JOURNAL

DE

MATHEMATIQUES
 PURES ET APPLIQUÉES
 FONDÉ EN 1836 ET PUBLIE JUSQU'EN 1874
 Par Joseph Liouville

E. T. Bell

General theorems on numerical functions

Journal de mathématiques pures et appliquées 9^{e} série, tome 16, no 1-4 (1937), p. 151154.
http://www.numdam.org/item?id=JMPA_1937_9_16_1-4_151_0

Article numérisé dans le cadre du programme Gallica de la Bibliothèque nationale de France http://gallica.bnf.fr/

General theorems on numerical functions;

By E. T. BELL.

1. In his paper Théorèmes généraux concernant des fonctions numériques, Liouville (') stated without proof four useful theorems on numerical functions. The first theorem needs a correction, the second is over-conditioned, the third and fourth are exact. We first state Liouville's forms and then point out the required modifications.

Theorem I. - Let n be any positive integer prime to the constant integer m, and let the summations refer to all pairs (d, δ) of positive divisors of n such that $n=d \grave{b}$. Let

$$
\mathrm{A}(n), \mathrm{G}(n), \mathrm{Il}(n), \mathrm{P}(n), \mathrm{Q}(n)
$$

be numerical functions of n, such that, for all n as defined,
(2)

$$
\begin{equation*}
\mathbf{\Sigma} \mathrm{A}(d) \mathrm{G}(\delta)=\mathrm{H}(n) \tag{I}
\end{equation*}
$$

$$
\mathbf{\Sigma} \mathbf{A}(d) \mathbf{P}(\delta)=\mathrm{Q}(\boldsymbol{n})
$$

Then (1) and (2) together imply

$$
\begin{equation*}
\mathbf{\Sigma} Q(d) G(\delta)=\mathbf{\Sigma} P(d) \mathbf{H}(\delta) \tag{3}
\end{equation*}
$$

Theorem II. - If $\mathrm{B}(\boldsymbol{n})$ is also a numerical function, and $\mathrm{A}, \mathrm{B}, \ldots, \mathrm{Q}$ are such that

$$
\begin{align*}
& \mathbf{\Sigma} \mathrm{A}(\boldsymbol{d}) \mathrm{G}(\delta)=\mathbf{\Sigma} \mathrm{B}(\boldsymbol{d}) \mathbf{H}(\delta), \tag{4}\\
& \mathbf{\Sigma} \mathrm{A}(\boldsymbol{d}) \mathrm{P}(\delta)=\mathbf{\Sigma} \mathrm{B}(\boldsymbol{d}) \mathrm{Q}(\delta) \tag{5}
\end{align*}
$$

(1) Journal de Mathématiques (2), 8, 1863, 347-352.
for all $n,(d, 0)$ as above defined, then (4) and (5) together impty

$$
\begin{equation*}
\mathbf{\Sigma} Q(d) \mathbf{G}(\hat{\delta})=\mathbf{\Sigma} \mathbf{P}(\boldsymbol{d}) \mathbf{H}(\delta), \tag{6}
\end{equation*}
$$

provided that

$$
\begin{equation*}
A(n)=0 . \quad B(n)=0 \tag{7}
\end{equation*}
$$

do not hold for all n as defined.
By the usual definition (wich agrees with Liouville's, ibid., vol 2, $1857,141), f(x)$ is called a numerical function of x if $f(x)$ is finite and uniform for positive integer values of x. In the first theorem choose $m=q, n=p, q>p$, where p, q are both prime, and let $\mathrm{A}(n)$ be any numerical function of n such that $\mathrm{A}(1)=0$. Then (1), (2) give

$$
\mathrm{A}(p) \mathrm{G}(\mathrm{t})=\| \mathrm{If}(p), \quad \mathrm{A}(p) \mathrm{P}(\mathrm{t})=\mathrm{Q}_{(p)},
$$

and (3) gives

$$
\left.\mathrm{Q}(1) \mathrm{G}\left(p^{\prime}\right)+\mathrm{Q}\left(p^{\prime}\right) \mathrm{G}(\mathrm{I})=\mathbf{P}(\mathbf{1}) \mathrm{H}_{(p)}+\mathbf{P}(p) \mathrm{I}_{(1)}\right) ;
$$

hence, replacing $Q(p), H(p)$ by their values above, we find

$$
Q(1) \mathbf{G}(p)=\|(1) P(p),
$$

a condition which is not necessarily satisfied by four numerical functions $\mathrm{Q}, \mathrm{G}, \mathrm{H}, \mathrm{P}$. By the following slight changes theorem 1 becomes exact and theorem II is generalized.

In order that (1) and (2) shall imbly (3) it is necessary and sufficient that $\mathrm{A}(1) \neq 0$, and in order that (4) and (5) shall imply (6) it is necessary and sufficient that $\mathrm{A}(\mathrm{I}) \mathrm{B}(\mathrm{1}) \neq 0$.

Assuming these changes to have been made we note that the apparently special case $m=1$ is in fact the general case (the same applies to Liouville's third and fourth theorems). Denote by (m, n) the greatest common divisorof m, n and define $\Phi(m, n)$, for m constant, by

$$
\begin{aligned}
& \Phi(m, n)=1 \text { if }(m, n)=1, \\
& \Phi(m, n)=0 \text { if }(m, n)>1 .
\end{aligned}
$$

Then $\Phi(m, n)$ is a numerical function of n. To indicate that the
functions $\mathrm{A}(n), \ldots, \mathrm{Q}(n)$ have n prime to m, we may write them $\mathrm{A}_{m}(n), \ldots, \mathrm{Q}_{m}(n)$. Note that $\Phi(m, n)=\Phi(m, d)$, where d is any divisor of n. Hence if the theorems have been proved for $m=1$, we may choose for $A_{1}(s), \ldots, Q_{1}(s)$ the numerical functions $\Phi(m, s) A_{1}(s), \ldots$ $\Phi(m, s) \mathrm{Q}_{1}(s)$ respectively. In the resulting summations only those terms survive in which d, δ are prime to m, and hence the theorems follow with A_{m}, \ldots, Q_{m} in place of A_{1}, \ldots, Q_{1}. It suffices therefore to prove the revised theorems with the summations referring to all pairs (d, δ) of divisors d, of n such that $n=d \delta$.
2. We say that the numerical functions $f(n), g(n)$ are equal, and write $f=g$, if, and only if, $f(n)=g(n)$ for all integers $n>0$. If $f(n), g(n), h(n)$ are any numerical functions of n such that

$$
h(n)=\mathbf{\Sigma} f(\boldsymbol{d}) g(\delta),
$$

for all integers $n>0$, where the sum refers to all d, δ as defined at the end of $\S 1$, we write $h=f g$, and call $f g$ the product of f, g. This multiplication is commutative, $f g=g f$, and associative, $(f g) k=f(g k)$, $k(n)$ being any numerical function of n. The numerical function $\varepsilon(n)$ defined by

$$
\varepsilon(\mathrm{I})=\mathrm{I}, \quad \varepsilon(s)=0, \quad s \neq \mathrm{I},
$$

is called the unit function, since $\varepsilon f=f$. A numerical function $f(n)$ is said to be regularif, and only if, $f(1) \neq 0$. If a numerical function $f^{\prime}(n)$ exists such that $f^{\prime}=\varepsilon$ we call f^{\prime} the reciprocal (or incerse) of f, and denote it by f^{-1}. It was shown in a previous paper (${ }^{1}$) that f^{-1} exists when, and only when, f is regular. Thus with respect to the multiplication above defined the set of all regular f, g, \ldots is an abelian group.

If f is regular and $f g=f h$, then $g=h$, as we see on multiplying by f^{-4}. But if f is not regular, we cannot infer $g=h$. For, taking $n=\mathrm{I}$ in

$$
\mathbf{\Sigma} f(d) g(\delta)=\mathbf{\Sigma} f(d) h(\delta), \quad n=d \delta
$$

[^0]154 E. t. beli. - theorgms' on numerical functions.
we get $f(\mathrm{I}) g(\mathrm{I})=f(\mathrm{I}) h(\mathrm{I})$; and if $f(\mathrm{I})=0$, then $g(1), h(1)$ are arbitrary, contrary to the definition of $f(n), g(n)$ as numerical functions.

Restating (1), (2) of $\$ \mathbf{1}$ in terms of this algebra of numerical functions, we may write them (with $m=1$, as was seen to be sufficient),

$$
\mathrm{AG}=\mathbf{H}, \quad \mathrm{Q}=\mathrm{AP} ;
$$

and therefore, by multiplication in the algebra,

$$
\begin{equation*}
\mathrm{AGQ}=\mathrm{APH} . \tag{8}
\end{equation*}
$$

Let A be regular, and multiply throughout by A^{-1}. Then $\varepsilon G Q=\varepsilon P H$; that is, $G Q=P H$, which is (3). If A is not regular, it cannot be eliminated from (8).

Similarly, if A, B in (4), (5) are regular, the given equations are

$$
A G=B H, \quad A P=B Q,
$$

whence

$$
\mathrm{AGBQ}=\mathrm{BHAP} .
$$

and we multiply throughout by $\mathrm{A}^{-1} \mathrm{~B}^{-1}$, which (on account of the commutativity and associativity) gives $\mathrm{QG}=\mathrm{PH}$, namely (6).

[^0]: ${ }^{(1)}$ Tóhoku Mathematical Journal, 17, 1920, 221. A much simpler proof will be published in the same journal. A general sketch of the algebra of numerical functions is given, with references, in the Journal of the Indian Mathematical Society 17, 1927, 248-260.

