JOURNAL

DR

MATHEMATIQUES PURES ET APPLIQUÉES
 FONDÉ EN 1836 ET PUBLIE JUSQU'EN 1874
 Par Joseph Liouville

I. E. Highberg
 A note on abstract Polynomials in complex Spaces

Journal de mathématiques pures et appliquées 9^{e} série, tome 16, nº 1-4 (1937), p. 307314.
http://www.numdam.org/item?id=JMPA_1937_9_16_1-4_307_0

Article numérisé dans le cadre du programme Gallica de la Bibliothèque nationale de France http://gallica.bnf.fr/

A note on abstract polynomials in complex spaces.

A note on abstract Polynomials in complex Spaces;

By 1. E. HIGHBERG (').

Fréchet (${ }^{2}$), in his 1929 paper, gave a definition of polynomials in a very general sort of a space - an "espace algébrophile »" with a real multiplier domain. His definition is essentially as follows. A function $f(x)$ detined on an "espace algébrophile" E, to a like space E^{\prime}, will be called a polynomial, if $f(x)$ is continuous and for some integer $n, \Delta^{n} f(x) \equiv 0$, where
$\Delta^{n} f(x)=\Delta_{n}\left[\Delta^{n-1} f(x)\right], \quad \Delta^{v} f(x)=f(x), \quad \Delta_{i} f(x)=f\left(x+\Delta_{i} x\right)-f(x)$
and the $\Delta_{i} x$ are arbitrary increments.
Gateaux $\left({ }^{3}\right)$ has defined a polynomial in a different manner and Michal (${ }^{\wedge}$) and Martin (${ }^{5}$) have considered similar definitions in Banach spaces. Let E and E^{\prime} be Banach spaces and A the associated number system, where A is either R, the real number system, or C, the complex number system. If $f(\mu)$ is a function on \mathbf{A} to E , Martin

[^0]defines it to be a polynomial if it is expressible in the form
$$
f(\mu)=a_{0}+\mu \cdot a_{1}+\ldots+\mu^{n} \cdot a_{n}
$$
where the a_{i} are fixed elements in E. Let $p(x)$ be a function on E to E^{\prime}. Martin calls it a polynomial if, $1^{\circ} p(x)$ is continuous, 2° for each pair $x, y, p(x+\mu . y)$ is a polynomial in μ with coefficients in E^{\prime}. When A is R, Martin showed that his definition and Fréchet's were equivalent. (Incidentally, Fréchet proved half of the equivalence in his paper). Martin conjectured that if A is C, we would have to add to Fréchet's conditions the further condition of Fréchet differentiability of $p(x)$ at $x=0$ in order that the two definitions be equivalent. That this is not enough I will show later.

In this paper will be considered what additional restrictions must be imposed in a complex "espacc algébrophile» in order that the definition of a polynomial given by Fréchet be equivalent to the definition considered by Martin and Michal.
I.

Let E be a complex « espace algébrophile. ע In Fréchet's postulates we can replace the real number system R by C, and all the theorems on continuity remain valid. I shall assume them in the remainder of this paper.

Definition 1. - If $f(x)$ is a function on a space \mathbf{E} to a space \mathbf{E}^{\prime} of like nature, it will be said to possess a Gateaux differential at the point x_{0}, if for any \boldsymbol{z} in E

$$
\lim _{\mu \rightarrow 0} \frac{f\left(x_{0}+\mu . z\right)-f\left(x_{n}\right)}{\mu} \quad(\mu \text { in } C)
$$

exists, independent of the way in which $\mu \rightarrow 0$.
We do not require this limit to be linear in \boldsymbol{z}.
Lemm 1. - Let $\chi(\mu)=f(\mu)$. a, where a is in E and $f(\mu$.$) is a$ function on C to C having a derivative everywhere. Then $\chi_{\text {. }}(\mu)$ is Gateaux differentiable everywhere.

Proof

$$
\frac{\chi(\mu+t \lambda)-\chi .(\mu)}{t}=\lambda \cdot \frac{f(\mu+t \lambda)-f(\mu)}{t \lambda} \cdot a .
$$

Since $\lim _{t \rightarrow 0} \frac{f(\mu+t \lambda)-f(\mu)}{t \lambda}=f^{\prime}(\mu)$, and since $g(\mu) . a$ is a continuous function of μ, we conclude that the Gateaux differential exists and equals $\lambda f^{\prime}(\mu) . a$.

That $f(\mu) \cdot a+g(\mu) \cdot b$ has a Gateaux differential everywhere if $f(\mu)$ and $g(\mu)$ have derivatives everywhere follows from the continuity of the operation $x+y$. The extension to any finite number of terms is obvious.

Definition 2. - If $\Phi(\mu)$ is a function on C to E , then it will be called a C polynomial if it can be expressed in the form

$$
\begin{equation*}
\boldsymbol{\Phi}(\mu)=a_{0}+\mu \cdot a_{1}+\ldots+\mu^{\prime \prime} \cdot a_{n} \tag{1}
\end{equation*}
$$

where a_{0}, \ldots, a_{n} are fixed elements in E. If $a_{n} \neq \mathrm{o}$ it will be said to be of degree n.

Definition 2^{\prime}. - Let $\Phi(\mu)$ be a function on C to E. Then $\Phi(\mu)$ will be said to be a C polynomial if :
$1^{0} \Phi(\mu)$ is continuous,
$2^{\prime \prime}$ for some integer $n, \Delta^{n+1} \Phi(\mu) \equiv 0$,
$3^{\circ} \Phi(\mu)$ possesses a Gateaux differential everywhere. It will be said to be of degree n, if $\Delta^{\prime \prime} \Phi(\mu) \neq 0$.

1 shall now prove the equivalence of the two definitions. First I shall show that if $\Phi(\mu)$ is a polynomial of degree n according to definition 2 , then it is a polynomial of degree n according to definition 2^{\prime}.

The proof that $\Phi(\mu)$, where $\Phi(\mu)$ has the form (1), satisfies condition I° and 2° in definition 9^{\prime} is the same as in Fréchet's paper. That it satisfies 3° is a consequence of lemma 1 and the remarks following the lemma. That $\Delta^{n} \Phi(\mu) \neq 0$ is obvious.

To prove the converse, that a polynomial of degree n according to definition 2^{\prime} is a polynomial of degree n according to definition 2 , we have.

Case I : $n=0$. Then $\Delta \Phi(\lambda) \equiv 0$ or $\Phi(\lambda+\mu)-\Phi(\lambda) \equiv 0$. Hence $\Phi(\lambda)=a_{0}$, which is of the form (t$)$.

Case II : $n=1, \Delta^{2} \boldsymbol{\Phi}(\lambda) \equiv 0$. Then

$$
\boldsymbol{\Phi}(\lambda+\mu+\nu)-\boldsymbol{\Phi}(\lambda+\mu)-\boldsymbol{\Psi}(\lambda+\nu)+\boldsymbol{\Phi}(\lambda)=0 .
$$

Setting $\lambda=0$, we get

$$
\begin{equation*}
\boldsymbol{\Phi}(\mu+\nu)-\boldsymbol{\Phi}(\mu .)-\boldsymbol{\Phi}(\nu)+\boldsymbol{\Phi}(\rho) \equiv 0 . \tag{2}
\end{equation*}
$$

Set $\%(\lambda) \equiv \Phi(\lambda)$ - $\boldsymbol{\Phi}(\mathrm{o})$. Then $\%(\lambda)$ is continuous since $\Phi(\lambda)$ is continuous, and moreover is Gateaux differentiable for the same reason. Using equation (2) we get

$$
\begin{equation*}
\chi(\lambda+\mu)=\%(i)+\%(\mu) . \tag{3}
\end{equation*}
$$

Then by familiar methods we have

$$
\gamma(a \cdot \mu)=a \cdot \%(\mu)
$$

where \mathbf{a} is a real multiplier. Hence if $\left.\lambda_{1}=\lambda_{1}+i\right\rangle_{2}$

$$
\chi(\lambda)=i_{1} \cdot \chi(1)+\lambda_{2} \cdot \chi(i)=\frac{i+\bar{\lambda}}{2} \%(1)+\frac{i-\bar{i}}{2 i} \chi_{(i)}
$$

where $\bar{\lambda}$ is the complex conjugate of λ. Hence

$$
\boldsymbol{\Phi}\left(\lambda_{1}\right)=a_{0}+\lambda_{1} \cdot a_{1}+\overline{\lambda_{2}} \cdot b_{1} .
$$

Since it was assumed that $\Phi(\lambda)$ was Gateaux differentiable we see that $\bar{\lambda} . b_{1}$ must also be. This is a contradiction and hence $b_{1}=0$. Then $\Phi(\lambda)$ is of the form (1).

It is to be noted that in this case we do not require the full condition on $\Phi(\lambda)$ of Gateaux differentiability everywhere, differentiability at one point is sufficient to make the two definitions equivalent. When $n=1$, condition 3° of definition 2^{\prime} may be replaced by the algebraic condition,
3^{0}

$$
\frac{\Phi(\mathrm{t})-\Phi(\mathrm{o})}{\mathrm{I}}=\frac{\Phi(i)-\Phi(0)}{i} .
$$

I shall now prove the general case by induction.
Case III : $n=n, \Delta^{n+1} \Phi(\lambda) \equiv 0$. Then $\Delta^{n}[\Phi(\lambda+\mu)-\Phi(\lambda)] \equiv 0$.

```
A NOTE ON ABSTRAGT POLYNOMIALS IN COMPLEX SPACES. 3II
```

Since $\Phi(\lambda)$ is continuous, $\Phi(\lambda+\mu)$ - $\Phi(\lambda)$ considered as a function of λ is continuous. Since $\Phi(\lambda)$ possesses a Gateaux differential everywhere, $\Phi(\lambda+\mu)-\Phi(\lambda)$ is also Gateaux differentiable everywhere ('). Hence under the induction hypothesis we will assume that $\Phi(\lambda+\mu)-\Phi(\lambda)$ is a C polynomial in λ of the form (1), and of degree $n-1$ at most. Let us set

$$
\begin{equation*}
\psi(\lambda, \mu)=\boldsymbol{\Phi}(\lambda+\mu)-\boldsymbol{\Phi}(\lambda)-\boldsymbol{\Phi}(\mu) . \tag{4}
\end{equation*}
$$

Evidently, $\psi(\lambda, \mu)$ is also a C polynomial of degree at most $n-1$ in λ and since it is symmetric in λ, μ it is also a C polynomial in μ of degree at most $n-1$.

In exactly the same manner as in Fréchet's paper we prove that

$$
\begin{equation*}
\psi(\lambda, \mu)=g(\lambda+\mu)-g(\lambda)-g(\mu) \tag{5}
\end{equation*}
$$

where

$$
g(\lambda)=-\psi_{0}+\sum_{i}^{\prime} \sum_{s} \lambda^{s} \cdot \mathbf{B}_{s},
$$

and where ψ_{0} and B_{s} are constant elements in E. We set

$$
\mathbf{H}(\lambda)=\boldsymbol{\Phi}(\lambda)-g(\lambda)
$$

and it follows that

$$
\Pi(\lambda+\mu)=H(\lambda)+\Pi(\mu) .
$$

Now $\Phi(\lambda)$ is continuous and Gateaux differentiable, and $g(\lambda)$ is continuous and is Gateaux differentiable by lemma 1. Hence $\mathbf{H}(\lambda)$ is continuous and Gateaux differentiable and we may conclude that $H(\lambda)=\lambda . H(1)$. Hence

$$
\Phi(\lambda)=-\psi_{0}+\lambda . \mathrm{II}(\mathrm{I})+\sum_{1}^{r} \lambda^{s} . \mathrm{B}_{s}
$$

Now $\psi(\lambda, \mu)$ is of degree $n-1$ at most in λ, but the right hand side of equation (5) is of degree $r-1$ at most and hence $r \leqq n$.

[^1]If $\Delta^{\prime \prime} \Phi(\lambda) \neq 0,. r=n$. Thus the equivalence of the two definitions is established.

II.

In this section we will complete the equivalence proofs by discussing polynomials on a complex "espace algébrophile » E to a space E^{\prime} of like nature.

Definition 3. - Let $p(x)$ be a function on E to E^{\prime}. Then $p(x)$ will be said to be an E polynomial if :
$1^{\circ} p(x)$ is continuous,
2° for every pair $x, y, p(x+i . y)$ is a C polynominal in $\%$.
It will be said to be of degree n, if for some $x, y p(x+\lambda, y)$ is a C polynomial of degree n and for all x, y is a C polynomial of degree $\leqq n$.

Dcfinition 3^{\prime}. - Let $p(x)$ be a function on E to E^{\prime}. Then $p(x)$ will be said to be an E polynomial if :
$1^{\circ} p(x)$ is continuous,
2^{n} for some integer $n, \Delta^{n+1} p(x) \equiv 0$,
$3^{\circ} \boldsymbol{p}(\boldsymbol{x})$ possesses a Gateaux differential everywhere.
It will be said to be of degree n, if $\Delta^{\prime \prime} p(x) \neq 0$.
I shall first prove that a polynomial of degree n according to definition 3^{\prime} is a polynomial of degree n by definition 3.

Let $\Phi(\mu)=p(x+\mu . y)$. Then $\Phi(\mu)$ is a function on C to E^{\prime} and is continuous. Furthermore $\Delta^{n+1} \Phi(\mu) \equiv 0$. It may also be readily shown that $\Phi(\mu)$ is Gateaux differentiable everywhere. Hence, using the results of section I, we conclude that $p(x+\mu . y)$ is a C polynomial of degree $\leqq n$. That its degree is exactly n, or that for some $x, y \Delta^{\prime \prime} \Phi(\mu) \neq \mathrm{o}$ will be shown later.

In order to prove that if $\boldsymbol{p}(\boldsymbol{x})$ is an E polynomial of degree n by definition 3, it is also an E polynomial of degree n by definition 3^{\prime}, l shall state some results without proof from Martin's thesis. These results can be readily proved.

Let $p(x+\mu . y)$ be represented in the form

$$
\begin{equation*}
p(x+\mu \cdot y)=k_{0}(x, y)+\mu \cdot k_{1}(x, y)+\ldots+\mu^{n} \cdot k_{n}(x, y) \tag{6}
\end{equation*}
$$

The following lemmas all assume that $p(x)$ is a polynomial according to definition 3 .

Lemma 2. - If $p(x)$ is an Epolynomial, then $k_{r}(x, y)$ is homogeneous in y of degree r.

Lemma 3. - For fixed $x, k_{r}(x, y)$ is a polynomial in y of degree $\leqq n$, and for fixed $y, k_{r}(x, y)$ is a polynomial of degree $\leqq n$ in x.

Lemma 4. - If $p(x)$ is a homogeneous polynomial, then $k_{r}(x, y)$ is homogeneous of degree r in y and homogeneous of degree $n-r$ in x.

Lemma 5. - If $p(x)$ is a polynomial of degree n and is homogeneous of degree m, then $m=n$.

Lemma 6. - If $p(x)$ is a homogeneous polynomial of degree m, then for some $\Delta x, \Delta p(x)$ is a polynomial of degree $m-1$.

We can also express $p(x)$ as a sum of homogeneous polynomials,

$$
\begin{equation*}
p(y)=h_{0}(y)+h_{1}(y)+\ldots+h_{n}(y) \tag{7}
\end{equation*}
$$

by setting $h_{r}(y)=k_{r}(o, y)$. By taking $p(x)$ as the sum of homogeneous polynomials and using lemma 6 successively, we prove :

Lemma 7. - If $p(x)$ is an Epolynomial of degree n, then $\Delta^{n+1} p(x) \equiv 0$ and for some choice of the increments $\Delta_{i} x, \Delta^{\prime \prime} p(x) \neq 0$.

We must now prove that $p(x)$ is Gateaux differentiable.

$$
\begin{aligned}
& p(x+\mu \cdot \Delta x)=k_{0}(x, \Delta x)+\mu \cdot k_{1}(x, \Delta x)+\ldots+\mu^{n} \cdot k_{n}(x, \Delta x) \\
& p(x+\mu \cdot \Delta x)-p(x)=\mu \cdot k_{1}(x, \Delta x)+\ldots+\mu^{n} \cdot k_{n}(x, \Delta x)
\end{aligned}
$$

since $k_{0}(x, \Delta x)=k_{0}(x, o)$. Dividing by μ we see that the limit as $\mu \rightarrow 0$ exists and equals $k_{1}(x, \Delta x)$. Using this result and lemma 7 we conclude that if $\boldsymbol{p}(\boldsymbol{x})$ is an E polynomial of degree \boldsymbol{n} by definition 3 then it is also an Epolynomial of degree n by definition 3^{\prime}.

In the proof of the converse which preceded this we did not show that if $p(x)$ is a polynomial of degree n by definition 3^{\prime} then it is exactly of degree n by definition 3 . This now follows from lemma 7, for if it were of degree $<n$ by definition 3 then $\Delta^{\prime \prime} p(x) \equiv 0$, and it could not be of degree n by definition 3^{\prime}. Hence we have proved the complete equivalence of the two definitions 3 and 3^{\prime}.

Note. - It seems to be true that if in definition $\mathbf{2}^{\prime}$ of a C polynomial we leave out the condition of Gateaux differentiability, or in other words, if we do not add the requirements of Gateaux differentiability to Fréchet's definition of a polynomial, then $\Phi(\mu)$ will have the form

$$
\begin{aligned}
\Phi(\mu)=a_{00} & +\mu \cdot a_{10}+\bar{\mu} \cdot a_{11}+\mu^{2} \cdot a_{20}+\mu \bar{\mu} \cdot a_{21}+\overline{\mu^{2}} \cdot a_{2:}+\ldots \\
& +\mu^{n} \cdot a_{n 0}+\mu^{n-1} \bar{\mu} \cdot a_{n 1}+\ldots+\mu \overline{\mu^{n-1}} \cdot a_{n, n-1}+\bar{\mu}^{n} \cdot a_{n n} .
\end{aligned}
$$

This has been verified for $n=0,1,2$, but the general case has not yet been proved. It is my intention to discuss the properties of functions like the above - and which we might call $\overline{\mathrm{C}}$ polynomials - in a later paper.

[^0]: (1) 1 wish to thank Professor A. D. Michal for many helpful criticisms and suggestions in the preparation of this paper.
 (${ }^{(}$) Les polynomes abstraits (Journal de Mathématiques pures et appliquées, 9^{e} série, t. 8, 1929, p. 7r).
 ${ }^{\left({ }^{3}\right)}$ Sur diverses questions du Calcul fonctionnel (Bull. Soc. de France, vol. 50, 1922).
 (4) A. D. Michal and R. S. Martin, Some Expansions in Vector Space (Journal de Mathématiques pures et appliquées, 9° série, t. 13, 1934, p. 69).
 ${ }^{(5)}$ R. S. Martin, Contributions to the Theory of Functionals (Thesis, California Institute of Technology, 1932).

[^1]: ${ }^{(1)}$ It is essential that $\Phi(\lambda)$ be differentiable everywhere. For if it is differentiable at only one point we cannot assert that $\Phi(\lambda+\mu)-\Phi(\lambda)$ is differentiable at all. For example $\Phi\left(\gamma_{1}\right)=\bar{\lambda}^{-2}$. a is differentiable at $\lambda=\mathrm{o}$ but nowhere else.

