalence of the two definitions
is established.

1.

In this section we will complete the equivalence proofs by discus-
sing polynomials on a complex « espace algébrophile » E to a
space E’ of like nature.

Definition 3. — Let p(x) be a function on E to E'. Then p(x) will
be said to be an E polynomial if :

1° p(x)is continuous,
2° for every pair x,y, p(x+ 2.y) is a C polynominal in 7.

It will be said to be of degree r, if for some x,y p(x+7.y)isa C
polynomial of degree n and for all &, y is a C polynomial of degree < n.

Definition 3'. — Let p(x) be a function on K to E'. Then p(x) will
be said to be an E polynomial if :

1° p(x) is continuous,
2° for someinteger n,A"'p(x)=o, .
3° p(x) possesses a Gateaux differential evervwhere.

[t will be said to be of degree n, if A"p(x) = o.

I shall first prove that a polynomial of degree n according to defini-
tion 3' is a polynomial of degree n by definition 3.

Let ®(p)=p(x + p.y). Then ®(.) is a function on C to E’ and
is continuous. Furthermore A"+'®(1.)=o. It may also be readily
shown that ®(p.) is Gateaux differentiable everywhere. Hence, using
the results of section I, we conclude that p(x+ ..y) is a C polyno-
mial of degree <n. That its degree is exactly n, or that for some
z,y A"®(p) = o will be shown later.

In order to prove that if p(x) is an E polynomial of degrec n by
definition 3, it is also an E polynomial of degree n by definition 3,
1 shall state some results without proof from Martin’s thesis. These
results can be readily proved.
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Let p(x + .y) be represented in the form
(6) P(x ) =ko(@, y) + 11Ky () +. .+;w./c @, y).

The following lemmas all assume that p(x) is a polynomlal
according to definition 3.

Lemma 2. — If p(x) is an E polynomial, then k.(x, y) is homogeneous
iny of degree r.

Lemma 3. — For fixed x, k.(x,y) is a polynomial in y of degree <n,
and for fixed y, k.(x,y) is a polynomial of degree <n in x.

Lewva 4. — If p(x) is a homogeneous polynomial, then k.(z, y) is
homogencous of degree r in y and homogeneous of degree n —r in «.

Lewya 5. — If p(x) is a polynomial of degree n and is homogeneous
of degree m, then m = n.

Lemma 6. — If p(x) is a homogeneous polynomial of degree m, then
Sfor some Az, Ap(x) is a polynomial of degree m — 1. :

We can also express p(«) as a sum of homogeneous polynomials,
(7) PY)=ho(y) +hi(y) +...+ ha(y),

by setting A.(y)=# (o,y) By taking p(x) as the sum of homoge-
neous polynomials and using lemma 6 successively, we prove :

Lemma 7. — If p(x) is an E polynomialof degree n, then A*' p(x)=o
and for some choice of the increments A;x, A"p(x) = o.

‘We must now prove that p(x) is Gateaux differentiable.

p(x+p Ax)y=ky(z,Az) + p. ki (2, Ax) +. ..+ pt kn(x, AZ)
Pz +p.Axr) —p(z)=p. k(x,Az) +...4+ p*. ko(2, A)

since k,(x,Ax)=k,(x,0). Dividing by p we see that the limit
as (. — o exists and equals &, (x, Az). Using this result and lemma 7
we conclude that if p(z) is an E polynomial of degree n by defini-
tion 3 then it is also an E polynomial of degree n by definition 3'.
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In the proof of the converse which preceded this we did not show
that if p(x) is a polynomial of degree n by definition 3’ then it is
exactly of degree n by definition 3. This now follows from lemma 7,
for if it were of degree < n by definition 3 then A"p(x)=o0, and it
could not be of degree n by definition 3'. Hence we have proved the
complete equivalence of the two definitions 3 and 3'.

Note. — It seems to be true that if in definition 2’ of a C polynomial
we leave out the condition of Gateaux differentiability, or in other
words, if we do not add the requirements of Gateaux differentiability
to Fréchet's definition of a polynomial, then ®(.) will have the form

O(p) =g+ 1.+ (.0 + P22 0ag+ Ph Gy + P laa ...

g T Ly A BT ey @

This has been verified for n = o, 1, 2, but the general case has not
yet been proved. It is my intention to discuss the properties of func-
tions like the above — and which we might call C polynomials — in
a later paper.



