

JOURNAL
DE
MATHÉMATIQUES
PURÉS ET APPLIQUÉES

FONDÉ EN 1836 ET PUBLIÉ JUSQU'EN 1874

PAR JOSEPH LIOUVILLE

I. E. HIGHBERG

A note on abstract Polynomials in complex Spaces

Journal de mathématiques pures et appliquées 9^e série, tome 16, n^o 1-4 (1937), p. 307-314.

http://www.numdam.org/item?id=JMPA_1937_9_16_1-4_307_0

{gallica NUMDAM

Article numérisé dans le cadre du programme
Gallica de la Bibliothèque nationale de France
<http://gallica.bnf.fr/>

et catalogué par Mathdoc
dans le cadre du pôle associé BnF/Mathdoc
<http://www.numdam.org/journals/JMPA>

*A note on abstract Polynomials in complex Spaces;***By I. E. HIGHBERG (').**

Fréchet (²), in his 1929 paper, gave a definition of polynomials in a very general sort of a space — an « espace algébrophile » — with a real multiplier domain. His definition is essentially as follows. A function $f(x)$ defined on an « espace algébrophile » E , to a like space E' , will be called a polynomial, if $f(x)$ is continuous and for some integer n , $\Delta^n f(x) \equiv 0$, where

$$\Delta^n f(x) = \Delta_n [\Delta^{n-1} f(x)], \quad \Delta^0 f(x) = f(x), \quad \Delta_i f(x) = f(x + \Delta_i x) - f(x)$$

and the $\Delta_i x$ are arbitrary increments.

Gateaux (³) has defined a polynomial in a different manner and Michal (⁴) and Martin (⁵) have considered similar definitions in Banach spaces. Let E and E' be Banach spaces and A the associated number system, where A is either R , the real number system, or C , the complex number system. If $f(\mu)$ is a function on A to E , Martin

(¹) I wish to thank Professor A. D. Michal for many helpful criticisms and suggestions in the preparation of this paper.

(²) *Les polynomes abstraits* (*Journal de Mathématiques pures et appliquées*, 9^e série, t. 8, 1929, p. 71).

(³) *Sur diverses questions du Calcul fonctionnel* (*Bull. Soc. de France*, vol. 50, 1922).

(⁴) A. D. MICHAL and R. S. MARTIN, *Some Expansions in Vector Space* (*Journal de Mathématiques pures et appliquées*, 9^e série, t. 13, 1934, p. 69).

(⁵) R. S. MARTIN, *Contributions to the Theory of Functionals* (*Thesis*, California Institute of Technology, 1932).

defines it to be a polynomial if it is expressible in the form

$$f(\mu) = a_0 + \mu \cdot a_1 + \dots + \mu^n \cdot a_n$$

where the a_i are fixed elements in E. Let $p(x)$ be a function on E to E'. Martin calls it a polynomial if, 1° $p(x)$ is continuous, 2° for each pair x, y , $p(x + \mu \cdot y)$ is a polynomial in μ with coefficients in E'. When A is R, Martin showed that his definition and Fréchet's were equivalent. (Incidentally, Fréchet proved half of the equivalence in his paper). Martin conjectured that if A is C, we would have to add to Fréchet's conditions the further condition of Fréchet differentiability of $p(x)$ at $x = 0$ in order that the two definitions be equivalent. That this is not enough I will show later.

In this paper will be considered what additional restrictions must be imposed in a complex « espace algébrophile » in order that the definition of a polynomial given by Fréchet be equivalent to the definition considered by Martin and Michal.

I.

Let E be a complex « espace algébrophile. » In Fréchet's postulates we can replace the real number system R by C, and all the theorems on continuity remain valid. I shall assume them in the remainder of this paper.

Definition 1. — If $f(x)$ is a function on a space E to a space E' of like nature, it will be said to possess a Gateaux differential at the point x_0 , if for any z in E

$$\lim_{\mu \rightarrow 0} \frac{f(x_0 + \mu \cdot z) - f(x_0)}{\mu} \quad (\mu \text{ in } C)$$

exists, independent of the way in which $\mu \rightarrow 0$.

We do not require this limit to be linear in z .

LEMMA 1. — *Let $\chi(\mu) = f(\mu) \cdot a$, where a is in E and $f(\mu)$ is a function on C to C having a derivative everywhere. Then $\chi(\mu)$ is Gateaux differentiable everywhere.*

Proof

$$\frac{\chi(\mu + t\lambda) - \chi(\mu)}{t} = \lambda \frac{f(\mu + t\lambda) - f(\mu)}{t\lambda} \cdot a.$$

Since $\lim_{t \rightarrow 0} \frac{f(\mu + t\lambda) - f(\mu)}{t\lambda} = f'(\mu)$, and since $g(\mu) \cdot a$ is a continuous function of μ , we conclude that the Gateaux differential exists and equals $\lambda f'(\mu) \cdot a$.

That $f(\mu) \cdot a + g(\mu) \cdot b$ has a Gateaux differential everywhere if $f(\mu)$ and $g(\mu)$ have derivatives everywhere follows from the continuity of the operation $x + y$. The extension to any finite number of terms is obvious.

Definition 2. — If $\Phi(\mu)$ is a function on C to E , then it will be called a C polynomial if it can be expressed in the form

$$(1) \quad \Phi(\mu) = a_0 + \mu \cdot a_1 + \dots + \mu^n \cdot a_n$$

where a_0, \dots, a_n are fixed elements in E . If $a_n \neq 0$ it will be said to be of degree n .

Definition 2'. — Let $\Phi(\mu)$ be a function on C to E . Then $\Phi(\mu)$ will be said to be a C polynomial if :

- 1° $\Phi(\mu)$ is continuous,
- 2° for some integer n , $\Delta^{n+1} \Phi(\mu) \equiv 0$,
- 3° $\Phi(\mu)$ possesses a Gateaux differential everywhere. It will be said to be of degree n , if $\Delta^n \Phi(\mu) \neq 0$.

I shall now prove the equivalence of the two definitions. First I shall show that if $\Phi(\mu)$ is a polynomial of degree n according to definition 2, then it is a polynomial of degree n according to definition 2'.

The proof that $\Phi(\mu)$, where $\Phi(\mu)$ has the form (1), satisfies condition 1° and 2° in definition 2' is the same as in Fréchet's paper. That it satisfies 3° is a consequence of lemma 1 and the remarks following the lemma. That $\Delta^n \Phi(\mu) \neq 0$ is obvious.

To prove the converse, that a polynomial of degree n according to definition 2' is a polynomial of degree n according to definition 2, we have.

Case I : $n = 0$. Then $\Delta\Phi(\lambda) \equiv 0$, or $\Phi(\lambda + \mu) - \Phi(\lambda) \equiv 0$. Hence $\Phi(\lambda) = a_0$, which is of the form (1).

Case II : $n = 1$, $\Delta^2\Phi(\lambda) \equiv 0$. Then

$$\Phi(\lambda + \mu + \nu) - \Phi(\lambda + \mu) - \Phi(\lambda + \nu) + \Phi(\lambda) \equiv 0.$$

Setting $\lambda = 0$, we get

$$(2) \quad \Phi(\mu + \nu) - \Phi(\mu) - \Phi(\nu) + \Phi(0) \equiv 0.$$

Set $\gamma(\lambda) \equiv \Phi(\lambda) - \Phi(0)$. Then $\gamma(\lambda)$ is continuous since $\Phi(\lambda)$ is continuous, and moreover is Gateaux differentiable for the same reason. Using equation (2) we get

$$(3) \quad \gamma(\lambda + \mu) = \gamma(\lambda) + \gamma(\mu).$$

Then by familiar methods we have

$$\gamma(a \cdot \mu) = a \cdot \gamma(\mu)$$

where a is a real multiplier. Hence if $\lambda = \lambda_1 + i\lambda_2$,

$$\gamma(\lambda) = \lambda_1 \cdot \gamma(1) + \lambda_2 \cdot \gamma(i) = \frac{\lambda + \bar{\lambda}}{2} \gamma(1) + \frac{\lambda - \bar{\lambda}}{2i} \gamma(i)$$

where $\bar{\lambda}$ is the complex conjugate of λ . Hence

$$\Phi(\lambda) = a_0 + \lambda_1 a_1 + \bar{\lambda}_1 b_1.$$

Since it was assumed that $\Phi(\lambda)$ was Gateaux differentiable we see that $\bar{\lambda}_1 b_1$ must also be. This is a contradiction and hence $b_1 = 0$. Then $\Phi(\lambda)$ is of the form (1).

It is to be noted that in this case we do not require the full condition on $\Phi(\lambda)$ of Gateaux differentiability everywhere, differentiability at one point is sufficient to make the two definitions equivalent. When $n = 1$, condition 3° of definition 2' may be replaced by the algebraic condition,

$$3^{\circ'} \quad \frac{\Phi(1) - \Phi(0)}{1} = \frac{\Phi(i) - \Phi(0)}{i}.$$

I shall now prove the general case by induction.

Case III : $n = n$, $\Delta^{n+1}\Phi(\lambda) \equiv 0$. Then $\Delta^n[\Phi(\lambda + \mu) - \Phi(\lambda)] \equiv 0$.

Since $\Phi(\lambda)$ is continuous, $\Phi(\lambda + \mu) - \Phi(\lambda)$ considered as a function of λ is continuous. Since $\Phi(\lambda)$ possesses a Gateaux differential everywhere, $\Phi(\lambda + \mu) - \Phi(\lambda)$ is also Gateaux differentiable everywhere ⁽¹⁾. Hence under the induction hypothesis we will assume that $\Phi(\lambda + \mu) - \Phi(\lambda)$ is a C polynomial in λ of the form (1), and of degree $n - 1$ at most. Let us set

$$(4) \quad \psi(\lambda, \mu) = \Phi(\lambda + \mu) - \Phi(\lambda) - \Phi(\mu).$$

Evidently, $\psi(\lambda, \mu)$ is also a C polynomial of degree at most $n - 1$ in λ and since it is symmetric in λ, μ it is also a C polynomial in μ of degree at most $n - 1$.

In exactly the same manner as in Fréchet's paper we prove that

$$(5) \quad \psi(\lambda, \mu) = g(\lambda + \mu) - g(\lambda) - g(\mu)$$

where

$$g(\lambda) = -\psi_0 + \sum_1^r \lambda^s \cdot B_s,$$

and where ψ_0 and B_s are constant elements in E. We set

$$H(\lambda) = \Phi(\lambda) - g(\lambda)$$

and it follows that

$$H(\lambda + \mu) = H(\lambda) + H(\mu).$$

Now $\Phi(\lambda)$ is continuous and Gateaux differentiable, and $g(\lambda)$ is continuous and is Gateaux differentiable by lemma 1. Hence $H(\lambda)$ is continuous and Gateaux differentiable and we may conclude that $H(\lambda) = \lambda \cdot H(1)$. Hence

$$\Phi(\lambda) = -\psi_0 + \lambda \cdot H(1) + \sum_1^r \lambda^s \cdot B_s.$$

Now $\psi(\lambda, \mu)$ is of degree $n - 1$ at most in λ , but the right hand side of equation (5) is of degree $r - 1$ at most and hence $r \leq n$.

(1) It is essential that $\Phi(\lambda)$ be differentiable everywhere. For if it is differentiable at only one point we cannot assert that $\Phi(\lambda + \mu) - \Phi(\lambda)$ is differentiable at all. For example $\Phi(\lambda) = \bar{\lambda}^2 \cdot \alpha$ is differentiable at $\lambda = 0$ but nowhere else.

If $\Delta^n \Phi(\lambda) \not\equiv 0$, $r = n$. Thus the equivalence of the two definitions is established.

II.

In this section we will complete the equivalence proofs by discussing polynomials on a complex « espace algébrophile » E to a space E' of like nature.

Definition 3. — Let $p(x)$ be a function on E to E' . Then $p(x)$ will be said to be an E polynomial if :

- 1° $p(x)$ is continuous,
- 2° for every pair x, y , $p(x + \lambda \cdot y)$ is a C polynomial in λ .

It will be said to be of degree n , if for some x, y $p(x + \lambda \cdot y)$ is a C polynomial of degree n and for all x, y is a C polynomial of degree $\leq n$.

Definition 3'. — Let $p(x)$ be a function on E to E' . Then $p(x)$ will be said to be an E polynomial if :

- 1° $p(x)$ is continuous,
- 2° for some integer n , $\Delta^{n+1} p(x) \equiv 0$,
- 3° $p(x)$ possesses a Gateaux differential everywhere.

It will be said to be of degree n , if $\Delta^n p(x) \not\equiv 0$.

I shall first prove that a polynomial of degree n according to definition 3' is a polynomial of degree n by definition 3.

Let $\Phi(\mu) = p(x + \mu \cdot y)$. Then $\Phi(\mu)$ is a function on C to E' and is continuous. Furthermore $\Delta^{n+1} \Phi(\mu) \equiv 0$. It may also be readily shown that $\Phi(\mu)$ is Gateaux differentiable everywhere. Hence, using the results of section I, we conclude that $p(x + \mu \cdot y)$ is a C polynomial of degree $\leq n$. That its degree is exactly n , or that for some x, y $\Delta^n \Phi(\mu) \not\equiv 0$ will be shown later.

In order to prove that if $p(x)$ is an E polynomial of degree n by definition 3, it is also an E polynomial of degree n by definition 3', I shall state some results without proof from Martin's thesis. These results can be readily proved.

Let $p(x + \mu \cdot y)$ be represented in the form

$$(6) \quad p(x + \mu \cdot y) = k_0(x, y) + \mu \cdot k_1(x, y) + \dots + \mu^n \cdot k_n(x, y).$$

The following lemmas all assume that $p(x)$ is a polynomial according to definition 3.

LEMMA 2. — If $p(x)$ is an E polynomial, then $k_r(x, y)$ is homogeneous in y of degree r .

LEMMA 3. — For fixed x , $k_r(x, y)$ is a polynomial in y of degree $\leq n$, and for fixed y , $k_r(x, y)$ is a polynomial of degree $\leq n$ in x .

LEMMA 4. — If $p(x)$ is a homogeneous polynomial, then $k_r(x, y)$ is homogeneous of degree r in y and homogeneous of degree $n - r$ in x .

LEMMA 5. — If $p(x)$ is a polynomial of degree n and is homogeneous of degree m , then $m = n$.

LEMMA 6. — If $p(x)$ is a homogeneous polynomial of degree m , then for some Δx , $\Delta p(x)$ is a polynomial of degree $m - 1$.

We can also express $p(x)$ as a sum of homogeneous polynomials,

$$(7) \quad p(y) = h_0(y) + h_1(y) + \dots + h_n(y),$$

by setting $h_r(y) = k_r(0, y)$. By taking $p(x)$ as the sum of homogeneous polynomials and using lemma 6 successively, we prove :

LEMMA 7. — If $p(x)$ is an E polynomial of degree n , then $\Delta^{n+1} p(x) \equiv 0$ and for some choice of the increments $\Delta_i x$, $\Delta^n p(x) \not\equiv 0$.

We must now prove that $p(x)$ is Gateaux differentiable.

$$p(x + \mu \cdot \Delta x) = k_0(x, \Delta x) + \mu \cdot k_1(x, \Delta x) + \dots + \mu^n \cdot k_n(x, \Delta x)$$

$$p(x + \mu \cdot \Delta x) - p(x) = \mu \cdot k_1(x, \Delta x) + \dots + \mu^n \cdot k_n(x, \Delta x)$$

since $k_0(x, \Delta x) = k_0(x, 0)$. Dividing by μ we see that the limit as $\mu \rightarrow 0$ exists and equals $k_1(x, \Delta x)$. Using this result and lemma 7 we conclude that if $p(x)$ is an E polynomial of degree n by definition 3 then it is also an E polynomial of degree n by definition 3'.

In the proof of the converse which preceded this we did not show that if $p(x)$ is a polynomial of degree n by definition 3' then it is exactly of degree n by definition 3. This now follows from lemma 7, for if it were of degree $< n$ by definition 3 then $\Delta^n p(x) \equiv 0$, and it could not be of degree n by definition 3'. Hence we have proved *the complete equivalence of the two definitions 3 and 3'*.

Note. — It seems to be true that if in definition 2' of a C polynomial we leave out the condition of Gateaux differentiability, or in other words, if we do not add the requirements of Gateaux differentiability to Fréchet's definition of a polynomial, then $\Phi(\mu)$ will have the form

$$\begin{aligned}\Phi(\mu) = & a_{00} + \mu \cdot a_{10} + \bar{\mu} \cdot a_{11} + \mu^2 \cdot a_{20} + \mu \bar{\mu} \cdot a_{21} + \bar{\mu}^2 \cdot a_{22} + \dots \\ & + \mu^n \cdot a_{n0} + \mu^{n-1} \bar{\mu} \cdot a_{n1} + \dots + \mu \bar{\mu}^{n-1} \cdot a_{n,n-1} + \bar{\mu}^n \cdot a_{nn}.\end{aligned}$$

This has been verified for $n = 0, 1, 2$, but the general case has not yet been proved. It is my intention to discuss the properties of functions like the above — and which we might call \bar{C} polynomials — in a later paper.